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Abstract
The Padmakar-Ivan (PI) index of a graph G is defined as PI(G) =

∑
e∈E(G) (|V (G)| −NG(e)), where NG(e) is the number

of equidistant vertices for the edge e. A graph is perfect if for every induced subgraph H, the equation χ (H) = ω (H) holds,
where χ (H) is the chromatic number and ω (H) is the size of a maximum clique of H. In this paper, the PI index of some
types of perfect graphs is obtained. These types include co-bipartite graphs, line graphs, and prismatic graphs.
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1. Introduction

All graphs considered in this paper are finite, simple and connected. For a graph G, the distance between two vertices x, y
is denoted by d (x, y) . A vertex w is equidistant for an edge e = xy if d (x,w) = d (y, w) . For an edge e ∈ E (G), denote by
DG (e) the set of all equidistant vertices in G. In particular, Di (e) denotes the set of vertices at distance i for e. Also, we
denote |DG (e)| = NG (e).

The vertex Padmakar-Ivan (PI) index of a graph G is a topological index, defined as

PI (G) =
∑

e=uv∈E(G)

(nu(e) + nv(e)) ,

where nu (e) denotes the number of those vertices of G whose distance from the vertex u is smaller than the distance from
the vertex v and nv (e) denotes the number of those vertices of G whose distance from v is smaller than the distance from
u. Since nu (e) + nv (e) = |V (G)| −NG (e), the PI index can be rewritten as

PI (G) =
∑

e∈E(G)

(|V (G)| −NG(e)) .

The PI index was proposed by Khadikar [10] in 2000. Khadikar and his coauthors investigated the chemical and biological
applications of this index in [11]. Khalifeh [12] introduced a vertex version of the PI index and using this notion, they
computed exact expression for the PI index of Cartesian product of graphs. John and Khadikar established a method
for calculating the PI index of benzenoid hydrocarbons using orthogonal cuts in [9]. Gutman and Ashrafi [6] obtained
the PI index of phenylenes and their hexagonal squeezes. The PI index of bridge graphs and chain graphs was studied
in [13]. Das and Gutman [3] obtained a lower bound on the PI index of a connected graph in terms of the number of
vertices, edges, pendent vertices, and the clique number, and also they characterized the extremal graphs. There are
different types of topological indices; for example distance-based topological indices, degree-based topological indices, etc.
Topological indices has many applications in the field of mathematical chemistry. Trinajstić and Zhou introduced the
sum-connectivity index and found several basic properties in [16]. Many topological indices and their applications are
thoroughly explored in [15]. Ilić and Milosavljević introduced the weighted vertex PI index and established some of its
basic properties in [7]. The weighted PI index of a graph G is given as

PIw (G) =
∑

e=uv∈E(G)

(dG (u) + dG (v)) (|V (G)| −NG (e)) .

Gopika et al. [5] obtained the weighted PI index of the direct and strong product for certain types of graphs. Indulal et
al. [8] studied the graphs satisfying the equation PI (G) = PI (G− e).
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A graph is perfect if for every induced subgraph H, the equation χ (H) = ω (H) holds, where χ (H) is the chromatic
number and ω(H) is the size of a maximum clique of H. A claw-free graph is a graph in which no vertex has three
pairwise nonadjacent neighbours. Every claw-free graph is a perfect graph. A survey on claw-free graphs is given in [4].
Chudnovsky and Seymour studied the structure of claw-free graphs thoroughly in a series of seven papers from 2007 to
2012. For example, in the first paper [1] of this series, they studied the orientable prismatic graphs and in the second
paper [2], they studied non-orientable prismatic graphs. In this paper, we obtain the PI index of some classes of perfect
graphs, including co-bipartite graphs, line graphs, and prismatic graphs.

2. Co-bipartite graphs

An edge e = xy of a graph G is said to be an equidistant edge for a vertex a ∈ V (G) if d (a, x) = d (a, y). The edge e is at
distance r for a vertex a if d (a, x) = d (a, y) = r. The set of all equidistant edges of a is DG (a) = {e = xy ∈ E (G) : d (a, x) =

d (a, y)} and we take NG (a) = |DG (a)|. It is easy to see that
∑

e∈E(G)NG (e) =
∑

a∈V (G)NG (a) .

Lemma 2.1. Let G be a graph with n vertices and m edges. Then, PI (G) = mn−
∑

a∈V (G)NG (a).

Proof.
PI (G) =

∑
e∈E(G)

(|V (G)| −NG (e)) =
∑

e∈E(G)

|V (G)| −
∑

e∈E(G)

NG (e) = mn−
∑
a∈G

NG (a) .

Let G (U, V ) be a bipartite graph with partite sets U and V . A co-bipartite graph is the complement of a bipartite graph
G(U, V ) and it is denoted as G. In G, the vertices in U and the vertices in V forms two disjoint cliques. Every co-bipartite
graph is a perfect graph. The diameter of a connected co-bipartite graph is either 2 or 3.

Consider a bipartite graph G (U, V ) with |U | = n and |V | = m. Let ∆1 and ∆2 be the maximum degree in U and V

respectively, where ∆1 ≤ m and ∆2 ≤ n . Let U1 = {u ∈ U : d (u) < m} and U2 = {u ∈ U : d (u) = m}. It is noted that
U = U1 ∪ U2. Similarly, V = V1 ∪ V2, provided that the degree of every vertex in V1 is less than n and the degree of every
vertex in V2 is n. Let U1 = {u1, u2, ..., up}, U2 = {up+1, up+2, ..., un}, V1 = {v1, v2, ..., vq} and V2 = {vq+1, vq+2, ..., vm}. Let
d (ui) = fi for i = 1, 2, ..., p and d (vi) = gi for i = 1, 2, ..., q. We denote

∑p
j=1 fj by f ,

∑p
j=1 f

2
j by f∗,

∑q
i=1 gi by g and

∑p
i=1 g

2
i

by g∗.

Theorem 2.1. Let G (U, V ) be a bipartite graph. Then PI
(
G
)

= n (n− 1) +m (m− 1) +mn (2p+ q)− pq (m+ n− p− q)−
mp (p− 1)− nq (n+ q − 1) + f (2m− n− 1)− 2 (f∗ + g∗) + g (3n− 1) .

Proof. Let U = U1 ∪ U2 and V = V1 ∪ V2, where U1 = {u1, u2, ..., up}, U2 = {up+1, up+2, ..., un}, V1 = {v1, v2, ..., vq},
V2 = {vq+1, vq+2, ..., vm}, d(ui) = fi if i ≤ p, d(ui) = m if i > p, d (vj) = gj if j ≤ q, and d (vj) = n if j > q. The
degrees in G (see Figure 1) are given as

d (ui) =

{
(m− fi) + (n− 1) if i = 1, 2, ..., p

(n− 1) if i > p

and

d (vj) =

{
(n− gj) + (m− 1) if j = 1, 2, ..., q

(m− 1) if j > q.

We partition E
(
G
)

with E1, E2 and E3, where E1 is the set of edges in the clique with vertices in U , E2 is the set of edges
in the clique with vertices in V and E3 = {(u, v) : u ∈ U, v ∈ V }.

u1 u2 up up+1 up+2 un

v1 v2 vq vq+1 vq+2 vm

Figure 1: The graph G used in the proof of Theorem 2.1.

For a vertex u ∈ U , it is easy to see that
NE1

(u) =
(n− 1) (n− 2)

2
.
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A vertex vi ∈ V1 has (n− gi) neighbours in U and the remaining gi vertices are at distance 2, which means that

NE1
(vi) =

(n− gi) (n− gi − 1)

2
+
gi (gi − 1)

2
.

Similarly, a vertex v ∈ V2 has no neighbours in U and

d (ui, v) =

{
2 if ui ∈ U1

3 if ui ∈ U2

.

Also,
NE1

(v) =
p (p− 1)

2
+

(n− p) (n− p− 1)

2
and∑

e∈E1

NG(e) =
n(n− 1)(n− 2)

2
+

q∑
i=1

(
(n− gi)(n− gi − 1)

2
+
gi(gi − 1)

2

)
+ (m− q)

(
p(p− 1)

2
+

(n− p)(n− p− 1)

2

)
. (1)

Similarly, for edges in E2, one has∑
e∈E2

NG(e) =
m (m− 1) (m− 2)

2
+

p∑
j=1

(
(m− fj) (m− fj − 1)

2
+
fj (fj − 1)

2

)

+ (n− p)
(
q (q − 1)

2
+

(m− q) (m− q − 1)

2

)
.

(2)

For edges in E3, a vertex u ∈ U1 has (m− fj) neighbours in V and the remaining fj vertices are at distance 2. Similarly,
v ∈ V1 has (n− gi) neighbours inU and remaining gi vertices are at distance 2. That is,NE3

(NV (u)) = (m− fj) (m− fj − 1)

and NE3
(NU (v)) = (n− gi) (n− gi − 1). Therefore,

∑
e∈E3

NG(e) =

p∑
j=1

(m− fj) (m− fj − 1) +

q∑
i=1

(n− gi) (n− gi − 1) . (3)

Now, we combine the three equations (1), (2), and (3) to calculate PI
(
G
)
.

PI(G) =
∑
e∈E1

(∣∣V (G)
∣∣−NG(e)

)
+
∑
e∈E2

(∣∣V (G)
∣∣−NG(e)

)
+
∑
e∈E3

(∣∣V (G)
∣∣−NG(e)

)
=
n(n− 1)(m+ n)

2
− n(n− 1)(n− 2)

2
−

q∑
i=1

(
(n− gi)(n− gi − 1)

2
+
gi(gi − 1)

2

)
− (m− q)

(
p(p− 1)

2
+

(n− p)(n− p− 1)

2

)
+
m(m− 1)(m+ n)

2
− m(m− 1)(m− 2)

2
−

p∑
j=1

(
(m− fj)(m− fj − 1)

2
+
fj(fj − 1)

2

)

− (n− p)
(
q(q − 1)

2
+

(m− q)(m− q − 1)

2

)
+ (m+ n) ((m− f1) + (m− f2) + ...+ (m− fp))

−

 p∑
j=1

(m− fj)(m− fj − 1) +

q∑
i=1

(n− gi)(n− gi − 1)


= n(n− 1)(m+ 2)−

q∑
i=1

(n− gi)(n− gi − 1)−
q∑

i=1

gi(gi − 1)− (m− q)(p(p− 1) + (n− p)(n− p− 1))

+m(m− 1)(n+ 2)−
p∑

j=1

(m− fj)(m− fj − 1)−
p∑

j=1

fj(fj − 1)− (n− p)(q(q − 1) + (m− q)(m− q − 1))

+ 2(m+ n)

p∑
j=1

(m− fj)− 2

p∑
j=1

(m− fj)(m− fj − 1)− 2

q∑
i=1

(n− gi)(n− gi − 1)

= 2n2 − 2n+ 4mnp− 2p2m− 2npq + 2p2q + 2m2 − 2m+ 2mnq − 2nq2 − 2mpq + 2pq2

− 2n2q + 2nq + 2pm− 2n

p∑
j=1

fj + 4m

p∑
j=1

fj − 4

p∑
j=1

f2j − 2

p∑
j=1

fj + 6n

q∑
i=1

gi − 4

q∑
i=1

g2i − 2

q∑
i=1

gi

= n(n− 1) +m(m− 1) +mn(2p+ q)− pq(m+ n− q − p)−mp(p− 1)

− nq(q + n− 1) + f(2m− n− 1)− 2(f∗ + g∗) + g(3n− 1).
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A bipartite graph G (U, V ) is (x, y)-biregular if each vertex in U has degree x and each vertex in V has degree y.

Corollary 2.1. If G (U, V ) is a (x, y)-biregular graph then PI
(
G
)

= (n+m) (n+m− 1) + 2my (n+m− (x+ y + 1)) .

Proof. From Theorem 2.1, we have

PI
(
G
)

= n (n− 1) +m (m− 1) +mn (2p+ q)− pq (m+ n− p− q)−mp (p− 1)

− nq (q + n− 1) + f (2m− n− 1)− 2 (f ∗+g∗) + g (3n− 1) .

Here p = n, q = m, f = nx, g = my, f∗ = nx2, and g∗ = my2.Thus,

PI(G) = n2 − n+m2 −m+ 2mn+ 2mnx− n2x− nx− 2nx2 − 2my2 + 3nmy −my

= (n+m)2 − (n+m) + 2nmy + 2m2y − 2mxy − 2my2 − 2my

= (n+m)(n+m− 1) + 2my(n+m− (x+ y + 1)).

Corollary 2.2. If G is a k-regular bipartite graph with 2n vertices then PI
(
G
)

= 2n
[
2n (k + 1)−

(
2k2 + k + 1

)]
.

Proof. In Theorem 2.1, by taking n = m and x = y = k, one gets

PI
(
G
)

= 2n (2n− 1) + 2nk (2n− (2k + 1))

= 2n
(
2n (k + 1)−

(
2k2 + k + 1

))
.

Two particular examples of Corollary 2.2 are PI
(
C2n

)
= 2n (6n− 11) and PI

(
Kn,n

)
= 2n (n− 1) .

Corollary 2.3. If G is a k-regular bipartite graph with 2n vertices then

PIw
(
G
)

= 4n (2n− k − 1)
(
2n (k + 1)−

(
2k2 + k + 1

))
.

Proof. We know that the weighted PI index of a regular graph is a multiple of its PI index. Therefore,

PIw
(
G
)

= 2 (2n− k − 1)PI
(
G
)

= 4n (2n− k − 1)
(
2n (k + 1)−

(
2k2 + k + 1

))
.

3. Line graphs of some classes of graphs

Let G be a graph with n vertices and m edges. Its line graph denoted by L (G), is a simple graph whose vertices are the
edges of G and two vertices are adjacent in L (G) if the corresponding edges are adjacent in G. Let T be a tree with n

vertices. Every vertex v in T with degree i, i > 2, forms a star K1,i in T , we denote it by Si. Let S be the collection of all
stars in T . If we delete edges of all stars in T , the remaining edges of T are parts of paths. Some paths have both of its end
vertices common with the stars; we call them as central paths and the remaining have one end vertex shared with stars
(paths) and the other end vertex is a pendent vertex; we call them leaf paths. We denote the central path with the length l
by Pl and pendent path with the length l by P ∗l . As we know that line graphs of stars are complete graphs and line graphs
of paths are paths. Each star Si in T is transformed to a clique with Ki in L (T ). The central path Pl has l edges, so it is
transformed to the path with l vertices having length l−1 and each of its end vertices is connected with a vertex of a clique
in L(T ), so it has l − 1 + 2 = l + 1 edges. Each leaf path P ∗l is transformed to a path with l vertices and l − 1 edges, and it
is connected with a vertex of L(T ), so it has l edges.

Theorem 3.1. Let T be a tree with n vertices then

PI (L(T )) = (n− 1) (n− 2) .

Proof. Let T be a tree with n vertices. Assume that the edge set E(T ) is the union of m stars Ski
, r central paths Pfi , and

s pendant paths P ∗gi . Let us assume that

S = ∪mi=1Ski
and P ′ = (∪ri=1Pfi) ∪

(
∪si=1P

∗
gi

)
.
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Then,

|E(T )| = n− 1 =

m∑
i=1

ki +

r∑
i=1

fi +

s∑
i=1

gi.

We claim that ∑
e∈E(Kki)

(|V (T )| −NT (e)) = (ki − 1) (n− 1) .

Let e be an edge of Kki in L(T ) and let v ∈ V (Kki) be equidistant to e. If we delete all the edges of Kki , then L(T ) has more
than one component. All vertices in the component W containing v are also equidistant to e. If we consider all the edges
and vertices of Kki

, then ∑
e∈E(Kki)

(|V (T )| −NT (e)) = (ki − 1) (n− 1) .

Also, since each edge of a path is a cut edge, there is no equidistant vertex corresponding to those edges. Each Pfi+1

contributes (fi + 1)(n− 1) and each P ∗gi contributes gi(n− 1) to the PI index of L(T ). Thus,

PI (L(T )) =
∑

e∈E(L(T ))

(
|V (L(T ))| −NL(T )(e)

)
=

∑
e∈E(∪Ski)

(
|V (L(T ))| −NL(T )(e)

)
+

∑
e∈E(∪Pfi+1)

(
|V (L(T ))| −NL(T )(e)

)
+

∑
e∈E

(
∪P∗

gi+1

)
(
|V (L(T ))| −NL(T )(e)

)

=

m∑
i=1

(ki − 1) (n− 1) +

r∑
i=1

(fi + 1) (n− 1) +

s∑
i=1

gi (n− 1)

= (n− 1)

(
m∑
i=1

(ki − 1) +

r∑
i=1

(fi + 1) +

s∑
i=1

gi

)

= (n− 1)

(
m∑
i=1

ki −m+

r∑
i=1

fi + r +

s∑
i=1

gi

)

= (n− 1) ((n− 1)−m+ r) .

Since each Pfi lies between two Ski , it holds that r = m− 1. Therefore,

PI (L(T )) = (n− 1) (n− 1− 1) = (n− 1) (n− 2) = PI (T )− 2 (n− 1) .

Let Kn be the complete graph with n vertices. The graph L (Kn) is the edge disjoint union of n cliques A1, A2, A3, ..., An,
each of which has order n − 1. Also, each vertex of L (Kn) is a part of exactly two cliques and any two cliques in L (Kn)

have exactly one vertex in common.

Theorem 3.2. PI (L(Kn)) = n (n− 1) (n− 2)
2.

Proof. The edge set of L (Kn) can be partitioned as

E (L(Kn)) =

n⋃
i=1

E (Ai) ,

where A′is are cliques of order n − 1. Let e = uv be an arbitrary edge in L (Kn), then e ∈ Ai for some i. All the remaining
vertices in Ai are at distance one, so V (Ai) \ {u, v} ⊆ D1(e). Since each vertex belongs to exactly two cliques, u ∈ Aj and
v ∈ Ah, for some i 6∈ {j, h}. Also, two cliques have exactly one vertex in common, say w, which is different from u and v. So,
d(u,w) = d(v, w) = 1 implies that w ∈ D1(e). Moreover, the number of vertices at distance 2 is

n(n− 1)

2
− (d(u) + d(v)−D1(e)) =

n(n− 1)

2
− (4(n− 2)− (n− 2)) .

Therefore,
NL(Kn)(e) = (n− 2) +

n (n− 1)

2
− 3 (n− 2) =

n (n− 1)

2
− 2 (n− 2)
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and hence

PI (L(Kn)) =
∑

e∈E(L(Kn))

(
|V (L(Kn))| −NL(Kn)(e)

)

=
∑

e∈E(L(Kn))

n (n− 1)

2
−
(
n(n− 1)

2
− 2(n− 2)

)

= 2

(∑
v∈V (Kn)

d2 (v)

2
−m

)
(n− 2)

=

 ∑
v∈V (Kn)

d2(v)− 2m

 (n− 2)

=
(
n(n− 1)2 − n(n− 1)

)
(n− 2) = n (n− 1) (n− 2)

2
= PI (Kn) (n− 2)

2
.

Next, we consider the complete bipartite graph Kn,m = G(U, V ) with |U | = n and |V | = m. Its line graph L(G) is the
edge disjoint union of m+n cliques, where m cliques have order n and n cliques have order m. Each vertex in L(G) belongs
to exactly two cliques, one of which has order n and the other is of order m. Two cliques of the same order have no vertex
in common.

Theorem 3.3. PI(L(Kn,m)) = mn (2mn− (m+ n)).

Proof. TakeG = Kn,m. Its edge set can be partitioned as E(G) = E (∪Kn)∪E (∪Km) . Take an arbitrary edge e ∈ E (L(G)).
Then there are two possibilities.

Case 1. e = xy is an edge of a clique Kn of order n.
All the vertices of Kn other than the end vertices of e are at distance 1. There is no other vertex at distance 1. (If there
exists a vertex z at distance 1, then the edge xz belongs to a clique of order m and zy belongs to another clique of the same
order. So, the vertex w belongs to exactly two cliques of order m, it is not possible). Thus,

mn− (d(x) + d(y)− (n− 2)) = mn− (2(n+m− 2)− (n− 2))

are the number of vertices at distance 2. So,

NL(G)(e) = mn− (2 (n+m− 2)− (n− 2)) + (n− 2) = mn− 2 (n+m− 2) + 2 (n− 2) .

Case 2. e is an edge of a clique Km of order m.
In the same way as in Case 1, one gets

NL(G)(e) = mn− 2 (n+m− 2) + 2 (m− 2) .

Therefore,

PI(L(G)) =
∑

e∈E(L(G))

(|V (L(G))| −NL(G)(e))

= mn

(
mn(n+m− 2)

2

)
−

 ∑
e∈E(∪Kn))

NL(G)(e) +
∑

e∈E(∪Km))

NL(G)(e)


= mn

(
mn(n+m− 2)

2

)
− (mn− 2(n+m− 2))

(
mn(m+ n− 2)

2

)
−mn[(n− 1)(n− 2) + (m− 1)(m− 2)]

= mn((n+m− 2)2 − (n− 1)(n− 2)− (m− 1)(m− 2))

= mn(2mn− (m+ n)).
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4. Prismatic graphs

Chudnovsky and Seymour studied different structural properties of claw-free graphs in a series of seven papers. In their
first paper [1] of this series, they studied the orientable prismatic graphs and in the second paper [2] they studied non-
orientable prismatic graphs. A graph G is prismatic if for every triangle T in G, every vertex not in T has exactly one
neighbour in T . Core of a prismatic graph is the union of all triangles in G. Total coloring of prismatic graphs are
discussed in [14]. Here, we consider a particular class of prismatic graphs, namely rigid prismatic graphs. A prismatic
graph G with core W is rigid if

• there does not exist two distinct vertices u and v, not in the core, with the same neighbouring set in W ,

• every two non-adjacent vertices have a common neighbour in the core.

Theorem 4.1. If G is a rigid prismatic graph with p triangles and n vertices, then its PI index is

PI (G) = M1 (G) + 2np−
∑

(u,v)∈E(W )

(d(u) + d(v)) .

Proof. LetG be a rigid prismatic graph with p triangles, n vertices, andm edges. Since every two non-adjacent vertices ofG
have a common neighbour in the core, its diameter is 2. The edge set ofG can be partitioned as E(G) = E(W )∪E1∪E2∪E3,
where E1 = {(u, v) 6∈ E(W ) | u, v ∈W}, E2 = {(u, v) | either u ∈W or v ∈W}, and E3 = {(u, v) | u, v /∈W}.

P I(G) =
∑

e∈E(W )

(|V (G)| −NG(e)) +
∑
e∈E1

(|V (G)| −NG(e)) +
∑
e∈E2

(|V (G)| −NG(e)) +
∑
e∈E3

(|V (G)| −NG(e)) .

Since each triangle contributes 2n to PI(G), one has∑
e∈E(W )

(|V (G)| −NG(e)) = 2np.

Since each edge in Ei, i = 1, 2, 3, is not a part of a triangle, it holds that∑
e∈Ei

(|V (G)| −NG(e)) =
∑

(u,v)∈Ei

(n− (n− (d(u) + d(v)))) =
∑

(u,v)∈Ei

(d(u) + d(v))

and thus,

PI(G) = 2np+
∑

(u,v)∈E1∪E2∪E3

(d(u) + d(v)) = 2np+
∑

(u,v)∈E(G)\E(W )

(d(u) + d(v))

= 2np+
∑

(u,v)∈E(G)

(d(u) + d(v))−
∑

(u,v)∈E(W )

(d(u) + d(v))

= M1(G) + 2np−
∑

(u,v)∈E(W )

(d(u) + d(v)) .

v5 v9

v8 v6

v4 v7

v1

v2 v3

Figure 2: The rotator.

For illustration of Theorem 4.1, we consider two non-orientable prismatic graphs: rotator and twister. The rotator and
twister are shown in 2 and 3, and their PI indices are 120 and 154, respectively.
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u1

u2

v1 v5

v2 v6

v4 v8

v7 v3

Figure 3: The twister.
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