Research Article

Padmakar-Ivan index of some types of perfect graphs

Manju Sankaramalil Chithrabhanu ${ }^{1, *}$, Kanagasabapathi Somasundaram ${ }^{2}$
${ }^{1}$ Department of Mathematics, Amrita School of Arts and Science, Kochi, Amrita Vishwa Vidyapeetham, India
${ }^{2}$ Department of Mathematics, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India

(Received: 29 March 2022. Received in revised form: 1 April 2022. Accepted: 12 April 2022. Published online: 18 April 2022.)
(c) 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The Padmakar-Ivan (PI) index of a graph G is defined as $P I(G)=\sum_{e \in E(G)}\left(|V(G)|-N_{G}(e)\right)$, where $N_{G}(e)$ is the number of equidistant vertices for the edge e. A graph is perfect if for every induced subgraph H, the equation $\chi(H)=\omega(H)$ holds, where $\chi(H)$ is the chromatic number and $\omega(H)$ is the size of a maximum clique of H. In this paper, the PI index of some types of perfect graphs is obtained. These types include co-bipartite graphs, line graphs, and prismatic graphs.

Keywords: PI index; co-bipartite graphs; line graphs; prismatic graphs.
2020 Mathematics Subject Classification: 05C09.

1. Introduction

All graphs considered in this paper are finite, simple and connected. For a graph G, the distance between two vertices x, y is denoted by $d(x, y)$. A vertex w is equidistant for an edge $e=x y$ if $d(x, w)=d(y, w)$. For an edge $e \in E(G)$, denote by $D_{G}(e)$ the set of all equidistant vertices in G. In particular, $D_{i}(e)$ denotes the set of vertices at distance i for e. Also, we denote $\left|D_{G}(e)\right|=N_{G}(e)$.

The vertex Padmakar-Ivan (PI) index of a graph G is a topological index, defined as

$$
P I(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e)+n_{v}(e)\right),
$$

where $n_{u}(e)$ denotes the number of those vertices of G whose distance from the vertex u is smaller than the distance from the vertex v and $n_{v}(e)$ denotes the number of those vertices of G whose distance from v is smaller than the distance from u. Since $n_{u}(e)+n_{v}(e)=|V(G)|-N_{G}(e)$, the PI index can be rewritten as

$$
P I(G)=\sum_{e \in E(G)}\left(|V(G)|-N_{G}(e)\right)
$$

The PI index was proposed by Khadikar [10] in 2000. Khadikar and his coauthors investigated the chemical and biological applications of this index in [11]. Khalifeh [12] introduced a vertex version of the PI index and using this notion, they computed exact expression for the PI index of Cartesian product of graphs. John and Khadikar established a method for calculating the PI index of benzenoid hydrocarbons using orthogonal cuts in [9]. Gutman and Ashrafi [6] obtained the PI index of phenylenes and their hexagonal squeezes. The PI index of bridge graphs and chain graphs was studied in [13]. Das and Gutman [3] obtained a lower bound on the PI index of a connected graph in terms of the number of vertices, edges, pendent vertices, and the clique number, and also they characterized the extremal graphs. There are different types of topological indices; for example distance-based topological indices, degree-based topological indices, etc. Topological indices has many applications in the field of mathematical chemistry. Trinajstić and Zhou introduced the sum-connectivity index and found several basic properties in [16]. Many topological indices and their applications are thoroughly explored in [15]. Ilić and Milosavljević introduced the weighted vertex PI index and established some of its basic properties in [7]. The weighted PI index of a graph G is given as

$$
P I_{w}(G)=\sum_{e=u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)\left(|V(G)|-N_{G}(e)\right)
$$

Gopika et al. [5] obtained the weighted PI index of the direct and strong product for certain types of graphs. Indulal et al. [8] studied the graphs satisfying the equation $P I(G)=P I(G-e)$.

[^0]A graph is perfect if for every induced subgraph H, the equation $\chi(H)=\omega(H)$ holds, where $\chi(H)$ is the chromatic number and $\omega(H)$ is the size of a maximum clique of H. A claw-free graph is a graph in which no vertex has three pairwise nonadjacent neighbours. Every claw-free graph is a perfect graph. A survey on claw-free graphs is given in [4]. Chudnovsky and Seymour studied the structure of claw-free graphs thoroughly in a series of seven papers from 2007 to 2012. For example, in the first paper [1] of this series, they studied the orientable prismatic graphs and in the second paper [2], they studied non-orientable prismatic graphs. In this paper, we obtain the PI index of some classes of perfect graphs, including co-bipartite graphs, line graphs, and prismatic graphs.

2. Co-bipartite graphs

An edge $e=x y$ of a graph G is said to be an equidistant edge for a vertex $a \in V(G)$ if $d(a, x)=d(a, y)$. The edge e is at distance r for a vertex a if $d(a, x)=d(a, y)=r$. The set of all equidistant edges of a is $D_{G}(a)=\{e=x y \in E(G): d(a, x)=$ $d(a, y)\}$ and we take $N_{G}(a)=\left|D_{G}(a)\right|$. It is easy to see that $\sum_{e \in E(G)} N_{G}(e)=\sum_{a \in V(G)} N_{G}(a)$.

Lemma 2.1. Let G be a graph with n vertices and medges. Then, $P I(G)=m n-\sum_{a \in V(G)} N_{G}(a)$.
Proof.

$$
P I(G)=\sum_{e \in E(G)}\left(|V(G)|-N_{G}(e)\right)=\sum_{e \in E(G)}|V(G)|-\sum_{e \in E(G)} N_{G}(e)=m n-\sum_{a \in G} N_{G}(a) .
$$

Let $G(U, V)$ be a bipartite graph with partite sets U and V. A co-bipartite graph is the complement of a bipartite graph $G(U, V)$ and it is denoted as \bar{G}. In \bar{G}, the vertices in U and the vertices in V forms two disjoint cliques. Every co-bipartite graph is a perfect graph. The diameter of a connected co-bipartite graph is either 2 or 3.

Consider a bipartite graph $G(U, V)$ with $|U|=n$ and $|V|=m$. Let Δ_{1} and Δ_{2} be the maximum degree in U and V respectively, where $\Delta_{1} \leq m$ and $\Delta_{2} \leq n$. Let $U_{1}=\{u \in U: d(u)<m\}$ and $U_{2}=\{u \in U: d(u)=m\}$. It is noted that $U=U_{1} \cup U_{2}$. Similarly, $V=V_{1} \cup V_{2}$, provided that the degree of every vertex in V_{1} is less than n and the degree of every vertex in V_{2} is n. Let $U_{1}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}, U_{2}=\left\{u_{p+1}, u_{p+2}, \ldots, u_{n}\right\}, V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$ and $V_{2}=\left\{v_{q+1}, v_{q+2}, \ldots, v_{m}\right\}$. Let $d\left(u_{i}\right)=f_{i}$ for $i=1,2, \ldots, p$ and $d\left(v_{i}\right)=g_{i}$ for $i=1,2, \ldots, q$. We denote $\sum_{j=1}^{p} f_{j}$ by $f, \sum_{j=1}^{p} f_{j}^{2}$ by $f^{*}, \sum_{i=1}^{q} g_{i}$ by g and $\sum_{i=1}^{p} g_{i}^{2}$ by g^{*}.

Theorem 2.1. Let $G(U, V)$ be a bipartite graph. Then PI $(\bar{G})=n(n-1)+m(m-1)+m n(2 p+q)-p q(m+n-p-q)-$ $m p(p-1)-n q(n+q-1)+f(2 m-n-1)-2\left(f^{*}+g^{*}\right)+g(3 n-1)$.

Proof. Let $U=U_{1} \cup U_{2}$ and $V=V_{1} \cup V_{2}$, where $U_{1}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}, U_{2}=\left\{u_{p+1}, u_{p+2}, \ldots, u_{n}\right\}, V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$, $V_{2}=\left\{v_{q+1}, v_{q+2}, \ldots, v_{m}\right\}, d\left(u_{i}\right)=f_{i}$ if $i \leq p, d\left(u_{i}\right)=m$ if $i>p, d\left(v_{j}\right)=g_{j}$ if $j \leq q$, and $d\left(v_{j}\right)=n$ if $j>q$. The degrees in \bar{G} (see Figure 1) are given as

$$
d\left(u_{i}\right)= \begin{cases}\left(m-f_{i}\right)+(n-1) & \text { if } i=1,2, \ldots, p \\ (n-1) & \text { if } i>p\end{cases}
$$

and

$$
d\left(v_{j}\right)= \begin{cases}\left(n-g_{j}\right)+(m-1) & \text { if } j=1,2, \ldots, q \\ (m-1) & \text { if } j>q\end{cases}
$$

We partition $E(\bar{G})$ with E_{1}, E_{2} and E_{3}, where E_{1} is the set of edges in the clique with vertices in U, E_{2} is the set of edges in the clique with vertices in V and $E_{3}=\{(u, v): u \in U, v \in V\}$.

Figure 1: The graph \bar{G} used in the proof of Theorem 2.1.
For a vertex $u \in U$, it is easy to see that

$$
N_{E_{1}}(u)=\frac{(n-1)(n-2)}{2} .
$$

A vertex $v_{i} \in V_{1}$ has $\left(n-g_{i}\right)$ neighbours in U and the remaining g_{i} vertices are at distance 2 , which means that

$$
N_{E_{1}}\left(v_{i}\right)=\frac{\left(n-g_{i}\right)\left(n-g_{i}-1\right)}{2}+\frac{g_{i}\left(g_{i}-1\right)}{2}
$$

Similarly, a vertex $v \in V_{2}$ has no neighbours in U and

$$
d\left(u_{i}, v\right)= \begin{cases}2 & \text { if } u_{i} \in U_{1} \\ 3 & \text { if } u_{i} \in U_{2}\end{cases}
$$

Also,

$$
N_{E_{1}}(v)=\frac{p(p-1)}{2}+\frac{(n-p)(n-p-1)}{2}
$$

and

$$
\begin{equation*}
\sum_{e \in E_{1}} N_{\bar{G}}(e)=\frac{n(n-1)(n-2)}{2}+\sum_{i=1}^{q}\left(\frac{\left(n-g_{i}\right)\left(n-g_{i}-1\right)}{2}+\frac{g_{i}\left(g_{i}-1\right)}{2}\right)+(m-q)\left(\frac{p(p-1)}{2}+\frac{(n-p)(n-p-1)}{2}\right) \tag{1}
\end{equation*}
$$

Similarly, for edges in E_{2}, one has

$$
\begin{align*}
\sum_{e \in E_{2}} N_{\bar{G}}(e)= & \frac{m(m-1)(m-2)}{2}+\sum_{j=1}^{p}\left(\frac{\left(m-f_{j}\right)\left(m-f_{j}-1\right)}{2}+\frac{f_{j}\left(f_{j}-1\right)}{2}\right) \tag{2}\\
& +(n-p)\left(\frac{q(q-1)}{2}+\frac{(m-q)(m-q-1)}{2}\right) .
\end{align*}
$$

For edges in E_{3}, a vertex $u \in U_{1}$ has $\left(m-f_{j}\right)$ neighbours in V and the remaining f_{j} vertices are at distance 2. Similarly, $v \in V_{1}$ has $\left(n-g_{i}\right)$ neighbours in U and remaining g_{i} vertices are at distance 2. That is, $N_{E_{3}}\left(N_{V}(u)\right)=\left(m-f_{j}\right)\left(m-f_{j}-1\right)$ and $N_{E_{3}}\left(N_{U}(v)\right)=\left(n-g_{i}\right)\left(n-g_{i}-1\right)$. Therefore,

$$
\begin{equation*}
\sum_{e \in E_{3}} N_{\bar{G}}(e)=\sum_{j=1}^{p}\left(m-f_{j}\right)\left(m-f_{j}-1\right)+\sum_{i=1}^{q}\left(n-g_{i}\right)\left(n-g_{i}-1\right) . \tag{3}
\end{equation*}
$$

Now, we combine the three equations (1), (2), and (3) to calculate $P I(\bar{G})$.

$$
\begin{aligned}
P I(\bar{G})= & \sum_{e \in E_{1}}\left(|V(\bar{G})|-N_{\bar{G}}(e)\right)+\sum_{e \in E_{2}}\left(|V(\bar{G})|-N_{\bar{G}}(e)\right)+\sum_{e \in E_{3}}\left(|V(\bar{G})|-N_{\bar{G}}(e)\right) \\
= & \frac{n(n-1)(m+n)}{2}-\frac{n(n-1)(n-2)}{2}-\sum_{i=1}^{q}\left(\frac{\left(n-g_{i}\right)\left(n-g_{i}-1\right)}{2}+\frac{g_{i}\left(g_{i}-1\right)}{2}\right) \\
& -(m-q)\left(\frac{p(p-1)}{2}+\frac{(n-p)(n-p-1)}{2}\right) \\
& +\frac{m(m-1)(m+n)}{2}-\frac{m(m-1)(m-2)}{2}-\sum_{j=1}^{p}\left(\frac{\left(m-f_{j}\right)\left(m-f_{j}-1\right)}{2}+\frac{f_{j}\left(f_{j}-1\right)}{2}\right) \\
& -(n-p)\left(\frac{q(q-1)}{2}+\frac{(m-q)(m-q-1)}{2}\right)+(m+n)\left(\left(m-f_{1}\right)+\left(m-f_{2}\right)+\ldots+\left(m-f_{p}\right)\right) \\
& -\left(\sum_{j=1}^{p}\left(m-f_{j}\right)\left(m-f_{j}-1\right)+\sum_{i=1}^{q}\left(n-g_{i}\right)\left(n-g_{i}-1\right)\right) \\
= & n(n-1)(m+2)-\sum_{i=1}^{q}\left(n-g_{i}\right)\left(n-g_{i}-1\right)-\sum_{i=1}^{q} g_{i}\left(g_{i}-1\right)-(m-q)(p(p-1)+(n-p)(n-p-1)) \\
& +m(m-1)(n+2)-\sum_{j=1}^{p}\left(m-f_{j}\right)\left(m-f_{j}-1\right)-\sum_{j=1}^{p} f_{j}\left(f_{j}-1\right)-(n-p)(q(q-1)+(m-q)(m-q-1)) \\
& +2(m+n) \sum_{j=1}^{p}\left(m-f_{j}\right)-2 \sum_{j=1}^{p}\left(m-f_{j}\right)\left(m-f_{j}-1\right)-2 \sum_{i=1}^{q}\left(n-g_{i}\right)\left(n-g_{i}-1\right) \\
= & 2 n^{2}-2 n+4 m n p-2 p^{2} m-2 n p q+2 p^{2} q+2 m^{2}-2 m+2 m n q-2 n q^{2}-2 m p q+2 p q^{2} \\
& -2 n^{2} q+2 n q+2 p m-2 n \sum_{j=1}^{p} f_{j}+4 m \sum_{j=1}^{p} f_{j}-4 \sum_{j=1}^{p} f_{j}^{2}-2 \sum_{j=1}^{p} f_{j}+6 n \sum_{i=1}^{q} g_{i}-4 \sum_{i=1}^{q} g_{i}^{2}-2 \sum_{i=1}^{q} g_{i} \\
= & n(n-1)+m(m-1)+m n(2 p+q)-p q(m+n-q-p)-m p(p-1) \\
& -n q(q+n-1)+f(2 m-n-1)-2\left(f^{*}+g^{*}\right)+g(3 n-1) .
\end{aligned}
$$

A bipartite graph $G(U, V)$ is (x, y)-biregular if each vertex in U has degree x and each vertex in V has degree y.
Corollary 2.1. If $G(U, V)$ is $a(x, y)$-biregular graph then $P I(\bar{G})=(n+m)(n+m-1)+2 m y(n+m-(x+y+1))$.
Proof. From Theorem 2.1, we have

$$
\begin{aligned}
P I(\bar{G})= & n(n-1)+m(m-1)+m n(2 p+q)-p q(m+n-p-q)-m p(p-1) \\
& -n q(q+n-1)+f(2 m-n-1)-2(f *+g *)+g(3 n-1) .
\end{aligned}
$$

Here $p=n, q=m, f=n x, g=m y, f^{*}=n x^{2}$, and $g^{*}=m y^{2}$.Thus,

$$
\begin{aligned}
\operatorname{PI}(\bar{G}) & =n^{2}-n+m^{2}-m+2 m n+2 m n x-n^{2} x-n x-2 n x^{2}-2 m y^{2}+3 n m y-m y \\
& =(n+m)^{2}-(n+m)+2 n m y+2 m^{2} y-2 m x y-2 m y^{2}-2 m y \\
& =(n+m)(n+m-1)+2 m y(n+m-(x+y+1))
\end{aligned}
$$

Corollary 2.2. If G is a k-regular bipartite graph with $2 n$ vertices then $P I(\bar{G})=2 n\left[2 n(k+1)-\left(2 k^{2}+k+1\right)\right]$.
Proof. In Theorem 2.1, by taking $n=m$ and $x=y=k$, one gets

$$
\begin{aligned}
P I(\bar{G}) & =2 n(2 n-1)+2 n k(2 n-(2 k+1)) \\
& =2 n\left(2 n(k+1)-\left(2 k^{2}+k+1\right)\right) .
\end{aligned}
$$

Two particular examples of Corollary 2.2 are $P I\left(\overline{C_{2 n}}\right)=2 n(6 n-11)$ and $P I\left(\overline{K_{n, n}}\right)=2 n(n-1)$.
Corollary 2.3. If G is a k-regular bipartite graph with $2 n$ vertices then

$$
P I_{w}(\bar{G})=4 n(2 n-k-1)\left(2 n(k+1)-\left(2 k^{2}+k+1\right)\right) .
$$

Proof. We know that the weighted PI index of a regular graph is a multiple of its PI index. Therefore,

$$
P I_{w}(\bar{G})=2(2 n-k-1) P I(\bar{G})=4 n(2 n-k-1)\left(2 n(k+1)-\left(2 k^{2}+k+1\right)\right) .
$$

3. Line graphs of some classes of graphs

Let G be a graph with n vertices and m edges. Its line graph denoted by $L(G)$, is a simple graph whose vertices are the edges of G and two vertices are adjacent in $L(G)$ if the corresponding edges are adjacent in G. Let T be a tree with n vertices. Every vertex v in T with degree $i, i>2$, forms a star $K_{1, i}$ in T, we denote it by S_{i}. Let S be the collection of all stars in T. If we delete edges of all stars in T, the remaining edges of T are parts of paths. Some paths have both of its end vertices common with the stars; we call them as central paths and the remaining have one end vertex shared with stars (paths) and the other end vertex is a pendent vertex; we call them leaf paths. We denote the central path with the length l by P_{l} and pendent path with the length l by P_{l}^{*}. As we know that line graphs of stars are complete graphs and line graphs of paths are paths. Each star S_{i} in T is transformed to a clique with K_{i} in $L(T)$. The central path P_{l} has l edges, so it is transformed to the path with l vertices having length $l-1$ and each of its end vertices is connected with a vertex of a clique in $L(T)$, so it has $l-1+2=l+1$ edges. Each leaf path P_{l}^{*} is transformed to a path with l vertices and $l-1$ edges, and it is connected with a vertex of $L(T)$, so it has l edges.

Theorem 3.1. Let T be a tree with n vertices then

$$
P I(L(T))=(n-1)(n-2) .
$$

Proof. Let T be a tree with n vertices. Assume that the edge set $E(T)$ is the union of m stars $S_{k_{i}}, r$ central paths $P_{f_{i}}$, and s pendant paths $P_{g_{i}}^{*}$. Let us assume that

$$
S=\cup_{i=1}^{m} S_{k_{i}} \quad \text { and } \quad P^{\prime}=\left(\cup_{i=1}^{r} P_{f_{i}}\right) \cup\left(\cup_{i=1}^{s} P_{g_{i}}^{*}\right) .
$$

Then,

$$
|E(T)|=n-1=\sum_{i=1}^{m} k_{i}+\sum_{i=1}^{r} f_{i}+\sum_{i=1}^{s} g_{i} .
$$

We claim that

$$
\sum_{e \in E\left(K_{k_{i}}\right)}\left(|V(T)|-N_{T}(e)\right)=\left(k_{i}-1\right)(n-1) .
$$

Let e be an edge of $K_{k_{i}}$ in $L(T)$ and let $v \in V\left(K_{k_{i}}\right)$ be equidistant to e. If we delete all the edges of $K_{k_{i}}$, then $L(T)$ has more than one component. All vertices in the component W containing v are also equidistant to e. If we consider all the edges and vertices of $K_{k_{i}}$, then

$$
\sum_{e \in E\left(K_{k_{i}}\right)}\left(|V(T)|-N_{T}(e)\right)=\left(k_{i}-1\right)(n-1)
$$

Also, since each edge of a path is a cut edge, there is no equidistant vertex corresponding to those edges. Each $P_{f_{i}+1}$ contributes $\left(f_{i}+1\right)(n-1)$ and each $P_{g_{i}}^{*}$ contributes $g_{i}(n-1)$ to the PI index of $L(T)$. Thus,

$$
\begin{aligned}
P I(L(T)) & =\sum_{e \in E(L(T))}\left(|V(L(T))|-N_{L(T)}(e)\right) \\
& =\sum_{e \in E\left(\cup S_{k_{i}}\right)}\left(|V(L(T))|-N_{L(T)}(e)\right)+\sum_{e \in E\left(\cup P_{f_{i}+1}\right)}\left(|V(L(T))|-N_{L(T)}(e)\right)+\sum_{e \in E\left(\cup P_{g_{i+1}}^{*}\right)}\left(|V(L(T))|-N_{L(T)}(e)\right) \\
& =\sum_{i=1}^{m}\left(k_{i}-1\right)(n-1)+\sum_{i=1}^{r}\left(f_{i}+1\right)(n-1)+\sum_{i=1}^{s} g_{i}(n-1) \\
& =(n-1)\left(\sum_{i=1}^{m}\left(k_{i}-1\right)+\sum_{i=1}^{r}\left(f_{i}+1\right)+\sum_{i=1}^{s} g_{i}\right) \\
& =(n-1)\left(\sum_{i=1}^{m} k_{i}-m+\sum_{i=1}^{r} f_{i}+r+\sum_{i=1}^{s} g_{i}\right) \\
& =(n-1)((n-1)-m+r) .
\end{aligned}
$$

Since each $P_{f_{i}}$ lies between two $S_{k_{i}}$, it holds that $r=m-1$. Therefore,

$$
P I(L(T))=(n-1)(n-1-1)=(n-1)(n-2)=P I(T)-2(n-1) .
$$

Let K_{n} be the complete graph with n vertices. The graph $L\left(K_{n}\right)$ is the edge disjoint union of n cliques $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$, each of which has order $n-1$. Also, each vertex of $L\left(K_{n}\right)$ is a part of exactly two cliques and any two cliques in $L\left(K_{n}\right)$ have exactly one vertex in common.

Theorem 3.2. $P I\left(L\left(K_{n}\right)\right)=n(n-1)(n-2)^{2}$.
Proof. The edge set of $L\left(K_{n}\right)$ can be partitioned as

$$
E\left(L\left(K_{n}\right)\right)=\bigcup_{i=1}^{n} E\left(A_{i}\right)
$$

where $A_{i}^{\prime} s$ are cliques of order $n-1$. Let $e=u v$ be an arbitrary edge in $L\left(K_{n}\right)$, then $e \in A_{i}$ for some i. All the remaining vertices in A_{i} are at distance one, so $V\left(A_{i}\right) \backslash\{u, v\} \subseteq D_{1}(e)$. Since each vertex belongs to exactly two cliques, $u \in A_{j}$ and $v \in A_{h}$, for some $i \notin\{j, h\}$. Also, two cliques have exactly one vertex in common, say w, which is different from u and v. So, $d(u, w)=d(v, w)=1$ implies that $w \in D_{1}(e)$. Moreover, the number of vertices at distance 2 is

$$
\frac{n(n-1)}{2}-\left(d(u)+d(v)-D_{1}(e)\right)=\frac{n(n-1)}{2}-(4(n-2)-(n-2))
$$

Therefore,

$$
N_{L\left(K_{n}\right)}(e)=(n-2)+\frac{n(n-1)}{2}-3(n-2)=\frac{n(n-1)}{2}-2(n-2)
$$

and hence

$$
\begin{aligned}
P I\left(L\left(K_{n}\right)\right) & =\sum_{e \in E\left(L\left(K_{n}\right)\right)}\left(\left|V\left(L\left(K_{n}\right)\right)\right|-N_{L\left(K_{n}\right)}(e)\right) \\
& =\sum_{e \in E\left(L\left(K_{n}\right)\right)} \frac{n(n-1)}{2}-\left(\frac{n(n-1)}{2}-2(n-2)\right) \\
& =2\left(\frac{\sum_{v \in V\left(K_{n}\right)} d^{2}(v)}{2}-m\right)(n-2) \\
& =\left(\sum_{v \in V\left(K_{n}\right)} d^{2}(v)-2 m\right)(n-2) \\
& =\left(n(n-1)^{2}-n(n-1)\right)(n-2)=n(n-1)(n-2)^{2}=P I\left(K_{n}\right)(n-2)^{2} .
\end{aligned}
$$

Next, we consider the complete bipartite graph $K_{n, m}=G(U, V)$ with $|U|=n$ and $|V|=m$. Its line graph $L(G)$ is the edge disjoint union of $m+n$ cliques, where m cliques have order n and n cliques have order m. Each vertex in $L(G)$ belongs to exactly two cliques, one of which has order n and the other is of order m. Two cliques of the same order have no vertex in common.

Theorem 3.3. $P I\left(L\left(K_{n, m}\right)\right)=m n(2 m n-(m+n))$.
Proof. Take $G=K_{n, m}$. Its edge set can be partitioned as $E(G)=E\left(\cup K_{n}\right) \cup E\left(\cup K_{m}\right)$. Take an arbitrary edge $e \in E(L(G))$. Then there are two possibilities.

Case 1. $e=x y$ is an edge of a clique K_{n} of order n.
All the vertices of K_{n} other than the end vertices of e are at distance 1. There is no other vertex at distance 1. (If there exists a vertex z at distance 1, then the edge $x z$ belongs to a clique of order m and $z y$ belongs to another clique of the same order. So, the vertex w belongs to exactly two cliques of order m, it is not possible). Thus,

$$
m n-(d(x)+d(y)-(n-2))=m n-(2(n+m-2)-(n-2))
$$

are the number of vertices at distance 2. So,

$$
N_{L(G)}(e)=m n-(2(n+m-2)-(n-2))+(n-2)=m n-2(n+m-2)+2(n-2) .
$$

Case 2. e is an edge of a clique K_{m} of order m.
In the same way as in Case 1, one gets

$$
N_{L(G)}(e)=m n-2(n+m-2)+2(m-2) .
$$

Therefore,

$$
\begin{aligned}
P I(L(G)) & =\sum_{e \in E(L(G))}\left(|V(L(G))|-N_{L(G)}(e)\right) \\
& =m n\left(\frac{m n(n+m-2)}{2}\right)-\left(\sum_{\left.e \in E\left(\cup K_{n}\right)\right)} N_{L(G)}(e)+\sum_{\left.e \in E\left(\cup K_{m}\right)\right)} N_{L(G)}(e)\right) \\
& =m n\left(\frac{m n(n+m-2)}{2}\right)-(m n-2(n+m-2))\left(\frac{m n(m+n-2)}{2}\right)-m n[(n-1)(n-2)+(m-1)(m-2)] \\
& =m n\left((n+m-2)^{2}-(n-1)(n-2)-(m-1)(m-2)\right) \\
& =m n(2 m n-(m+n)) .
\end{aligned}
$$

4. Prismatic graphs

Chudnovsky and Seymour studied different structural properties of claw-free graphs in a series of seven papers. In their first paper [1] of this series, they studied the orientable prismatic graphs and in the second paper [2] they studied nonorientable prismatic graphs. A graph G is prismatic if for every triangle T in G, every vertex not in T has exactly one neighbour in T. Core of a prismatic graph is the union of all triangles in G. Total coloring of prismatic graphs are discussed in [14]. Here, we consider a particular class of prismatic graphs, namely rigid prismatic graphs. A prismatic graph G with core W is rigid if

- there does not exist two distinct vertices u and v, not in the core, with the same neighbouring set in W,
- every two non-adjacent vertices have a common neighbour in the core.

Theorem 4.1. If G is a rigid prismatic graph with p triangles and n vertices, then its PI index is

$$
P I(G)=M_{1}(G)+2 n p-\sum_{(u, v) \in E(W)}(d(u)+d(v)) .
$$

Proof. Let G be a rigid prismatic graph with p triangles, n vertices, and m edges. Since every two non-adjacent vertices of G have a common neighbour in the core, its diameter is 2. The edge set of G can be partitioned as $E(G)=E(W) \cup E_{1} \cup E_{2} \cup E_{3}$, where $E_{1}=\{(u, v) \notin E(W) \mid u, v \in W\}, E_{2}=\{(u, v) \mid$ either $u \in W$ or $v \in W\}$, and $E_{3}=\{(u, v) \mid u, v \notin W\}$.

$$
P I(G)=\sum_{e \in E(W)}\left(|V(G)|-N_{G}(e)\right)+\sum_{e \in E_{1}}\left(|V(G)|-N_{G}(e)\right)+\sum_{e \in E_{2}}\left(|V(G)|-N_{G}(e)\right)+\sum_{e \in E_{3}}\left(|V(G)|-N_{G}(e)\right) .
$$

Since each triangle contributes $2 n$ to $P I(G)$, one has

$$
\sum_{e \in E(W)}\left(|V(G)|-N_{G}(e)\right)=2 n p
$$

Since each edge in $E_{i}, i=1,2,3$, is not a part of a triangle, it holds that

$$
\sum_{e \in E_{i}}\left(|V(G)|-N_{G}(e)\right)=\sum_{(u, v) \in E_{i}}(n-(n-(d(u)+d(v))))=\sum_{(u, v) \in E_{i}}(d(u)+d(v))
$$

and thus,

$$
\begin{aligned}
P I(G) & =2 n p+\sum_{(u, v) \in E_{1} \cup E_{2} \cup E_{3}}(d(u)+d(v))=2 n p+\sum_{(u, v) \in E(G) \backslash E(W)}(d(u)+d(v)) \\
& =2 n p+\sum_{(u, v) \in E(G)}(d(u)+d(v))-\sum_{(u, v) \in E(W)}(d(u)+d(v)) \\
& =M_{1}(G)+2 n p-\sum_{(u, v) \in E(W)}(d(u)+d(v)) .
\end{aligned}
$$

Figure 2: The rotator.
For illustration of Theorem 4.1, we consider two non-orientable prismatic graphs: rotator and twister. The rotator and twister are shown in 2 and 3, and their PI indices are 120 and 154, respectively.

Figure 3: The twister.

Acknowledgement

The authors would like to thank the anonymous reviewers for their valuable suggestions.

References

[1] M. Chudnovsky, P. Seymour, Claw-free graphs. I. Orientable prismatic graphs, J. Combin. Theory Ser. B 97 (2007) 867-903.
[2] M. Chudnovsky, P. Seymour, Claw-free graphs. II. Non-orientable prismatic graphs, J. Combin. Theory Ser. B 98 (2008) $249-290$.
[3] K. C. Das, I. Gutman, Bound for vertex PI index in terms of simple graph parameters, Filomat 27 (2013) 1583-1587.
[4] R. Faudree, E. Flandrin, Z. Ryjáček, Claw-free graphs - a survey, Discrete Math. 164 (1997) 87-147.
[5] C. Gopika, J. Geetha, K. Somasundaram, Weighted PI index of tensor product and strong product of graphs, Discrete Math. Algorithms Appl. 13 (2021) \#2150019.
[6] I. Gutman, A. R. Ashrafi, On the PI index of phenylenes and their hexagonal squeezes, MATCH Commun. Math. Comput. Chem 60 (2008) $135-142$.
[7] A. Ilić, N. Milosavljević, The weighted vertex PI index, Math. Comput. Model. 57 (2013) 623-631.
[8] G. Indulal, L. Alex, I. Gutman, On graphs preserving PI index upon edge removal, J. Math. Chem. 59 (2021) 1603-1609.
[9] P. E. John, P. V. Khadikar, J. Singh, A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts, J. Math. Chem. 42 (2007) 37-45.
[10] P. V. Khadikar, On a novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 (2000) 113-118.
[11] P. V. Khadikar, S. Karmarkar, V. K. Agrawal, A novel PI index and its applications to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001) 934-949.
[12] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math. 156 (2008) $1780-1789$.
[13] T. Mansour, M. Schork, The PI index of bridge and chain graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 723-734.
[14] S. Mohan, K. Somasundaram, Total coloring of the prismatic graphs, Discrete Math. Algorithms Appl. 12 (2020) \#2050032.
[15] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
[16] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.

[^0]: *Corresponding author (manjuchithrabhanu@gmail.com).

