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Abstract

The Sombor index, a recently invented vertex-degree-based graph invariant, is insensitive to the size of cycles contained
in a graph. In contrast to this, the Sombor energy, the sum of absolute values of the Sombor matrix, is found to have a
significant cycle-size dependence. In the case of bipartite graphs, this dependence is analogous to the Hückel (4n+ 2)-rule:
cycles of size 4, 8, 12, . . . decrease, and cycles of size 6, 10, 12, . . . increase the Sombor energy. A theorem corroborating
this empirical observation is offered.
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1. Introduction

Since the introduction of the concept of Sombor index [10], its chemical applications were extensively studied [1, 2, 6, 24,
28,29]. However, one chemically important property of the Sombor index, namely its dependence on the size of the cycles
contained in a (molecular) graph, was never examined. The reason for this is evident: It is easy to recognize that neither
the Sombor index nor any of the numerous other vertex-degree-based topological indices have any noteworthy cycle-size
dependence. The examples depicted in Figure 1 may suffice to corroborate this conclusion.
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Figure 1: Examples of molecular graphs whose Sombor index is independent of the size (a, b) of their cycles; n = number
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Recently, a detailed theory of degree-based matrices and the respective degree-based energies was elaborated [4,11,13,
17,23,32]. Within this theory, also the concept of Sombor matrix and Sombor energy was introduced [7,12,15,19,34]. In this
paper, we show that, in contrast to the Sombor index, the Sombor energy possesses a pronounced cycle-size dependence.
In particular, we establish the existence of a Hückel-rule-type regularity for the Sombor energy.

Recall that the famous Hückel (4n + 2)-rule claims that cycles of size 6, 10, 14, . . . stabilize, whereas cycles of size 4,
8, 12, . . . destabilize a cyclic conjugated π-electron system [8, 18, 20, 21, 27]. In terms of graph energy [5, 14, 22] or other
eigenvalue-based topological indices [30], cycles of size 4, 8, 12, . . . have a positive (increasing) effect on graph energy,
whereas the effect of 4, 8, 12, . . . cycles is negative. In what follows, we demonstrate that an analogous regularity holds
for the Sombor energy. A characteristic example is shown in Figure 2.

2. Mathematical introduction

LetG be a simple graph with vertex set V(G) and edge set E(G). Because we are interested in effects caused by even cycles,
it will be assumed that G is connected and bipartite and, of course, contains at least one cycle. Recall that in bipartite
graphs, the size of all cycles is even.

If the vertices u, v ∈ V(G) are adjacent, then the edge connecting them is denoted by uv. The number of edges incident
to a vertex v is the degree of vertex v, and is denoted by dv.
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Figure 2: The Sombor energy of the unicyclic graph Xa,b , a+ b = 16, plotted versus the size a of its cycle.

The Sombor index is defined as [10]
SO = SO(G) =

∑
uv∈E(G)

√
d2u + d2v .

Bearing this in mind, if V(G) = {v1, v2, . . . , vn} is the vertex set of the graph G, then its Sombor matrix ASO(G) = (aSO)ij

is the symmetric matrix of order n, whose elements are

(aSO)ij =


√
d2vi + d2vj if vivj ∈ E(G)

0 if vivj 6∈ E(G)

0 if i = j .

If the eigenvalues of ASO(G) are λ1, λ2, . . . , λn, then the Sombor energy of the graph G is defined as

ESO = ESO(G) =
n∑
i=1

|λi| .

For the hitherto established properties of the Sombor energy see [7,12,15,19,34].

3. Numerical work

In order to get an idea on the cycle-size dependence of the Sombor energy, we calculated the ESO-values of several classes
of molecular graphs, in which the size of the cycles varies. In Tables 1 and 2 are presented such results for the graphs X,
Y , and Z, depicted in Figure 1.

Table 1: Sombor energies of the unicyclic graphsXa,b whose structure is found in Figure 1. The Hückel-rule-type dependence
on cycle size is clearly visible.

number of size of number of size of
vertices cycle ESO(X) vertices cycle ESO(X)

8 4 27.392 12 8 43.132
8 6 30.984 12 10 45.006
10 4 34.662 14 4 49.145
10 6 38.121 14 6 52.462
10 8 35.895 14 8 50.365
12 4 41.910 14 10 52.154
12 6 45.285 14 12 50.737
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I. Gutman and I. Redžepović / Discrete Math. Lett. 9 (2022) 67–71 69

Table 2: Sombor energies of bicyclic graphs Ya,b and Za,b whose structure is found in Figure 1. A Hückel-rule-type
dependence can be envisaged, but is somewhat less pronounced than in the case of Xa,b.

number of sizes of number of sizes of
vertices cycles ESO(Y ) vertices cycles ESO(Z)

8 4,4 30.658 8 4,6 33.914
10 4,6 40.038 10 4,8 40.986
12 4,8 46.162 10 6,6 43.638
12 6,6 51.284 12 4,10 48.165
14 4,10 54.172 12 6,8 49.260
14 6,8 56.018 14 4,12 55.394

14 6,10 57.670
14 8,8 56.028

4. A theorem on cycle dependence of Sombor energy

The Sombor matrix ASO(G) can be viewed as the adjacency matrix of an ordinary graph with appropriately weighted
edges. Let, thus, G be a bipartite graph, such that its edge e = uv has a weight w(e) = w(uv). Recall that in our case,
w(uv) =

√
d2u + d2v > 0.

Since G is bipartite, its characteristic polynomial of G has the form [3,19]

φ(G,λ) =
∑
k≥0

(−1)k b(G, k)λn−2k

so that all its coefficients b(G, k) are non-negative. According to the Sachs theorem [3,19,25,31]

(−1)k b(G, k) =
∑

σ∈S2k(G)

(−1)p(σ) 2c(σ) w(σ) (1)

where Sk(G) is the set of all Sachs graphs of G possessing exactly 2k vertices, and where σ is an element of S2k(G),
containing p(σ) components, of which c(σ) are cycles. The weight w(σ) of the Sachs graph σ is equal to the product of the
weights of its components. If the isolated edge uv (consisting of two vertices) is a component of σ, then its weight is w2

uv. If
a cycle Z is a component of σ, then its weight is the product of weights of its edges [21,31].

The energy of the weighted bipartite graph G, i.e., the sum of the absolute values of its eigenvalues, is related with the
coefficients of the characteristic polynomial by means of the Coulson integral formula [9,22]

E(G) = 2

π

∞∫
0

dx

x2
ln
∑
k≥0

b(G, k)x2k (2)

which means that the energy is a monotonically increasing function of each of the coefficients.
Let Z be a cycle of the graphG, and let its size be h, an even number. Label the edges of Z consecutively by e1, e2, . . . , eh.

We are interested in the effect of the cycle Z on the energy of the graph G. In view of the Sachs and Coulson formulas (1)
and (2), this effect will manifest itself via the Sachs graphs which contain Z.

Let σ1 ∈ S2k(G) be a Sachs graph containing the cycle Z. Then the components of σ1, other than Z form a Sachs graph
σ∗ ∈ S2k−h(G− Z). It holds,

p(σ1) = 1 + p(σ∗)

c(σ1) = 1 + c(σ∗)

w(σ1) = w(Z) · w(σ∗)

which by Equation (1) yields∑
σ1

(−1)p(σ) 2c(σ) w(σ) = −2w(Z)
∑
σ∗

(−1)p(σ) 2c(σ) w(σ) = −2w(Z) (−1)k−h/2 b(G− Z, k − h/2) . (3)

If there is a Sachs graph σ1, then there must exist another Sachs graph σ2 which instead of the cycle Z contains the
edges e1, e3, . . . , eh−1. There also must exist a Sachs graph σ3 containing the edges e2, e4, . . . , eh. For them,

p(σ2) = h/2 + p(σ∗)
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c(σ2) = c(σ∗)

w(σ2) = w(e1)
2 w(e3)

2 · · ·w(eh−1)2 · w(σ∗)

p(σ3) = h/2 + p(σ∗)

c(σ3) = c(σ∗)

w(σ3) = w(e2)
2 w(e4)

2 · · ·w(eh)2 · w(σ∗)

and, in an analogous manner as above∑
σ2

(−1)p(σ) 2c(σ) w(σ) = (−1)h/2 w(e1)2 w(e3)2 · · ·w(eh−1)2 (−1)k−h/2 b(G− Z, k − h/2) (4)

and ∑
σ3

(−1)p(σ) 2c(σ) w(σ) = (−1)h/2 w(e2)2 w(e4)2 · · ·w(eh)2 (−1)k−h/2 b(G− Z, k − h/2) . (5)

The total effect of the cycle Z on the coefficient b(G, k) is thus

ef(G,Z) = (−1)k
∑

σ1,σ2,σ3

(−1)p(σ) 2c(σ) w(σ)

which by taking into account Equations (3)–(5) yields

ef(G,Z) =
[
w(e1)

2 w(e3)
2 · · ·w(eh−1)2 + w(e2)

2 w(e4)
2 · · ·w(eh)2 − 2(−1)h/2 w(Z)

]
b(G− Z, k − h/2) .

Bearing in mind that w(Z) = w(e1)w(e2) · · ·w(eh−1)w(eh),

ef(G,Z) =

[(
w(e1)w(e3) · · ·w(eh−1)

)2
+
(
w(e2)w(e4) · · ·w(eh)

)2
± 2w(e1)w(e2) · · ·w(eh)

]
b(G− Z, k − h/2)

=
[
w(e1)w(e3) · · ·w(eh−1)± w(e2)w(e4) · · ·w(eh)

]2
b(G− Z, k − h/2) .

We now arrive at our main result:

Theorem 4.1. (a) If the size h of the cycle Z contained in the bipartite graph G is divisible by 4, i.e., if h/2 is even, then the
respective energy effect is

ef(G,Z) =
[
w(e1)w(e3) · · ·w(eh−1)− w(e2)w(e4) · · ·w(eh)

]2
b(G− Z, k − h/2) .

(b) If the size h of the cycle Z contained in the bipartite graph G is not divisible by 4, i.e., if h/2 is odd, then the respective
energy effect is

ef(G,Z) =
[
w(e1)w(e3) · · ·w(eh−1) + w(e2)w(e4) · · ·w(eh)

]2
b(G− Z, k − h/2) .

By Theorem 4.1, ef(G,Z) ≥ 0 for all edge-weighted bipartite graphs G and all their cycles Z. This means that all cycles
increase the value of the coefficients b(G, k) and thus, by Equation (2), increase the value of E(G). However, in the case of
cycles of size 4, 8, 12, . . . , this increasing effect is smaller than for the cycles of size 6, 10, 14, . . . , and may be equal to zero.
Needless to say that these conclusions apply also to the Sombor energy ESO.

One should note that the validity of both Theorem 4.1 and its proof are restricted to bipartite graphs. Their extension
to even cycles in non-bipartite graphs seems to be not easy and remains a task for the future.

Since the term b(G−Z, k−h/2) is non-negative, and since (in our case) all edge-weights are positive-valued, Theorem 4.1
is in good agreement with the empirically observed fact that the Sombor energy has a Hückel-rule-type cycle-dependence.
Yet, it should not be considered as a proper proof of this Hückel-rule-type cycle-dependence.

5. A historical remark

This paper is dedicated to Professor Nenad Trinajstić. Therefore, it should be noted that studies related to the Hückel rule
were the topics of Trinajstić’s earliest researches, published exactly half a century ago [16, 26]. Also later, he remained
interested in problems of this kind (e.g., [8, 20, 33]). The paper [16] happens to be the first scientific publication of one of
the present authors (I.G.), who then was one of Professor Trinajstić’s first students.
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[33] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1983; 2nd Revised Edition, 1992.
[34] Z. Wang, Y. Mao, I. Gutman, J. Wu, Q. Ma. Spectral radius and energy of Sombor matrix of graphs, Filomat 35 (2021) 5093–5100.

71


	Introduction
	Mathematical introduction
	Numerical work
	A theorem on cycle dependence of Sombor energy
	A historical remark

