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Abstract

The Padmakar-Ivan (PI) index of a graph G is defined as PI(G) = }_..p(q) (IV(G)| — Na(e)), where N (e) is the number
of equidistant vertices for the edge e. A graph is perfect if for every induced subgraph H, the equation x (H) = w (H) holds,
where x (H) is the chromatic number and w (H) is the size of a maximum clique of H. In this paper, the PI index of some
types of perfect graphs is obtained. These types include co-bipartite graphs, line graphs, and prismatic graphs.
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1. Introduction

All graphs considered in this paper are finite, simple and connected. For a graph G, the distance between two vertices z, y
is denoted by d (x,y) . A vertex w is equidistant for an edge e = zy if d (x,w) = d(y,w) . For an edge e € F (G), denote by
D¢ (e) the set of all equidistant vertices in G. In particular, D; (¢) denotes the set of vertices at distance i for e. Also, we
denote | D¢ (e)| = N¢ (e).

The vertex Padmakar-Ivan (PI) index of a graph G is a topological index, defined as

PI(G) = Z (nu(e) + nwle)),
e=uwveE(G)
where n, (¢) denotes the number of those vertices of G whose distance from the vertex u is smaller than the distance from
the vertex v and n, (e) denotes the number of those vertices of G whose distance from v is smaller than the distance from
u. Since n,, (€) + ny (e) = |V(G)| — Ng (e), the PI index can be rewritten as

PI(G)= Y (IV(G)|—Neale)).
e€E(G)

The PI index was proposed by Khadikar [10] in 2000. Khadikar and his coauthors investigated the chemical and biological
applications of this index in [11]. Khalifeh [12] introduced a vertex version of the PI index and using this notion, they
computed exact expression for the PI index of Cartesian product of graphs. John and Khadikar established a method
for calculating the PI index of benzenoid hydrocarbons using orthogonal cuts in [9]. Gutman and Ashrafi [6] obtained
the PI index of phenylenes and their hexagonal squeezes. The PI index of bridge graphs and chain graphs was studied
in [13]. Das and Gutman [3] obtained a lower bound on the PI index of a connected graph in terms of the number of
vertices, edges, pendent vertices, and the clique number, and also they characterized the extremal graphs. There are
different types of topological indices; for example distance-based topological indices, degree-based topological indices, etc.
Topological indices has many applications in the field of mathematical chemistry. Trinajstié and Zhou introduced the
sum-connectivity index and found several basic properties in [16]. Many topological indices and their applications are
thoroughly explored in [15]. Ili¢ and Milosavljevié introduced the weighted vertex PI index and established some of its
basic properties in [7]. The weighted PI index of a graph G is given as

PI,(G)= Y (dg(u)+dg (v))(|V(G)] - Ne ().
e=uwveE(G)

Gopika et al. [5] obtained the weighted PI index of the direct and strong product for certain types of graphs. Indulal et
al. [8] studied the graphs satisfying the equation PI (G) = PI (G —e¢).
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A graph is perfect if for every induced subgraph H, the equation x (H) = w (H) holds, where x (H) is the chromatic
number and w(H) is the size of a maximum clique of H. A claw-free graph is a graph in which no vertex has three
pairwise nonadjacent neighbours. Every claw-free graph is a perfect graph. A survey on claw-free graphs is given in [4].
Chudnovsky and Seymour studied the structure of claw-free graphs thoroughly in a series of seven papers from 2007 to
2012. For example, in the first paper [1] of this series, they studied the orientable prismatic graphs and in the second
paper [2], they studied non-orientable prismatic graphs. In this paper, we obtain the PI index of some classes of perfect
graphs, including co-bipartite graphs, line graphs, and prismatic graphs.

2. Co-bipartite graphs

An edge ¢ = zy of a graph G is said to be an equidistant edge for a vertex a € V (G) if d (a,z) = d(a,y). The edge e is at
distance r for a vertex a if d (a,z) = d (a,y) = r. The set of all equidistant edges of a is Dg (a) = {e =2y € E(G) : d(a,z) =
d(a,y)} and we take N¢ (a) = [Dg (a)|. It is easy to see that > p) Na (€) = X ,cv () Ne (@) -

Lemma 2.1. Let G be a graph with n vertices and m edges. Then, PI (G) = mn =} cy ) Ne ().

Proof.
PIG) = Y (V@ -Nal)= 3 V(@I 3 Nale) =mn—3 Na(a).
e€E(G) ecE(Q) ecE(Q) acG

O

Let G (U, V) be a bipartite graph with partite sets U and V. A co-bipartite graph is the complement of a bipartite graph
G(U,V) and it is denoted as G. In G, the vertices in U and the vertices in V forms two disjoint cliques. Every co-bipartite
graph is a perfect graph. The diameter of a connected co-bipartite graph is either 2 or 3.

Consider a bipartite graph G (U,V) with |U| = n and |V| = m. Let A; and A, be the maximum degree in U and V
respectively, where Ay < mand Ay <n. LetU; ={u e U :d(u) <m}and Uy = {u € U : d(u) = m}. It is noted that
U = U; UUs. Similarly, V = V; U V5, provided that the degree of every vertex in V; is less than n and the degree of every
vertex in V2 is n. Let Uy = {u1,ug, ..., up}, Uz = {Upt1,Upt2, -y Un}, Vi = {V1,02,...,04} and Vo = {v441,0g+2, ..., Um }. Let
d(u;) = fifori=1,2,...,pand d(v;) = g; fori = 1,2,...,q. We denote 3>V_, f; by f, >%_, f7 by f*,3°0_, gi by g and 37, g7
by g*.

Theorem 2.1. Let G (U, V) be a bipartite graph. Then PI (G) =n(n—1)+m(m —1)+mn(2p+q) —pg(m+n—p—q) —
mp(p—1)—ngn+q—1)+f2m—-n—-1)—2(f*+g*)+gBn—-1).

Proof. Let U = U UUs; and V = V5 U Vs, where U; = {ul,u2,...,up}, Uy = {up+1,up+2,...,un}, Vi = {’Ul,’l}g,...,vq},
Vo = {vg41,Vg42; -, Um}, du;) = fiif i < p, d(u;) = mifi > p, d(v;) = g;if j < ¢, and d(v;) = nif j > ¢. The
degrees in G (see Figure 1) are given as

Jm=f)+(n-1) ifi=1,2...p
d(ui)_{(n—1) if i > p

and
d(v;) = (n—g;)+(m—1) %fzzl,z,...,q
(m—1) if j > q.

We partition £ (@) with F;, E5 and E3, where F; is the set of edges in the clique with vertices in U, FEj is the set of edges
in the clique with vertices in V and F5 = {(u,v) :u € U,v € V}}.

(V51 ug Up  Upt1 Up42 Un

1\ * ... /o ° e - o

(] \ LR [ ) [ ] L[] LR [ ]
U1 V2 Vg  Ug+1 Vg42 Um

Figure 1: The graph G used in the proof of Theorem 2.1.

For a vertex u € U, it is easy to see that
(n—1)(n—2)

NEI (u) = 9
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A vertex v; € V; has (n — g;) neighbours in U and the remaining g; vertices are at distance 2, which means that

(n—g)(n—gi—1) _"_gi(gi_l).

NEI (UZ) = 2 2

Similarly, a vertex v € V; has no neighbours in U and

4 (e ) = {2 if u; € Uy

3 ifu; € Uy
- -1, (—p)n—p-1)
pp—1 n—p)(n—p—1
NE1(U): B + 5
and
ZNG(e):W+Z<(n_gi)(2_gi_l)_|_g’i(gi2_ 1))+(m_q) (p(pQ— 1)+(n—p)(”2—p—1)). 1
ecEq i=1
Similarly, for edges in E», one has
m(m — P m— f; (m — § i (=1
S Ngle) = 2 Z( Wm=f=b , 50 >>
o - @)
e p)< €=, (m )(2—q—1>>.

For edges in Fs, a vertex u € U; has (m — f;) neighbours in V' and the remaining f; vertices are at distance 2. Similarly,
v € V1 has (n — g;) neighbours in U and remaining g; vertices are at distance 2. Thatis, Ng, (Nv(u)) = (m — f;) (m — f; — 1)
and Ng, (Ny(v)) = (n — g;) (n — g; — 1). Therefore,

p q

ZNG(B):Z(m_fJ)m fJ_1+Zn gz n_gi_l)- 3)
ecFEs 7j=1 i=
Now, we combine the three equations (1), (2), and (3) to calculate PI (G
PIG) =Y (V@) - Ng(©) + > (V@] Ngle) + Y ([V(G)] ~ Ngle))
nin—1(m+n) nn-1)n-2) K((n—g)n—g—-1)  gilgi—1)
B 2 - 2 _Z;( 2 T >
. (p(p2—1)+(n—p)(nz—p—1)>
mm—1(m+n) mm—1)(m-2) =((m—f)m—f-1)  fi(fi—1)
* 2 a 2 _;( 2 T )
(=) (2052 4 Z DR IZI N ) (= )+ (= )+t (= )

- (Z@n I f =1+ (- g)n - gi - 1))

j=1 i=1
q

=n(n=1)(m+2) =3 (n—g)n—gi=1) =3 glg:=1) = (m=q)pp -1+ {n-p)n-p-1)

+m(m—1)(n+2)— Zm fi)(m—f; —1) Z : —(n=p)a(g—1)+ (m—q)(m—q—1))

p

2(m +n Zm—fn—?Z(m—fj)(m—fj—1>—2Z<n—gi><n—gz-—1>

j=1 i=1

=2n% —2n+ 4mnp —2p°m — 2npq + 2p%q + 2m? — 2m + 2mng — 2nqg® — 2mpq + 2pg>

p p p p q q q
—2m%q+ 2+ 2pm —2m ) fi+AmD fi—4Y 72 fi+6ny g—4Y g —2> g
j=1 j=1 j=1 j=1 i=1 i=1 i=1

=n(n—1)+m(m—1)+mn(2p+q) — pg(m +n —q—p) —mp(p — 1)
—ng(g+n—1)+f2m—n—1)—=2(f*+g¢")+g(3n —1).
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A bipartite graph G (U, V) is (x, y)-biregular if each vertex in U has degree x and each vertex in V has degree y.
Corollary 2.1. If G (U,V) is a (z,y)-biregular graph then PI (G) = (n+m)(n+m—1)+2my(n+m— (z +y +1)).
Proof. From Theorem 2.1, we have

PI(G)=n(n—1)+m(m—1)+mn(2p+q) —pg(m+n—p—q)—mp(p—1)
—ng(g+n—-1D+f2m—-n—-1)—2(f*+gx)+g(Bn—1).
Here p =n,q=m, f = nz, g = my, f* = nz?, and g* = my?.Thus,
PI(G) =n? —n+m? —m + 2mn + 2mnzx — n*x — nx — 2nz® — 2my® + 3nmy — my

= (n+m)? — (n+m) + 2nmy + 2m>*y — 2mzxy — 2my? — 2my
=nm+m)n+m—-1)+2myn+m—(z+y+1)).

O

Corollary 2.2. If G is a k-regular bipartite graph with 2n vertices then PI (G) =2n [2n (k+1) — (2k* + k+1)].

Proof. In Theorem 2.1, by taking n = m and = = y = k, one gets

PI(G) =2n(2n — 1)+ 2nk (2n — (2k + 1))
=2n(2n(k+1)— (2k> +k+1)).
O
Two particular examples of Corollary 2.2 are PI (Cs,,) = 2n (6n — 11) and PI (K, ) =2n(n—1).
Corollary 2.3. If G is a k-regular bipartite graph with 2n vertices then
PI,(G)=4n(2n—k—1)(2n(k+1) — 2k* +k+1)).
Proof. We know that the weighted PI index of a regular graph is a multiple of its PI index. Therefore,
PI,(G)=202n-k—1)PI(G)=4n(2n—k—1) (2n(k+1) — (2k* + k+1)).

O

3. Line graphs of some classes of graphs

Let G be a graph with n vertices and m edges. Its line graph denoted by L (G), is a simple graph whose vertices are the
edges of G and two vertices are adjacent in L (G) if the corresponding edges are adjacent in G. Let T be a tree with n
vertices. Every vertex v in T" with degree i,i > 2, forms a star K ; in 7', we denote it by S;. Let S be the collection of all
stars in T'. If we delete edges of all stars in 7', the remaining edges of T" are parts of paths. Some paths have both of its end
vertices common with the stars; we call them as central paths and the remaining have one end vertex shared with stars
(paths) and the other end vertex is a pendent vertex; we call them leaf paths. We denote the central path with the length [
by P, and pendent path with the length [ by P*. As we know that line graphs of stars are complete graphs and line graphs
of paths are paths. Each star S; in T is transformed to a clique with K; in L (T'). The central path P, has [ edges, so it is
transformed to the path with [ vertices having length [ — 1 and each of its end vertices is connected with a vertex of a clique
in L(T), soit has | — 1+ 2 = [ + 1 edges. Each leaf path P is transformed to a path with [ vertices and [ — 1 edges, and it
is connected with a vertex of L(T'), so it has [ edges.

Theorem 3.1. Let T be a tree with n vertices then
PI(L(T))=(n—-1)(n—2).

Proof. Let T be a tree with n vertices. Assume that the edge set E(T') is the union of m stars S, » central paths Py,, and
s pendant paths P, . Let us assume that

S=U,S, and P = (U_,Py)U (U P;).
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Then,
BT =n-1=>"k+Y fi+> g
i=1 i=1 i=1

We claim that
> (VD) = Nr(e)) = (ki — 1) (n—1).

eeE(Kki)

Let e be an edge of K}, in L(T) and let v € V (K}, ) be equidistant to e. If we delete all the edges of K}, then L(T") has more
than one component. All vertices in the component W containing v are also equidistant to e. If we consider all the edges
and vertices of K, then

Y. (VD)= Nr(e) = (ki—1)(n—1).

eEE(Kki)

Also, since each edge of a path is a cut edge, there is no equidistant vertex corresponding to those edges. Each Py, ;
contributes (f; + 1)(n — 1) and each P} contributes g;(n — 1) to the PI index of L(T'). Thus,

PI(L(T)= Y (IV(LT)|~ Neery(e))

e€E(L(T))
= > (V@) -Ney@) + > (VD) = Neey(e) + > (IVET))] = Niery(e)
eeE(USki) eEE(UPfiJFl) eEE(UPg*+1)

m

:Z (ki — 1) (n —1) +Z fi+1)(n—1) +Zgz (n—1)

i=1 i=1 =

=(n—1) (Z(’“ —D+ Y (it ) *Zf“)
(n—1) (ik1m+2ﬁ+r+291>

=n—-1)((n—-1)—m+r).
Since each Py, lies between two Sy, it holds that » = m — 1. Therefore,
PI(L(T)=n-1)(n—-1-1)=n—-1)(n—-2)=PI(T)—2(n—-1).
O

Let K, be the complete graph with n vertices. The graph L (K,) is the edge disjoint union of n cliques A, A, As, ..., A,
each of which has order n — 1. Also, each vertex of L (K,,) is a part of exactly two cliques and any two cliques in L (K,)
have exactly one vertex in common.

Theorem 3.2. PI (L(K,))=n(n—1)(n—2)>%

Proof. The edge set of L (K,,) can be partitioned as

where Als are cliques of order n — 1. Let ¢ = uv be an arbitrary edge in L (K,), then e € A; for some 4. All the remaining
vertices in A; are at distance one, so V' (4;) \ {u,v} C Di(e). Since each vertex belongs to exactly two cliques, u € A; and
v € Ap, for some i & {j,h}. Also, two cliques have exactly one vertex in common, say w, which is different from v and v. So,
d(u,w) = d(v,w) = 1 implies that w € D;(e). Moreover, the number of vertices at distance 2 is

nin—1)
2

nin—1)

= (d(w) +d(v) = Di(e)) = —;

—(4n-2)—(n—2)).
Therefore,

Nix,(€) = (n—2) +
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and hence
PLL(K)) = > (VLK) = N, (€)
e€E(L(Kn))
_ Z n(nl)_(n(nl)_Q(n_2)>
2 2
e€B(L(Kn))
s (Zvevu;n) e m> (n—2)
= Z d*(v) —2m | (n —2)
veV(Ky,)
=(n-1?-nn-1))n-2)=n(n-1)(n-2)°=PI(K,) (n—2)°.
O

Next, we consider the complete bipartite graph K, ,, = G(U,V) with |U| = n and |V| = m. Its line graph L(G) is the
edge disjoint union of m + n cliques, where m cliques have order n and n cliques have order m. Each vertex in L(G) belongs

to exactly two cliques, one of which has order n and the other is of order m. Two cliques of the same order have no vertex

in common.

Theorem 3.3. PI(L(K, ) =

mn (2mn — (m + n)).

Proof. Take G = K, .,. Its edge set can be partitioned as F(G) = FE (UK,,)UE (UK,,) . Take an arbitrary edge e € E (L(G)).
Then there are two possibilities.

Case 1. ¢ = zy is an edge of a clique K, of order n.
All the vertices of K,, other than the end vertices of ¢ are at distance 1. There is no other vertex at distance 1. (If there

exists a vertex z at distance 1, then the edge xz belongs to a clique of order m and zy belongs to another clique of the same

order. So, the vertex w belongs to exactly two cliques of order m, it is not possible). Thus,

mn — (d(z) + d(y) = (n = 2)) =mn = 2(n+m - 2) — (n - 2))

are the number of vertices at distance 2. So,

Nygye)=mn—-2n+m—-2)—(n—2))+(n—-2)=mn—-2(Mn+m-2)+2(n-2).

Case 2. ¢ is an edge of a clique K, of order m.

In the same way as in Case 1, one gets

Therefore,

Npyle) =mn —=2(n+m—2)+2(m-2).

PI(LG) = Y (VL) ~ Nr(e)

e€E(L(G))

2

=mn <1nn(n+m—2)>_( Y Nygle+ > NL(G)(e))

= (2 20+ - 2) () = 100 -2+ (- 1) - 2)

e€E(UK,)) e€E(UK )

2

=mn((n+m—2)2—(n—-1)(n—-2)—(m-1)(m—2))

= mn(2mn — (m + n)).
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4. Prismatic graphs

Chudnovsky and Seymour studied different structural properties of claw-free graphs in a series of seven papers. In their
first paper [1] of this series, they studied the orientable prismatic graphs and in the second paper [2] they studied non-
orientable prismatic graphs. A graph G is prismatic if for every triangle 7" in G, every vertex not in 7' has exactly one
neighbour in 7. Core of a prismatic graph is the union of all triangles in G. Total coloring of prismatic graphs are
discussed in [14]. Here, we consider a particular class of prismatic graphs, namely rigid prismatic graphs. A prismatic
graph G with core W is rigid if

e there does not exist two distinct vertices u and v, not in the core, with the same neighbouring set in W,
e every two non-adjacent vertices have a common neighbour in the core.

Theorem 4.1. If G is a rigid prismatic graph with p triangles and n vertices, then its PI index is

PI(G)= M, (G)+ 2np — Z (d(u) +d(v)).
(u,v)EE(W)

Proof. Let G be arigid prismatic graph with p triangles, n vertices, and m edges. Since every two non-adjacent vertices of G
have a common neighbour in the core, its diameter is 2. The edge set of G can be partitioned as F(G) = E(W)UE; UFE;UEs3,
where E; = {(u,v) € EW) | u,v € W}, Es = {(u,v) | eitheru € Worve W}, and E5 = {(u,v) | u,v ¢ W}.

PI(G)= Y (V(@)|=Nae)+ D (V(@)]=Na(e)+ > (V(G)|-Na(e) + Y (IV(G)| - Nale)) .

ecE(W) ecE; ecEy ecEs

Since each triangle contributes 2n to PI(G), one has

Y. (V@)= Nea(e)) = 2np.

ecE(W)

Since each edge in FE;, i = 1,2, 3, is not a part of a triangle, it holds that

Y (V@) =Nale))= D> (n=(n—(dw)+dw))= > (du)+dw)

eckE; (u,v)EE; (u,v)€E;

and thus,

PI(G) = 2np + > (d(u) + d(v)) = 2np + > (d(u) + d(v))

(u,’U)EElLJEzUEg (’U,,U)EE(G)\E(W)
=2mp+ Y (dw)+dw)— D (dw)+dv))
(u,v)EE(G) (u,v)EE(W)
=M(G)+2np— > (du)+d(v)).
(u,v)EE(W)
O
Us Vg
Vg Y2 U3 » U6
Vg v7

Figure 2: The rotator.

For illustration of Theorem 4.1, we consider two non-orientable prismatic graphs: rotator and twister. The rotator and
twister are shown in 2 and 3, and their PI indices are 120 and 154, respectively.
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U1 Vs

V2 V6
Uz

[\ 2
v v3 /
V4 Ug

Figure 3: The twister.
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