
Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 9 (2022) 80–85
DOI: 10.47443/dml.2021.s213

Research Article

Multiplicative Sombor index of graphs

Hechao Liu∗

School of Mathematical Sciences, South China Normal University, Guangzhou, P. R. China

(Received: 26 February 2022. Received in revised form: 3 March 2022. Accepted: 19 March 2022. Published online: 28 March 2022.)

c© 2022 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The Sombor index of a graph G is defined as SO(G) =
∑

uv∈E(G)

√
d2G(u) + d2G(v), where dG(u) denotes the degree of the

vertex u of G. Accordingly, the multiplicative Sombor index of G can be defined as
∏

SO(G) =
∏

uv∈E(G)

√
d2G(u) + d2G(v). In

this article, some graph transformations which increase or decrease the multiplicative Sombor index are first introduced.
Then by using these transformations, extremal values of the multiplicative Sombor index of trees and unicyclic graphs are
determined.

Keywords: multiplicative Sombor index; extremal value.

2020 Mathematics Subject Classification: 05C09, 05C92.

1. Introduction

The term “chemical graph theory” was coined by Nenad Trinajstić and it was used as the title of his seminal book [33]. In
the new AMS subject classification 2020, the subject number 05C92 in “05C graph theory” is assigned to chemical graph
theory. Gutman said that it is a major success of all those colleagues who over several decades worked and/or are working
in “chemical topology”, a field of research considered by many as worthless.

We only consider simple connected graph G with the vertex set V (G) and edge set E(G). Denote by NG(u) the set of the
vertices that are neighbors of the vertex u ∈ V (G). Then |NG(u)| is the degree of the vertex u, denoted by dG(u) or d(u).
We call the vertex u as a pendent vertex if d(u) = 1. We call a path P = u1u2 · · ·uk in G as a pendent path if d(u1) ≥ 3,
d(uk) = 1 and d(ui) = 2 for 2 ≤ i ≤ k − 1. The girth of G is the length of a shortest cycle in G. Denote by Pn and Sn the
path and star graphs with n vertices, respectively. All notations and terminology used, but not defined here, can be found
in the textbook [3].

The Sombor index [15] was proposed by Gutman, which is defined as

SO(G) =
∑

uv∈E(G)

√
d2G(u) + d2G(v).

Since the publication of [15], the Sombor index has attracted much attention of researchers. For the mathematical prop-
erties and chemical applications on the Sombor index or its variants, see [1,2,4–14,16–32,34,35] and the references cited
therein.

According to the definition of the Sombor index, it is natural to consider the multiplicative version of the Sombor index,
defined as ∏

SO
(G) =

∏
uv∈E(G)

√
d2G(u) + d2G(v).

The aim of this paper is to begin the research on mathematical properties of the multiplicative Sombor index.

2. Transformations

We first introduce some transformations which will be useful in the proof of main theorems.
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Lemma 2.1. Let G be a connected graph.

(1) if uv ∈ E(G), then
∏

SO(G) >
∏

SO(G− uv);

(2) if uv /∈ E(G), then
∏

SO(G) <
∏

SO(G + uv).

Figure 1: Transformation A.

Lemma 2.2. Let G and G∗ be the graphs shown in Figure 1. We allow u = v. If uu1u2 · · ·uk and vv1v2 · · · vl are two pendent
path in G, and G∗ = G− uu1 + u1vl, then

∏
SO(G∗) <

∏
SO(G).

Proof. We consider two cases.

Case 1. u = v.
Let dG0(u) = t ≥ 1 and NG0(u) = {x1, x2, · · · , xt}. If k ≥ 2, l ≥ 2, then

∏
SO

(G)−
∏

SO
(G∗) = 5 · ((t + 2)2 + 4) · 8

k+l−4
2 ·

t∏
i=1

√
(dG0

(xi) + 2)2 + t2

−
√

5 ·
√

(t + 1)2 + 4 · 8
k+l−2

2 ·
t∏

i=1

√
(dG0

(xi) + 1)2 + t2

> 8
k+l−4

2 ·
[
5((t + 2)2 + 4)− 8

√
5
√

(t + 1)2 + 4
]

> 0.

Similarly, if k = l = 1 or k = 1, l ≥ 2 or k ≥ 2, l = 1, then we have∏
SO

(G)−
∏

SO
(G∗) > 0.

Case 2. u 6= v. ∏
SO(G∗)∏
SO(G)

=

√
d2G(u1) + 4

√
d2G(vl−1) + 4√

d2G(u1) + d2G(u)
√
d2G(vl−1) + 1

∏
ui∈NG(u)\{u1}

√
d2G(ui) + (dG(u)− 1)2√

d2G(ui) + d2G(u)
.

If l ≥ 2, then dG(vl−1) = 2, dG(u1) = 2 or 1. Since dG(u) ≥ 3, one has∏
SO

(G∗) <
∏
SO

(G).

If l = 1, then dG(vl−1) ≥ 3. Since dG(u) ≥ 3, dG(u1) = 2 or 1.∏
SO(G∗)∏
SO(G)

<

√
13√
10

√
d2G(u1) + 4√

d2G(u1) + d2G(u)
< 1.

Lemma 2.3. Let G and G∗ be the graphs as depicted in Figure 2, and G∗ = G− {uw1, uw2, · · · , uwt}+ {vw1, vw2, · · · , vwt}.
Then

∏
SO(G) <

∏
SO(G∗).
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Figure 2: Transformation B.

Proof. Let dG0
(v) = k ≥ 1 and NG0

(v) = {v1, v2, · · · , vk}. Then

∏
SO

(G∗)−
∏

SO
(G) ≥ ((k + t + 1)2 + 1)

t+1
2 ·

k∏
i=1

√
d2G0

(vi) + (k + t + 1)2

−
√

(k + 1)2 + (t + 1)2 · ((t + 1)2 + 1)
t
2 ·

k∏
i=1

√
d2G0

(vi) + (k + 1)2

> ((k + t + 1)2 + 1)
t+1
2 −

√
(k + 1)2 + (t + 1)2 · ((t + 1)2 + 1)

t
2

>
√

(k + t + 1)2 + 1−
√

(k + 1)2 + (t + 1)2

> 0.

Figure 3: Transformation C.

Lemma 2.4. Let G and G∗ be the graphs as shown in Figure 3. If G∗ is the graph obtained from G by identifying the vertices
u and v to a new vertex w and adding a pendent vertex w0 to the vertex w, then∏

SO
(G) <

∏
SO

(G∗).

Proof. Let NG(u) = {v, u1, u2, · · · , uk} and NG(v) = {u, v1, v2, · · · , vl}. Then

∏
SO

(G∗)−
∏

SO
(G) ≥

√
(k + t + 1)2 + 1 ·

k∏
i=1

√
d2G(ui) + (k + l + 1)2 ·

l∏
j=1

√
d2G(vj) + (k + l + 1)2

−
√

(k + 1)2 + (l + 1)2 ·
k∏

i=1

√
d2G(ui) + (k + 1)2 ·

l∏
j=1

√
d2G(vj) + (l + 1)2

>
√

(k + t + 1)2 + 1−
√

(k + 1)2 + (l + 1)2

> 0.

Lemma 2.5. Let G, G∗ be the graphs in Figure 4. Note that P = v1v2 · · · vtvt+1 is a pendent path, NG(v1) = {v2, u, w} and
G∗ = G− uv1 + uvt+1. Then ∏

SO
(G) >

∏
SO

(G∗).
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Figure 4: Transformation D.

Proof. If dG(u) = 1, then by Lemma 2.2, the conclusion holds. Thus, in the following, we suppose that dG(u) ≥ 2. If t ≥ 2,
then ∏

SO
(G)−

∏
SO

(G∗) ≥
√

4 + 9 ·
√

1 + 4 · 8
t−2
2 ·

√
d2G(u) + 9 ·

√
d2G(w) + 9− 8

t
2 ·
√

d2G(u) + 4 ·
√

d2G(w) + 4

= 8
t−2
2

[√
65
√
d2G(u) + 9 ·

√
d2G(w) + 9− 8

√
d2G(u) + 4 ·

√
d2G(w) + 4

]
> 0.

If t = 1, then∏
SO

(G)−
∏

SO
(G∗) ≥

√
1 + 9

√
d2G(u) + 9 ·

√
d2G(w) + 9−

√
4 + 4

√
d2G(u) + 4 ·

√
d2G(w) + 4 > 0.

Lemma 2.6. Let f(x) = ((x + m)2 + 1)
x
2 ·
∏m

i=1

√
(x + m)2 + (d(i))2, where d(i) (i = 1, 2, · · · ,m) are all nonnegative integers.

Then for any positive integers s, t, the inequality f(s + t)f(0) > f(s)f(t) holds.

Proof. We prove that ln f(s + t) + ln f(0) > ln f(s) + ln f(t). For this, let g(x) = ln f(x) + ln f(0) − ln f(x1) − ln f(x − x1).
Then,

g′(x) =
1

2
ln((x + m)2 + 1) +

x(x + m)

(x + m)2 + 1
+

m∑
i=1

x + m

(x + m)2 + (d(i))2

−

[
1

2
ln((x− x1 + m)2 + 1) +

(x− x1)(x− x1 + m)

(x− x1 + m)2 + 1
+

m∑
i=1

x− x1 + m

(x− x1 + m)2 + (d(i))2

]
, h(x)− h(x− x1),

where
h(x) =

1

2
ln((x + m)2 + 1) +

x(x + m)

(x + m)2 + 1
+

m∑
i=1

x + m

(x + m)2 + (d(i))2
.

But,

h′(x) =
x + m

(x + m)2 + 1
+

m(x + m)2 + 2x + m

((x + m)2 + 1)2
+

m∑
i=1

(d(i))2 − (x + m)2

((x + m)2 + 1)2

=
x + m

(x + m)2 + 1
+

2x + m

((x + m)2 + 1)2
+

m∑
i=1

(d(i))2

((x + m)2 + 1)2

> 0.

Thus g′(x) > 0, which implies ln f(s+t)+ln f(0) > ln f(s)+ln f(t), and consequently, it holds that f(s+t)f(0) > f(s)f(t).

Lemma 2.7. Let G and G∗ be the graphs as given in Figure 5. Take G∗ = G − {vv1, vv2, · · · , vvt} + {uv1, uv2, · · · , uvt}.
Suppose that |NG0(u)| = |NG0(v)| = m, NG0(u) = {u0

1, u
0
2, · · · , u0

m}, NG0(v) = {v01 , v02 , · · · , v0m} and dG0(u0
i ) = dG0(v0i ) = d(i)

for i = 1, 2, · · · ,m. Then
∏

SO(G) <
∏

SO(G∗).
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Figure 5: Transformation E.

Proof. By Lemma 2.6, we have

∏
SO

(G∗)−
∏

SO
(G) ≥ ((s + t + m)2 + 1)

s+t
2 ·

m∏
i=1

√
(d(i))2 + (s + t + m)2 ·

m∏
i=1

√
(d(i))2 + m2

−((s + m)2 + 1)
s
2 · ((t + m)2 + 1)

t
2 ·

m∏
i=1

√
(d(i))2 + (s + m)2 ·

m∏
i=1

√
(d(i))2 + (t + m)2

, f(s + t)f(0)− f(s)f(t) > 0,

where
f(x) = ((x + m)2 + 1)

x
2 ·

m∏
i=1

√
(x + m)2 + (d(i))2.

3. Main results

Denote by Tn and Un, the sets of trees and unicyclic graphs with n vertices, respectively. By transformations given in
Section 2, we have the following results.

Theorem 3.1. Let G ∈ Tn and G � Pn, G � Sn. Then
∏

SO(Pn) <
∏

SO(G) <
∏

SO(Sn).

Denote by T (a, b, c) the set of trees of maximum degree 3 with the unique maximum-degree vertex w such that

T (a, b, c)− w = Pa ∪ Pb ∪ Pc,

a + b + c = n − 1, and a ≥ b ≥ c ≥ 2. Let S∗n be the tree obtained from star Sn by subdividing one of its edges. By
transformations considered in Section 2, especially Transformation E, we have the next result.

Theorem 3.2. Let G ∈ Tn and G � Pn, Sn, S
∗
n, T (a, b, c). Then

∏
SO(T (a, b, c)) <

∏
SO(G) <

∏
SO(S∗n).

Let Ck
n be the unicyclic graph obtained from the cycle Ck by attaching n− k pendent edges to one vertex of Ck.

Theorem 3.3. Let G ∈ Un and G � Cn, G � C3
n. Then

∏
SO(Cn) <

∏
SO(G) <

∏
SO(C3

n).

Denote by Un,g the set of unicyclic graphs with n vertices and girth g. Denote by Fn,g the set of graphs with n vertices
and girth g. By Lemma 2.2, we have the next theorem.

Theorem 3.4. Let G ∈ Un,g. Then
∏

SO(G) ≥ 13
√

65 · 8n−4
2 with equality if and only if G is the unicyclic graph with girth g

and one pendent path.

Combining Theorem 3.4 and Lemma 2.1, we have the next result.

Theorem 3.5. Let G ∈ Fn,g. Then
∏

SO(G) ≥ 13
√

65 · 8n−4
2 with equality if and only if G is the unicyclic graph with girth g

and one pendent path.

A molecular tree is a tree with maximum degree ∆ ≤ 4. We end this paper with the remark that the extremal
multiplicative Sombor indices of (molecular) trees are under investigation.
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