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1Department of Mathematics, Faculty of Science, Selçuk University, Konya, Turkey
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Abstract

In this paper, two distance-based entropy measures are studied that were introduced by Bonchev and Trinajstić [J. Chem.
Phys. 38 (1977) 4517–4533] for interpreting the molecular branching of molecular graphs. One of these entropy measures
is based on the distribution of distances in the distance matrix and the other one is based on the distribution of distances
in the upper triangular submatrix. The mentioned measures are calculated for paths, stars, complete graphs, cycles, and
complete bipartite graphs. The minimal trees with respect to the entropy measures under consideration with fixed diameter
are also determined.
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1. Introduction

The entropy concept was introduced by Shannon in 1948 [17]. The Shannon entropy can be applied to different networks
with the possibility of constructing a finite probability scheme for each network. The graph entropy concept was first
defined by Rashevsky [15] in 1955. His entropy measure is based on the partition of the vertices with respect to equivalent
classes of vertex degrees. Trucco [18] extended this definition by using automorphism groups of graphs. Mowshowitz [13]
applied the information theory to different chemical structures and mathematical structures in 1968. Some properties of
graph entropies were reported by Das and Shi [5]. Detail about the distance-based entropy measures can be found in [4,14].
The entropy measure based on dominating sets of graphs was introduced recently in [16]. More information about graph
entropies can be found in the survey [7] and in the book [6].

Many molecular properties of materials are obtained by molecular topologies [11]. These measures are called topological
indices or molecular descriptors in chemical graph theory. Many chemical, physical and biological properties of molecules
have good correlations with several well-known topological indices. Therefore, many researchers from a wide range of
sciences study on this topic. The first topological index was introduced by Wiener in 1947 [19]. The Wiener index is equal
to one half of the sum of distances between every pair of vertices in a graph. The minimal trees of fixed diameter with
respect to the Wiener index are characterized by Liu and Pan [12]. Detail about the Wiener index can be found in the
excellent survey [8].

So many topological indices have been introduced in the last fifty years. It is understood that they have usually corre-
lated more or less with the relative molecular properties of molecules but the same index can not has high discrimination
ability for different molecules [11]. Bonchev and Trinajstić [1] introduced the entropy measures based on distances for
interpreting the molecular branching of molecular graphs. Later, they applied the information theory in characterizing
chemical structures [2, 3]. These molecular descriptors were called information indices and it was shown that the infor-
mation indices have greater discriminating power for molecules than the respective topological indices [9,10].

2. Preliminaries

Let G be a simple graph with the vertex set V (G) and the edge set E(G). For a vertex u ∈ V (G), the notation NG(u) =

{v | uv ∈ E(G)} denotes the vertices which are adjacent to u and NG[u] = {u} ∪ NG(u). The degree of a vertex u is the
cardinality ofNG(u) and it is denoted by degG(u) or simply deg(u). A vertex which has degree one is called a leaf. Moreover,
∗In memory and honor of Professor Nenad Trinajstić. At the time of finalising this article, the paper [1] was cited more than six hundred fifty times
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the distance between the vertices u and v is denoted by d(u, v). The maximum distance between any two vertices of a graph
G is called diameter and is denoted by diam(G). The distance matrix D = [dij ], (i, j = 1, 2, . . . , n) contains the distances
dij = d(i, j) between any two vertices of a connected graph.

The number of vertices of a graph G is called order and it is denoted by |V (G)| = n. The paths, cycles and stars of
order n are denoted by Pn, Cn and Sn, respectively. Moreover, complete graphs of order n are denoted by Kn and complete
bipartite graphs are denoted by Ks,t with bipartite sets {u1, u2, . . . , us} and {v1, v2, . . . , vt}.

Definition 2.1 (see [17]). For a given probably vector p = {p1, p2, . . . , pn} such that 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1, the
ShannonŠs entropy of p is presented by the following equation

I(p) = −
n∑

i=1

pi log pi.

Definition 2.2. For a vertex u ∈ V (G), the total distance of u is defined as

D(u) =
∑

v∈V (G)

d(u, v).

Definition 2.3 (see [19]). The Wiener index of a graph G is defined as

W (G) =
1

2

∑
u∈V (G)

D(u).

We now can present the definitions of the information entropies introduced by Bonchev and Trinajstić [1]. In the
distance matrix of a graph G, the distance i appears 2ni times, where 1 ≤ i ≤ diam(G). Thus, n2 elements of the distance
matrix ofG are partitioned into diam(G)+1 groups with n zeros which are diagonal elements of the matrix. Therefore, the
probability distribution of the diam(G) + 1 groups for each i-th group is presented in Table 1 (see [11]), where pi = 2ni/n

2

for 1 ≤ i ≤ diam(G) and p0 = n/n2 = 1/n.

Table 1: The distance and probability distributions of distance matrix.
Distance 0 1 2 · · · diam(G)

Frequency n 2n1 2n2 · · · 2ndiam(G)

Probability 1/n p1 p2 · · · pdiam(G)

Since the distance matrix is symmetric, in order to simplify the calculations, only the upper triangular submatrix are
be used. Thus, n(n− 1)/2 upper off-diagonal elements are used for the calculations.

Definition 2.4 (see [1,11]). For a given distance i in a graph G such that 1 ≤ i ≤ diam(G), the information entropies I(G)
and I∗(G) are defined as follows

I(G) = − 1

n
log

1

n
−

diam(G)∑
i=1

2ni
n2

log
2ni
n2

and I∗(G) = −
diam(G)∑

i=1

2ni
n(n− 1)

log
2ni

n(n− 1)
.

In order to make some calculations, we order the diagonals of a square matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
an1 an2 . . . ann

 .
We order the diagonals of A as follows:

diag(1) = {a1n},

diag(2) = {a1n−1, a2n}, . . . ,

diag(n− 1) = {a12, a23, . . . , an−1n},

diag(n) = {a11, a22, . . . , ann},

diag(n+ 1) = {a21, a32, . . . , ann−1}, . . . ,

diag(2n− 2) = {an−11, an2},
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diag(2n− 1) = {an1}.

It is noted that if A is a symmetric matrix, then the following relations are hold:

diag(1) = diag(2n− 1),

diag(2) = diag(2n− 2) =, . . . ,

diag(n− 1) = diag(n+ 1).

We note that diag(n) is the main diagonal of the matrix A and |diag(n)| = n. Moreover, the number of the elements which
appear in i-th diagonal is |diag(i)| = |diag(2n− i)| = i for 1 ≤ i ≤ n− 1.

3. Information entropies of some graphs

Theorem 3.1. The information entropies I and I∗ of the path graph Pn of order n are given by the following formulas:

I(Pn) = −
1

n
log

1

n
−

n−1∑
i=1

2i

n2
log

2i

n2
and I∗(Pn) = −

n−1∑
i=1

2i

n2 − n
log

2i

n2 − n
.

Proof. The distance matrix of Pn is presented as follows:

D(Pn) =



0 1 2 3 . . . n− 2 n− 1
1 0 1 2 . . . n− 3 n− 2
2 1 0 1 . . . n− 4 n− 3
3 2 1 0 . . . n− 5 n− 4
...

...
...

... . . . ...
...

n− 2 n− 1 . . . . . . . . . 0 1
n− 1 n− 2 . . . . . . . . . 1 0


.

It can be seen that the distance n − 1 appears in diag(1) and diag(2n − 1). The distance n − 2 appears in diag(2) and
diag(2n− 2), and generally the distance n− i appears in diag(i) and diag(2n− i) with the frequency 2ni = 2i (1 ≤ i ≤ n− 1).
The diag(n) contains n zeros.

From the matrix D(Pn), we obtain the frequency of distances (Freq.), probability distributions of distances in the
distance matrix (pi) and probability distributions of distances in the upper triangular distance matrix (p∗i ) as shown in
Table 2.

Table 2: Probability distributions for the path graph Pn.
i 0 1 2 3 · · · n− 2 n− 1

Freq. n 2n− 2 2n− 4 2n− 6 · · · 4 2
pi

1
n

2n−2
n2

2n−4
n2

2n−6
n2 · · · 4

n2
2
n2

p∗i 0 2n−2
n2−n

2n−4
n2−n

2n−6
n2−n · · · 4

n2−n
2

n2−n

Now, by using the definitions of the information entropies I and I∗, we obtain the required formulas.

Theorem 3.2. The information entropies I and I∗ of the star graph Sn of order n are given by the following formulas,

I(Sn) = −
1

n
log

1

n
− 2n− 2

n2
log

2n− 2

n2
− n2 − 3n+ 2

n2
log

n2 − 3n+ 2

n2
,

I∗(Sn) = −
2n− 2

n2 − n
log

2n− 2

n2 − n
− n2 − 3n+ 2

n2 − n
log

n2 − 3n+ 2

n2 − n
.

Proof. Let Sn be a star of order n with the vertex set {v1, v2, . . . , vn} such that vn is the central vertex of Sn. Then, the
distance matrix of Sn is presented as follows:

D(Sn) =



0 2 2 . . . 2 1
2 0 2 . . . 2 1

2 2
. . . . . . ... 1

...
... . . . . . . 2

...

2 2 . . . 2
. . . 1

1 1 . . . . . . 1 0


.
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Note that the distance 1 appears only in the n-th row and in the n-th column with 2n − 2 times. Therefore, the distance
matrix D(Sn) consists of n zeros, 2n− 2 times 1, and n2 − 3n+ 2 times 2.

From the matrix D(Sn), we obtain the frequency of distances (Freq.), probability distributions of distances in the
distance matrix (pi), and probability distributions of distances in the upper triangular submatrix (p∗i ) as shown in Table
3.

Table 3: Probability distributions for the star graph Sn.
i 0 1 2

Freq. n 2n− 2 n2 − 3n+ 2

pi
1
n

2n−2
n2

n2−3n+2
n2

p∗i 0 2n−2
n2−n

n2−3n+2
n2−n

Now, by using the definitions of the information entropies I and I∗, we obtain the I(Sn) and I∗(Sn).

Theorem 3.3. The information entropies I and I∗ of the complete graph Kn of order n are given by the following formulas:

I(Kn) = −
1

n
log

1

n
− n− 1

n
log

n− 1

n
and I∗(Kn) = 0.

Proof. It is known that the distance matrix of the complete graph Kn is consisted of n times 0 which are diagonal elements
and n2−n times 1 which are the off-diagonal elements of the distance matrix D(Kn). Therefore, we obtain the probability
distributions of Kn as shown in Table 4.

Table 4: Probability distributions for the complete graph Kn.
i 0 1

Freq. n n2 − n
pi

1
n

n2−n
n2

p∗i 0 1

By using the definitions of the information entropies I and I∗, we obtain the required formulas.

Theorem 3.4. The information entropies I and I∗ of the cycle graph Cn of order n are given by the following formulas.

i) If the order of Cn is even, then entropy values are computed as

I(Cn) = −
2

n
log

1

n
− n− 2

n
log

2

n
and I∗(Cn) = −

n− 2

n− 1
log

2

n− 1
− 1

n− 1
log

1

n− 1
.

ii) If the order of Cn is odd, then entropy values are computed as

I(Cn) = −
1

n
log

1

n
− n− 1

n
log

2

n
and I∗(Cn) = log

n− 1

2
.

Proof. i) If the order of Cn is even then, its diameter is equal to n/2. Therefore, the distance matrix of Cn is presented
as follows:

D(Cn) =



0 1 2 . . . . . . n
2 . . . . . . 2 1

1 0 1
. . . . . . . . . . . . . . . . . . 2

2 1
. . . 1

. . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . . . . . . . n

2

n
2

. . . . . . . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . . . . . . . 2

2
. . . . . . . . . . . . . . . . . . . . . . . . 1

1 2 . . . . . . n
2 . . . . . . 2 1 0



.

75
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It can be seen that the distance 1 appears in diag(1), diag(n−1) in the upper triangular submatrix and in diag(n+1),
diag(2n− 1) in the lower triangular submatrix. Thus,

2n1 = |diag(1)|+ |diag(n− 1)|+ |diag(n+ 1)|+ |diag(2n− 1)| = 1 + n− 1 + n− 1 + 1 = 2n.

Also, the distance 2 appears in diag(2), diag(n− 2) in the upper triangular submatrix and in diag(n+2), diag(2n− 2)

in the lower triangular submatrix. Thus,

2n2 = |diag(2)|+ |diag(n− 2)|+ |diag(n+ 2)|+ |diag(2n− 2)| = 2 + n− 2 + n− 2 + 2 = 2n.

Generally, we obtain that 2ni = 2n for 1 ≤ i ≤ (n/2) − 1. We can investigate the frequency of the diam(Cn) = n/2.
The distance n/2 appears in diag(n/2) in the upper triangular submatrix and in diag(3n/2) in the lower triangular
submatrix. Therefore, we obtain

2n(n
2 ) =

∣∣∣diag (n
2

)∣∣∣+ ∣∣∣∣diag(3n

2

)∣∣∣∣ = n

2
+
n

2
= n.

From the matrix D(Cn), the probability distributions of distances are obtained as shown in Table 5.

Table 5: Probability distributions for the cycle graph Cn when n is even.
i 0 1 2 3 · · · n

2 − 1 n
2

Freq. n 2n 2n 2n · · · 2n n
pi

1
n

2
n

2
n

2
n · · · 2

n
1
n

p∗i 0 2
n−1

2
n−1

2
n−1 · · · 2

n−1
1

n−1

By using the definitions of the information entropies I and I∗, we obtain I(Cn) and I∗(Cn).

ii) If the order of Cn is odd, then its diameter is equal to (n− 1)/2. Thus, the distance matrix of Cn is presented as:

D(Cn) =



0 1 2 . . . . . . n−1
2

n−1
2 . . . . . . 2 1

1 0 1
. . . . . . . . . . . . . . . . . . . . . 2

2 1
. . . . . . . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . . . . n−1
2

n−1
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . n−1
2

n−1
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 2 . . . . . . n−1
2

n−1
2 . . . . . . 2 1 0



.

It is noted that the distance 1 appears in diag(1), diag(n − 1) in the upper triangular submatrix and in diag(n + 1),
diag(2n− 1) in the lower triangular submatrix. Then,

2n1 = |diag(1)|+ |diag(n− 1)|+ |diag(n+ 1)|+ |diag(2n− 1)| = 1 + n− 1 + n− 1 + 1 = 2n.

Also, the distance 2 appears in diag(2), diag(n− 2) in the upper triangular submatrix and in diag(n+2), diag(2n− 2)

in the lower triangular submatrix. Then,

2n2 = |diag(2)|+ |diag(n− 2)|+ |diag(n+ 2)|+ |diag(2n− 2)| = 2 + n− 2 + n− 2 + 2 = 2n.

This continues and finally, we compute the frequency of diam(Cn) = (n − 1)/2. The distance (n − 1)/2 appears in
diag((n−1)/2), diag((n+1)/2) in the upper triangular submatrix and in diag((3n−1)/2), diag((3n+1)/2) in the lower
triangular submatrix. Therefore,

2n(n−1
2 ) =

∣∣∣∣diag(n− 1

2

)∣∣∣∣+ ∣∣∣∣diag(n+ 1

2

)∣∣∣∣+ ∣∣∣∣diag(3n− 1

2

)∣∣∣∣+ ∣∣∣∣diag(3n+ 1

2

)∣∣∣∣ = 2n.

From the D(Cn) matrix, the probability distributions of distances is shown in Table 6.
By the definitions of the information entropies I and I∗, we obtain I(Cn) and I∗(Cn).
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Table 6: Probability distributions for the path graph Cn when n is odd.
i 0 1 2 3 · · · n−1

2

Freq. n 2n 2n 2n · · · 2n
pi

1
n

2
n

2
n

2
n · · · 2

n

p∗i 0 2
n−1

2
n−1

2
n−1 · · · 2

n−1

Theorem 3.5. The information entropies I and I∗ of the complete bipartite graph Kn
2 ,n2

of order n are given as

I(Kn
2 ,n2

) = − 1

n
log

1

n
− 1

2
log

1

2
− n− 2

2n
log

n− 2

2n
and I∗(Kn

2 ,n2
) = − n

2n− 2
log

n

2n− 2
− n− 2

2n− 2
log

n− 2

2n− 2
.

Proof. Let A = {v1, v3, . . . , vn−1} and B = {v2, v4, . . . , vn} be the bipartite sets of Kn
2 ,n2

. The distance matrix of Kn
2 ,n2

is

D(Kn
2 ,n2

) =



0 1 2 . . . 1 2 1

1 0 1 2
. . . 1 2

2 1
. . . 1

. . . . . . 1
... . . . . . . . . . . . . . . . ...

1
. . . . . . . . . . . . . . . 2

2 1
. . . . . . . . . . . . 1

1 2 1 . . . 2 1 0


.

It is noted that the distance 1 appears in diag(1), diag(3), . . . , diag(n−1) in the upper triangular submatrix and in diag(n+1),
diag(n+ 3), . . . , diag(2n− 1) in the lower triangular submatrix. Then,

2n1 = 2( |diag(1)|+ |diag(3)|+ · · ·+ |diag(n− 1)| ) = 2(1 + 3 + · · ·+ n− 1) =
n2

2
.

Also, the distance 2 appears in diag(2), diag(4), . . . , diag(n − 2) in the upper triangular submatrix and in diag(n + 2),
diag(n+ 4) , . . . , diag(2n− 2) in the lower triangular submatrix. Then,

2n2 = 2( |diag(2)|+ |diag(4)|+ · · ·+ |diag(n− 2)|) = 2(2 + 4 + · · ·+ n− 2) =
n2 − 2n

2
.

Thus, from the D(Kn
2 ,n2

) matrix, the probability distributions of distances are obtained as shown in Table 7.

Table 7: Probability distributions for the complete bipartite graph Kn
2 ,n2

.
i 0 1 2

Freq. n n2

2
n2−2n

2

pi
1
n

1
2

n−2
2n

p∗i 0 n
2n−2

n−2
2n−2

By using the definitions of the information entropies I and I∗, we obtain I(Kn
2 ,n2

) and I∗(Kn
2 ,n2

).

4. Some relations with respect to the information entropies I and I∗

In order to make some comparisons, we use majorization method [5]. We consider non-increasing arrangement of each
vector in Rn. Consider a vector x = (x1, x2, . . . , xn) ∈ Rn such that x1 ≥ x2 ≥ · · · ≥ xn.

Definition 4.1 (see [5]). For x, y ∈ Rn, x ≺ y if

G =


∑k

i=1 xi ≤
∑k

i=1 yi, i = 1, 2, . . . , n− 1∑n
i=1 xi =

∑n
i=1 yi

.

When x ≺ y, x is said to be majorized by y (or y majorizes x).
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Let p(G) = (p(v1), p(v2), . . . , p(vn)) be a probably vector of a graph G for the vertex set {v1, v2, . . . , vn} such that p(v1) ≥
p(v2) ≥ . . . ≥ p(vn) and

∑n
i=1 p(vi) = 1. Since the fuction h(x) = −x log x is a concave function for x > 0, we give an essential

theorem as used in [5] for the information entropy I(G) = −
∑n

i=1 p(vi) log p(vi).

Theorem 4.1. Let H and G be two non-isomorphic graphs of order n and p(H), p(G) be the probability vectors of H and G,
respectively. If p(H) ≺ p(G) , then the inequality I(G) ≤ I(H) holds.

If the diameter of two graphs are equal, then the distance matrices of these graphs are consisted of the same group
distances but their frequencies can be different. It implies that the entropy measures I, I∗ can be compared by majorization
method.

Lemma 4.1. LetG be a graph and u, v ∈ V (G). IfGs,t is the graph obtained fromG by attaching s, t leaves to the vertices v, u
(respectively), the information entropies of the graphsGs,t, Gs−i,t+i andGs+i,t−i (see Figure 1) are compared by the following
inequalities with fixed diameter:

i)
I(Gs−i,t+i) ≤ I(Gs,t) for 1 ≤ i ≤ s or I(Gs+i,t−i) ≤ I(Gs,t) for 1 ≤ i ≤ t.

ii)
I∗(Gs−i,t+i) ≤ I∗(Gs,t) for 1 ≤ i ≤ s or I∗(Gs+i,t−i) ≤ I∗(Gs,t) for 1 ≤ i ≤ t.

}
ts

{
v u

G

Figure 1: The graph Gs,t.

Proof. i) Assume that a leaf y is removed from v and it is attached to u. Therefore, the tree Gs−1,t+1 is obtained. Let
x = (. . . , p2(Gs,t), . . .) and x′ = (. . . , p2(Gs−1,t+1), . . .) be nonincreasing probably vectors of Gs,t andGs−1,t+1. The total
distance from y to other leaves which are incident to v is 2(s − 1). Moreover, the total distance from s − 1 leaves to
y is also 2(s− 1). It means that if y is removed from v, the frequency of the distance 2 is decreased 2(s− 1) times in
the distance matrix of Gs,t. In the graph Gs−1,t+1, the frequency of the distance 2 is increased 2t times because of the
leaf y is attached to u. Then, the difference of probabilities of the distance 2 in the distance matrices of Gs−1,t+1 and
Gs,t is

p2(Gs−1,t+1)− p2(Gs,t) =
2t

n2
− 2(s− 1)

n2
=

2t− 2s+ 2

n2
≥ 0.

It implies that x ≺ x′ and I(Gs−i,t+i) ≤ I(Gs,t) or I(Gs+i,t−i) ≤ I(Gs,t).

ii) The same argument is used for the upper triangular submatrix and so the result is obtained.

Let Pd+1 : v0v1 . . . vd be a path of order d+ 1. The graph which is obtained from Pd+1 by attaching k = n− d− 1 leaves
to i-th vertex of Pd+1 is denoted by Pd+1,i,k (see Figure 2).

v0 v1 vi vd−1

vd

n−d−1︷ ︸︸ ︷

Figure 2: The graph Pd+1,i,k.

Lemma 4.2. For 1 ≤ j < i ≤ bd2c, the following inequalities hold

i) I(Pd+1,i,k) ≤ I(Pd+1,j,k),

ii) I∗(Pd+1,i,k)) ≤ I∗(Pd+1,j,k).
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Proof. i) Assume that a leaf ywhich is attached to the i-th vertex ofPd+1 is moved on the (i+1)-th vertex ofPd+1 such that
1 < i+1 ≤ bd2c. Now, we order the distances from y to other vertices v0, v1, . . . , vd such that i+1, i, . . . , 1, 2, . . . , d−i+1 in
Pd+1,i,1, respectively. Similarly, distances from y to other vertices v0, v1, . . . , vd are ordered i+2, i+1, . . . , 1, 2, . . . , d− i
in Pd+1,i+1,1, respectively. It means that the frequencies of greater distances are decreased in the distance matrix
and the frequencies of small distances are increased. This trend continues until the leaf y arrives to the bd2c-th vertex
of the graph. Then, the probably vector of Pd+1,i,1 is majorized by the probably vector of Pd+1,i+1,1 and I(Pd+1,i+1,1) ≤
I(Pd+1,i,1). It can be generalized as I(Pd+1,i,k) ≤ I(Pd+1,j,k) for k leaves.

ii) It is obtained by the same way as used in the proof of item (i).

By Lemma 4.2, the information indices I, I∗ of trees in the family of Pn−2,i,1 for d = n − 2 and k = 1 are ordered as in
the following corollary.

Corollary 4.1. For 1 ≤ i ≤ bd2c, the information indices are ordered as follows I(Pn−2,b d2 c,1
) ≤ I(Pn−2,b d2 c−1,1

) ≤ · · · ≤
I(Pn−2,1,1) and I∗(Pn−2,b d2 c,1

) ≤ I∗(Pn−2,b d2 c−1,1
) ≤ · · · ≤ I∗(Pn−2,1,1).

The results which are obtained in the previous corollary are generalized to graphs with diameter 3 ≤ d ≤ n − 3 and
k = n− d− 1 by Lemma 4.1 and Lemma 4.2 as in the following corollary.

Corollary 4.2. Assume that the diameter d satisfies 3 ≤ d ≤ n− 3 and k = n− d− 1. The information indices are ordered
as follows I(Pd,b d2 c,k

) ≤ I(Pd,b d2 c−1,k
) ≤ · · · ≤ I(Pd,1,k) and I∗(Pd,b d2 c,k

) ≤ I∗(Pd,b d2 c−1,k
) ≤ · · · ≤ I∗(Pd,1,k).

5. Conclusion

There are many open problems concerning the entropy measures considered in this paper. The extremal trees as well as
the extremal unicyclic and bicyclic graphs can be obtained with respect to these entropy measures with different fixed
parameters. It is observed that the distribution of vertex degrees of graphs is well studied but the distribution of distances
is not studied well in the literature. The entropy measures considered in this paper are useful tools for the distribution of
distances in a graph. Also, the average distance µ(G) of a graph G is defined (see [8]) as

µ(G) =
W (G)

n(n− 1)
.

The average distance µ related to the entropy measure I∗. It seems to be an interesting problem to find relations between
µ and I∗.
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