Padmakar-Ivan index of some types of perfect graphs

Manju Sankaramalil Chithrabhanu1,*, Kanagasabapathi Somasundaram2

1Department of Mathematics, Amrita School of Arts and Science, Kochi, Amrita Vishwa Vidyapeetham, India
2Department of Mathematics, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India

(Received: 29 March 2022. Received in revised form: 1 April 2022. Accepted: 12 April 2022. Published online: 18 April 2022.)

© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The Padmakar-Ivan (PI) index of a graph G is defined as $PI(G) = \sum_{e \in E(G)} (|V(G)| - N_G(e))$, where $N_G(e)$ is the number of equidistant vertices for the edge e. A graph is perfect if for every induced subgraph H, the equation $\chi(H) = \omega(H)$ holds, where $\chi(H)$ is the chromatic number and $\omega(H)$ is the size of a maximum clique of H. In this paper, the PI index of some types of perfect graphs is obtained. These types include co-bipartite graphs, line graphs, and prismatic graphs.

Keywords: PI index; co-bipartite graphs; line graphs; prismatic graphs.

2020 Mathematics Subject Classification: 05C09.

1. Introduction

All graphs considered in this paper are finite, simple and connected. For a graph G, the distance between two vertices x, y is denoted by $d(x, y)$. A vertex w is equidistant for an edge $e = xy$ if $d(x, w) = d(y, w)$. For an edge $e \in E(G)$, denote by $D_G(e)$ the set of all equidistant vertices in G. In particular, $D_i(e)$ denotes the set of vertices at distance i for e. Also, we denote $|D_G(e)| = N_G(e)$.

The vertex Padmakar-Ivan (PI) index of a graph G is a topological index, defined as

$$PI(G) = \sum_{e = uv \in E(G)} (n_u(e) + n_v(e)),$$

where $n_u(e)$ denotes the number of those vertices of G whose distance from the vertex u is smaller than the distance from the vertex v and $n_v(e)$ denotes the number of those vertices of G whose distance from v is smaller than the distance from u. Since $n_u(e) + n_v(e) = |V(G)| - N_G(e)$, the PI index can be rewritten as

$$PI(G) = \sum_{e \in E(G)} (|V(G)| - N_G(e)).$$

The PI index was proposed by Khadikar [10] in 2000. Khadikar and his coauthors investigated the chemical and biological applications of this index in [11]. Khalifeh [12] introduced a vertex version of the PI index and using this notion, they computed exact expression for the PI index of Cartesian product of graphs. John and Khadikar established a method for calculating the PI index of benzenoid hydrocarbons using orthogonal cuts in [9]. Gutman and Ashrafi [6] obtained the PI index of phenylenes and their hexagonal squeezes. The PI index of bridge graphs and chain graphs was studied in [13]. Das and Gutman [3] obtained a lower bound on the PI index of a connected graph in terms of the number of vertices, edges, pendent vertices, and the clique number, and also they characterized the extremal graphs. There are different types of topological indices; for example distance-based topological indices, degree-based topological indices, etc. Topological indices has many applications in the field of mathematical chemistry. Trinajstić and Zhou introduced the sum-connectivity index and found several basic properties in [16]. Many topological indices and their applications are thoroughly explored in [15]. Ilić and Milosavljević introduced the weighted vertex PI index and established some of its basic properties in [7]. The weighted PI index of a graph G is given as

$$PI_w(G) = \sum_{e = uv \in E(G)} (d_G(u) + d_G(v)) (|V(G)| - N_G(e)).$$

Gopika et al. [5] obtained the weighted PI index of the direct and strong product for certain types of graphs. Indulal et al. [8] studied the graphs satisfying the equation $PI(G) = PI(G - e)$.
A graph is perfect if for every induced subgraph \(H \), the equation \(\chi(H) = \omega(H) \) holds, where \(\chi(H) \) is the chromatic number and \(\omega(H) \) is the size of a maximum clique of \(H \). A claw-free graph is a graph in which no vertex has three pairwise nonadjacent neighbours. Every claw-free graph is a perfect graph. A survey on claw-free graphs is given in [4]. Chudnovsky and Seymour studied the structure of claw-free graphs thoroughly in a series of seven papers from 2007 to 2012. For example, in the first paper [1] of this series, they studied the orientable prismatic graphs and in the second paper [2], they studied non-orientable prismatic graphs. In this paper, we obtain the PI index of some classes of perfect graphs, including co-bipartite graphs, line graphs, and prismatic graphs.

2. Co-bipartite graphs

An edge \(e = xy \) of a graph \(G \) is said to be an equidistant edge for a vertex \(a \in V(G) \) if \(d(a, x) = d(a, y) \). The edge \(e \) is at distance \(r \) for a vertex \(a \) if \(d(a, x) = d(a, y) = r \). The set of all equidistant edges of \(a \) is \(D_G(a) = \{e = xy \in E(G) : d(a, x) = d(a, y)\} \) and we take \(N_G(a) = |D_G(a)| \). It is easy to see that \(\sum_{e \in E(G)} N_G(e) = \sum_{a \in V(G)} N_G(a) \).

Lemma 2.1. Let \(G \) be a graph with \(n \) vertices and \(m \) edges. Then, \(PI(G) = mn - \sum_{a \in G} N_G(a) \).

Proof:

\[
PI(G) = \sum_{e \in E(G)} (|V(G)| - N_G(e)) = \sum_{e \in E(G)} |V(G)| - \sum_{e \in E(G)} N_G(e) = mn - \sum_{a \in G} N_G(a).
\]

Let \(G(U, V) \) be a bipartite graph with partite sets \(U \) and \(V \). A co-bipartite graph is the complement of a bipartite graph \(G(U, V) \) and it is denoted as \(\overline{G} \). In \(\overline{G} \), the vertices in \(U \) and the vertices in \(V \) forms two disjoint cliques. Every co-bipartite graph is a perfect graph. The diameter of a connected co-bipartite graph is either 2 or 3.

Consider a bipartite graph \(G(U, V) \) with \(|U| = n \) and \(|V| = m \). Let \(\Delta_1 \) and \(\Delta_2 \) be the maximum degree in \(U \) and \(V \) respectively, where \(\Delta_1 \leq m \) and \(\Delta_2 \leq n \). Let \(U_1 = \{u \in U : d(u) < m\} \) and \(U_2 = \{u \in U : d(u) = m\} \). It is noted that \(U = U_1 \cup U_2 \). Similarly, \(V = V_1 \cup V_2 \), provided that the degree of every vertex in \(V_1 \) is less than \(n \) and the degree of every vertex in \(V_2 \) is \(n \). Let \(U_1 = \{u_1, u_2, ..., u_p\}, U_2 = \{u_{p+1}, u_{p+2}, ..., u_n\}, V_1 = \{v_1, v_2, ..., v_q\} \) and \(V_2 = \{v_{q+1}, v_{q+2}, ..., v_m\} \). Let \(d(u_i) = f_i \) for \(i = 1, 2, ..., p \) and \(d(v_j) = g_j \) for \(i = 1, 2, ..., q \). We denote \(\sum_{i=1}^p f_i \) by \(f^* \), \(\sum_{j=1}^q g_j \) by \(g^* \) and \(g^* \).

Theorem 2.1. Let \(G(U, V) \) be a bipartite graph. Then \(PI(\overline{G}) = n(n-1) + m(m-1) + mn(2p+q) - pq(m+n-p-q) - mp(p-1) - nq(q+1) + f(2m-n-1) - 2(f^* + g^*) + g(3n-1) \).

Proof: Let \(U = U_1 \cup U_2 \) and \(V = V_1 \cup V_2 \), where \(U_1 = \{u_1, u_2, ..., u_p\}, U_2 = \{u_{p+1}, u_{p+2}, ..., u_n\}, V_1 = \{v_1, v_2, ..., v_q\}, V_2 = \{v_{q+1}, v_{q+2}, ..., v_m\} \), \(d(u_i) = f_i \) if \(i \leq p \), \(d(u_i) = m \) if \(i > p \), \(d(v_j) = g_j \) if \(j \leq q \), and \(d(v_j) = n \) if \(j > q \). The degrees in \(\overline{G} \) (see Figure 1) are given as

\[
d(u_i) = \begin{cases} (m-f_i) + (n-1) & \text{if } i = 1, 2, ..., p \\ (n-1) & \text{if } i > p \end{cases}
\]

and

\[
d(v_j) = \begin{cases} (n-g_j) + (m-1) & \text{if } j = 1, 2, ..., q \\ (m-1) & \text{if } j > q. \end{cases}
\]

We partition \(E(\overline{G}) \) with \(E_1, E_2 \) and \(E_3 \), where \(E_1 \) is the set of edges in the clique with vertices in \(U \), \(E_2 \) is the set of edges in the clique with vertices in \(V \) and \(E_3 = \{(u, v) : u \in U, v \in V\} \).

![Figure 1: The graph \(\overline{G} \) used in the proof of Theorem 2.1.](image)

For a vertex \(u \in U \), it is easy to see that

\[
N_{E_1}(u) = \frac{(n-1)(n-2)}{2}.
\]
A vertex \(v_i \in V_1 \) has \((n - g_i)\) neighbours in \(U \) and the remaining \(g_i \) vertices are at distance 2, which means that
\[
N_{E_1}(v_i) = \frac{(n - g_i)(n - g_i - 1)}{2} + \frac{g_i(g_i - 1)}{2}.
\]
Similarly, a vertex \(v \in V_2 \) has no neighbours in \(U \) and
\[
d(u_i, v) = \begin{cases} 2 & \text{if } u_i \in U_1, \\ 3 & \text{if } u_i \in U_2. \end{cases}
\]
Also,
\[
N_{E_1}(v) = \frac{p(p - 1)}{2} + \frac{(n - p)(n - p - 1)}{2}
\]
and
\[
\sum_{e \in E_1} N_G(e) = \frac{n(n - 1)(n - 2)}{2} + \sum_{i=1}^{q} \left(\frac{(n - g_i)(n - g_i - 1)}{2} + \frac{g_i(g_i - 1)}{2}\right) + (m - q) \left(\frac{p(p - 1)}{2} + \frac{(n - p)(n - p - 1)}{2}\right).
\]
Similarly, for edges in \(E_2 \), one has
\[
\sum_{e \in E_2} N_G(e) = \frac{m(m - 1)(m - 2)}{2} + \sum_{j=1}^{p} \left(\frac{(m - f_j)(m - f_j - 1)}{2} + \frac{f_j(f_j - 1)}{2}\right)
\]
\[
+ (n - p) \left(\frac{q(q - 1)}{2} + \frac{(m - q)(m - q - 1)}{2}\right) + (n + m)(m - f_1) + (m - f_2) + ... + (m - f_p)
\]
\[
- \left(\sum_{j=1}^{p}(m - f_j)(m - f_j - 1) + \sum_{i=1}^{q}(n - g_i)(n - g_i - 1)\right)
\]
\[
= \frac{n(n - 1)(m + n)}{2} - \frac{n(n - 1)(n - 2)}{2} - \sum_{i=1}^{q} \left(\frac{(n - g_i)(n - g_i - 1)}{2} + \frac{g_i(g_i - 1)}{2}\right)
\]
\[
- (m - q) \left(\frac{p(p - 1)}{2} + \frac{(n - p)(n - p - 1)}{2}\right)
\]
\[
+ \frac{m(m - 1)(m + n)}{2} - \frac{m(m - 1)(m - 2)}{2} - \sum_{j=1}^{p} \left(\frac{(m - f_j)(m - f_j - 1)}{2} + \frac{f_j(f_j - 1)}{2}\right)
\]
\[
- (n - p) \left(\frac{q(q - 1)}{2} + \frac{(m - q)(m - q - 1)}{2}\right) + (n + m)(m - f_1) + (m - f_2) + ... + (m - f_p)
\]
\[
- \left(\sum_{j=1}^{p}(m - f_j)(m - f_j - 1) + \sum_{i=1}^{q}(n - g_i)(n - g_i - 1)\right)
\]
\[
= n(n - 1)(m + 2) - \sum_{i=1}^{q}(n - g_i)(n - g_i - 1) - \sum_{i=1}^{q} g_i(g_i - 1) - (m - q)(p(p - 1) + (n - p)(n - p - 1))
\]
\[
+ (m(m - 1)(n + 2) - \sum_{j=1}^{p}(m - f_j)(m - f_j - 1) - \sum_{j=1}^{p} f_j(f_j - 1) - (n - p)(q(q - 1) + (m - q)(m - q - 1))
\]
\[
+ 2(m + n)\sum_{j=1}^{p}(m - f_j) - 2\sum_{j=1}^{p}(m - f_j)(m - f_j - 1) - 2\sum_{i=1}^{q}(n - g_i)(n - g_i - 1)
\]
\[
= 2n^2 - 2n + 4mpq + 2p^2n - 2nmp + 2p^2q + 2m^2 - 2m + 2mmpq - 2mpq + 2pq^2
\]
\[
- 2n^2q + 2nq + 2pm - 2n\sum_{j=1}^{p} f_j + 4m\sum_{j=1}^{p} f_j - 4\sum_{j=1}^{p} f_j^2 - 2\sum_{j=1}^{p} f_j + 6n\sum_{i=1}^{q} g_i - 4\sum_{i=1}^{q} g_i^2 - 2 \sum_{i=1}^{q} g_i
\]
\[
= n(n - 1) + m(m - 1) + mn(2p + q) - pq(m + n - q - p) - mp(p - 1)
\]
\[
- nq(q + n - 1) + f(2m - n - 1) - 2(f^* + g^*) + g(3n - 1).
\]
A bipartite graph $G(U, V)$ is (x, y)-biregular if each vertex in U has degree x and each vertex in V has degree y.

Corollary 2.1. If $G(U, V)$ is a (x, y)-biregular graph then $PI(G) = (n + m)(n + m - 1) + 2my(n + m - (x + y + 1))$.

Proof. From Theorem 2.1, we have

$$PI(G) = n(n - 1) + m(m - 1) + mn(2p + q) - pq(m + n - p - q) - mp(p - 1) - nq(q + n - 1) + f(2m - n - 1) - 2(f + g) + g(3n - 1).$$

Here $p = n, q = m, f = nx, g = my, f^* = nx^2$, and $g^* = my^2$. Thus,

$$PI(G) = n^2 - n + m^2 - m + 2mn + 2m^2x - n^2x - nx - 2nx^2 - 2my^2 + 3my - my$$

$$= (n + m)^2 - (n + m) + 2nym + 2m^2y - 2mxy - 2my^2 - 2my$$

$$= (n + m)(n + m - 1) + 2my(n + m - (x + y + 1)).$$

\[\square\]

Corollary 2.2. If G is a k-regular bipartite graph with $2n$ vertices then $PI(G) = 2n \left[2n(k + 1) - (2k^2 + k + 1) \right]$.

Proof. In Theorem 2.1, by taking $n = m$ and $x = y = k$, one gets

$$PI(G) = 2n(2n - 1) + 2nk(2n - (2k + 1))$$

$$= 2n(2n(k + 1) - (2k^2 + k + 1)).$$

\[\square\]

Two particular examples of Corollary 2.2 are $PI(C_{2n}) = 2n(6n - 11)$ and $PI(K_{n,n}) = 2n(n - 1)$.

Corollary 2.3. If G is a k-regular bipartite graph with $2n$ vertices then

$$PI_w(G) = 4n(2n - k - 1) \left(2n(k + 1) - (2k^2 + k + 1) \right).$$

Proof. We know that the weighted PI index of a regular graph is a multiple of its PI index. Therefore,

$$PI_w(G) = 2(2n - k - 1) PI(G) = 4n(2n - k - 1) \left(2n(k + 1) - (2k^2 + k + 1) \right).$$

\[\square\]

3. **Line graphs of some classes of graphs**

Let G be a graph with n vertices and m edges. Its line graph denoted by $L(G)$, is a simple graph whose vertices are the edges of G and two vertices are adjacent in $L(G)$ if the corresponding edges are adjacent in G. Let T be a tree with n vertices. Every vertex v in T with degree $i, i > 2$, forms a star $K_{1,i}$, in T, we denote it by S_i. Let S be the collection of all stars in T. If we delete edges of all stars in T, the remaining edges of T are parts of paths. Some paths have both of its end vertices common with the stars; we call them as central paths and the remaining have one end vertex shared with stars (paths) and the other end vertex is a pendant vertex; we call them leaf paths. We denote the central path with the length l by P_l and pendant path with the length l by P_l^\ast. As we know that line graphs of stars are complete graphs and line graphs of paths are paths. Each star S_i in T is transformed to a clique with K_i in $L(T)$. The central path P_l has l edges, so it is transformed to the path with l vertices having length $l - 1$ and each of its end vertices is connected with a vertex of a clique in $L(T)$, so it has $l - 1 + 2 = l + 1$ edges. Each leaf path P_l^\ast is transformed to a path with l vertices and $l - 1$ edges, and it is connected with a vertex of $L(T)$, so it has l edges.

Theorem 3.1. Let T be a tree with n vertices then

$$PI(L(T)) = (n - 1)(n - 2).$$

Proof. Let T be a tree with n vertices. Assume that the edge set $E(T)$ is the union of m stars S_{k_i}, r central paths P_{f_i}, and s pendant paths $P_{g_i}^\ast$. Let us assume that

$$S = \cup_{i=1}^m S_{k_i} \quad \text{and} \quad P' = \cup_{i=1}^r P_{f_i} \cup \cup_{i=1}^s P_{g_i}^\ast.$$
Therefore, we claim that
\[\sum_{A \text{ vertex in common}} (|V(T)| - N_T(e)) = (k_i - 1) (n - 1). \]

Let \(e \) be an edge of \(K_i \) in \(L(T) \) and let \(v \in V(K_i) \) be equidistant to \(e \). If we delete all the edges of \(K_i \), then \(L(T) \) has more than one component. All vertices in the component \(W \) containing \(v \) are also equidistant to \(e \). If we consider all the edges and vertices of \(K_i \), then
\[
\sum_{e \in E(K_i)} (|V(T)| - N_T(e)) = (k_i - 1) (n - 1).
\]

Also, since each edge of a path is a cut edge, there is no equidistant vertex corresponding to those edges. Each \(P_{j+1} \) contributes \((f_i + 1)(n - 1)\) and each \(P_{g_i}^* \) contributes \(g_i(n - 1) \) to the PI index of \(L(T) \). Thus,
\[
PI(L(T)) = \sum_{e \in E(L(T))} (|V(L(T))| - N_{L(T)}(e))
\]
\[
= \sum_{e \in E(\cup S_k)} (|V(L(T))| - N_{L(T)}(e)) + \sum_{e \in E(\cup P_{j+1})} (|V(L(T))| - N_{L(T)}(e)) + \sum_{e \in E(\cup P_{g_i}^* \cup P_{j+1})} (|V(L(T))| - N_{L(T)}(e))
\]
\[
= \sum_{i=1}^{m} (k_i - 1)(n - 1) + \sum_{i=1}^{r} (f_i + 1)(n - 1) + \sum_{i=1}^{s} g_i(n - 1)
\]
\[
= (n - 1) \left(\sum_{i=1}^{m} k_i - m + \sum_{i=1}^{r} f_i + r + \sum_{i=1}^{s} g_i \right)
\]
\[
= (n - 1) ((n - 1) - m + r).
\]

Since each \(P_j \) lies between two \(S_k \), it holds that \(r = m - 1 \). Therefore,
\[
PI(L(T)) = (n - 1) (n - 1 - 1) = (n - 1)(n - 2) = PI(T) - 2(n - 1).
\]

Let \(K_n \) be the complete graph with \(n \) vertices. The graph \(L(K_n) \) is the edge disjoint union of \(n \) cliques \(A_1, A_2, A_3, ..., A_n \), each of which has order \(n - 1 \). Also, each vertex of \(L(K_n) \) is a part of exactly two cliques and any two cliques in \(L(K_n) \) have exactly one vertex in common.

Theorem 3.2. \(PI(L(K_n)) = n(n - 1)(n - 2) \).

Proof. The edge set of \(L(K_n) \) can be partitioned as
\[
E(L(K_n)) = \bigcup_{i=1}^{n} E(A_i),
\]
where \(A_i \)s are cliques of order \(n - 1 \). Let \(e = uv \) be an arbitrary edge in \(L(K_n) \), then \(e \in A_i \) for some \(i \). All the remaining vertices in \(A_i \) are at distance one, so \(V(A_i) \setminus \{u, v\} \subseteq D_1(e) \). Since each vertex belongs to exactly two cliques, \(u \in A_j \) and \(v \in A_h \), for some \(i \notin \{j, h\} \). Also, two cliques have exactly one vertex in common, say \(w \), which is different from \(u \) and \(v \). So, \(d(u, w) = d(v, w) = 1 \) implies that \(w \in D_1(e) \). Moreover, the number of vertices at distance 2 is
\[
\frac{n(n - 1)}{2} - (d(u) + d(v) - D_1(e)) = \frac{n(n - 1)}{2} - (4(n - 2) - (n - 2)).
\]

Therefore,
\[
N_L(K_n)(e) = (n - 2) + \frac{n(n - 1)}{2} - 3(n - 2) = \frac{n(n - 1)}{2} - 2(n - 2).
\]
and hence
\[
PI(L(K_n)) = \sum_{e \in E(L(K_n))} (|V(L(K_n))| - N_{L(K_n)}(e))
\]
\[
= \sum_{e \in E(L(K_n))} \left(\frac{n(n-1)}{2} - \left(\frac{n(n-1)}{2} - 2(n-2) \right) \right)
\]
\[
= 2 \left(\sum_{v \in V(K_n)} \frac{d^2(v)}{2} - m \right) (n-2)
\]
\[
= \left(\sum_{v \in V(K_n)} d^2(v) - 2m \right) (n-2)
\]
\[
= (n(n-1)^2 - n(n-1)) (n-2) = n(n-1)(n-2)^2 = PI(K_n)(n-2)^2.
\]

Next, we consider the complete bipartite graph \(K_{n,m} = G(U,V) \) with \(|U| = n \) and \(|V| = m \). Its line graph \(L(G) \) is the edge disjoint union of \(m+n \) cliques, where \(m \) cliques have order \(n \) and \(n \) cliques have order \(m \). Each vertex in \(L(G) \) belongs to exactly two cliques, one of which has order \(n \) and the other is of order \(m \). Two cliques of the same order have no vertex in common.

Theorem 3.3. \(PI(L(K_{n,m})) = mn(2mn - (m+n)). \)

Proof. Take \(G = K_{n,m}. \) Its edge set can be partitioned as \(E(G) = E(\cup K_n) \cup E(\cup K_m) \). Take an arbitrary edge \(e \in E(L(G)) \). Then there are two possibilities.

Case 1. \(e = xy \) is an edge of a clique \(K_n \) of order \(n \).

All the vertices of \(K_n \) other than the end vertices of \(e \) are at distance 1. There is no other vertex at distance 1. (If there exists a vertex \(z \) at distance 1, then the edge \(xz \) belongs to a clique of order \(m \) and \(zy \) belongs to another clique of the same order. So, the vertex \(w \) belongs to exactly two cliques of order \(m \), it is not possible). Thus,

\[
mm - (d(x) + d(y) - (n-2)) = mn - (2(n+m-2) - (n-2))
\]

are the number of vertices at distance 2. So,

\[
N_{L(G)}(e) = mn - (2(n+m-2) - (n-2)) + (n-2) = mn - 2(n+m-2) + 2(n-2).
\]

Case 2. \(e \) is an edge of a clique \(K_m \) of order \(m \).

In the same way as in Case 1, one gets

\[
N_{L(G)}(e) = mn - 2(n+m-2) + 2(m-2).
\]

Therefore,

\[
PI(L(G)) = \sum_{e \in E(L(G))} (|V(L(G))| - N_{L(G)}(e))
\]
\[
= mn \left(\frac{mn(m+n-2)}{2} \right) - \left(\sum_{e \in E(\cup K_n)} N_{L(G)}(e) + \sum_{e \in E(\cup K_m)} N_{L(G)}(e) \right)
\]
\[
= mn \left(\frac{mn(m+n-2)}{2} \right) - (mn - 2(n+m-2)) \left(\frac{mn(m+n-2)}{2} \right) - mn[(n-1)(n-2) + (m-1)(m-2)]
\]
\[
= mn((m+n-2)^2 - (n-1)(n-2) - (m-1)(m-2))
\]
\[
= mn(2mn - (m+n)).
\]
4. Prismatic graphs

Chudnovsky and Seymour studied different structural properties of claw-free graphs in a series of seven papers. In their first paper [1] of this series, they studied the orientable prismatic graphs and in the second paper [2] they studied non-orientable prismatic graphs. A graph \(G \) is prismatic if for every triangle \(T \) in \(G \), every vertex not in \(T \) has exactly one neighbour in \(T \). Core of a prismatic graph is the union of all triangles in \(G \). Total coloring of prismatic graphs are discussed in [14]. Here, we consider a particular class of prismatic graphs, namely rigid prismatic graphs. A prismatic graph \(G \) with core \(W \) is rigid if

- there does not exist two distinct vertices \(u \) and \(v \), not in the core, with the same neighbouring set in \(W \),
- every two non-adjacent vertices have a common neighbour in the core.

Theorem 4.1. If \(G \) is a rigid prismatic graph with \(p \) triangles and \(n \) vertices, then its PI index is

\[
PI(G) = M_1(G) + 2np - \sum_{(u,v)\in E(W)} (d(u) + d(v)).
\]

Proof. Let \(G \) be a rigid prismatic graph with \(p \) triangles, \(n \) vertices, and \(m \) edges. Since every two non-adjacent vertices of \(G \) have a common neighbour in the core, its diameter is 2. The edge set of \(G \) can be partitioned as \(E(G) = E(W) \cup E_1 \cup E_2 \cup E_3 \), where \(E_1 = \{(u,v) \notin E(W) \mid u,v \in W\} \), \(E_2 = \{(u,v) \mid \text{either } u \in W \text{ or } v \in W\} \), and \(E_3 = \{(u,v) \mid u,v \notin W\} \).

\[
PI(G) = \sum_{e \in E(W)} (|V(G)| - N_G(e)) + \sum_{e \in E_1} (|V(G)| - N_G(e)) + \sum_{e \in E_2} (|V(G)| - N_G(e)) + \sum_{e \in E_3} (|V(G)| - N_G(e)).
\]

Since each triangle contributes \(2n \) to \(PI(G) \), one has

\[
\sum_{e \in E(W)} (|V(G)| - N_G(e)) = 2np.
\]

Since each edge in \(E_i \), \(i = 1, 2, 3 \), is not a part of a triangle, it holds that

\[
\sum_{e \in E_i} (|V(G)| - N_G(e)) = \sum_{(u,v) \in E_i} (n - (n - (d(u) + d(v)))) = \sum_{(u,v) \in E_i} (d(u) + d(v))
\]

and thus,

\[
PI(G) = 2np + \sum_{(u,v) \in E_1 \cup E_2 \cup E_3} (d(u) + d(v)) = 2np + \sum_{(u,v) \in E(G) \setminus E(W)} (d(u) + d(v))
\]

\[
= 2np + \sum_{(u,v) \in E(G)} (d(u) + d(v)) - \sum_{(u,v) \in E(W)} (d(u) + d(v))
\]

\[
= M_1(G) + 2np - \sum_{(u,v) \in E(W)} (d(u) + d(v)).
\]

\[\square\]

Figure 2: The rotator.

For illustration of Theorem 4.1, we consider two non-orientable prismatic graphs: rotator and twister. The rotator and twister are shown in 2 and 3, and their PI indices are 120 and 154, respectively.
Figure 3: The twister.

Acknowledgement

The authors would like to thank the anonymous reviewers for their valuable suggestions.

References