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Abstract
Let f(x, y) (f(x)) be a symmetric real function (real function) and G = (V,E) be a graph. Denote by di the degree of a vertex
i in G. The graphical function-index TIf (G) (Hf (G)) of G with edge-weight (vertex-weight) function f(x, y) (f(x)) is defined
as TIf (G) =

∑
uv∈E f(du, dv) (Hf (G) =

∑
u∈V f(du)). We can also get a weighted adjacency matrix from the edge-weighted

graph, i.e., Af (G) = (af
ij) where af

ij = f(di, dj) if vertices i and j are adjacent in G, and 0 otherwise. This matrix is simply
referred to as the f -weighted adjacency matrix. One can see that the concepts of graphical function-indices and f -weighted
adjacency matrix can cover all the degree-based graphical indices and degree-based adjacency matrices of graphs, such as
the Zagreb indices, Randić index, ABC-index, etc., and the Randić matrix, ABC-matrix, GA-matrix, etc. So, for the graphical
function-indices TIf (G) and Hf (G) and the f -weighted adjacency matrix Af (G) of a graph G, one can think about finding
unified ways to study the extremal problems and spectral problems. This survey is intended to sum up the results done so
far on these problems.
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1. Notation and terminology

First, we give the necessary notation and terminology which will be used throughout this paper. We only consider simple
and finite graphs in this paper. For notation and terminology not defined here, we refer the reader to [4,45]. We use V (G)

and E(G) to denote the vertex-set and edge-set of a graph G, respectively. A graph G is called k-regular if the degree
d(v) = k for every v ∈ V (G). Denote the degree of a vertex v in G also by dv. An (n,m)-graph is a graph G = (V (G), E(G)),
where m = |E(G)| and n = |V (G)|. Let G(n,m) represent the collection of all (n,m)-graphs, G(n) represent the collection
of all graphs with n vertices but without isolated vertices. We denote by ∆ and δ the maximum degree and minimum
degree of G, respectively. A graph G is called almost regular if ∆ − δ ≤ 1 and G(n,m) is the family of all almost regular
(n,m)-graphs. Note that for an (n,m)-graph G, if we let k = b2m/nc and r = 2m− kn ∈ {0, 1, . . . , n− 1}, then G belongs to
G(n,m) if and only if G has r vertices of degree k and n− r vertices of degree k + 1.

As usual, let A(G) = (aij) denote the adjacency matrix of G, where

aij =

1 if i and j are adjacent in G,

0 otherwise.

Then, A(G) is a symmetric (0, 1)-matrix, and therefore all its eigenvalues are real numbers, say µ1, µ2, · · · , µn. The spectral
radius of A is ρ(A) = max1≤i≤n |µi|.

For k graphs G1, G2, . . . , Gk, the union G1 ∪G2 ∪ · · · ∪Gk is the graph with vertex-set V (G1) ∪ V (G2) ∪ · · · ∪ V (Gk) and
edge-set E(G1)∪E(G2)∪· · ·∪E(Gk). In particular, if G1 = G2 = · · · = Gk = G, we denote G1∪G2∪· · ·∪Gk by kG. The join
G ∨H of two graphs G and H is the graph obtained by joining edges between each vertex of G to all vertices of H. We use
Cn, Pn and Sn to denote a cycle, a path and a star on n vertices, respectively. Sd,n−d represents a double star on n vertices
with degrees of the two centers equal to d and n− d, respectively.

2. Background

Nowadays, chemical graph theory has become a popular and important subject of study. In the mathematics subject
classification 2020, “chemical graph theory” is given a subject number 05C92 in “05C Graph theory”. Also, “graphical

∗In memory and honor of Professor Nenad Trinastić.
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indices (Wiener index, Zagreb index, Randić index, etc.)” is given an independent subject number 05C09. The popular
book [45] should be considered as one of the pioneer works on chemical graph theory.

There are many chemical indices [42], such as the first Zagreb index M1 =
∑
u∈V (G) d

2
u or

∑
uv∈E(G)(du + dv) [21],

the second Zagreb index M2 =
∑
uv∈E(G) dudv [21], the Randić index χ =

∑
uv∈E(G)(dudv)

−1/2 [40], and the Wiener
index W =

∑
{u,v}⊂V (G) dist(u, v), where dist(u, v) is the distance between u and v. Usually, these chemical indices are

classified into some categories: degree-based, distance-based, subgraph counting-based, eigenvalue-based, mixed, etc. In
this survey, we are only concerned with the degree-based indices. We list some of the degree-based indices in Table 1; for
more such indices, we refer to [18, 20, 33]. In the past years, a lot of work have been done on these degree-based indices;
see [2,3,7,14,17,21,22,24,25,28,29,34,41,49] and the references therein.

Table 1: Some edge-weight functions and related chemical indices.

f(x, y) Name

x+ y First Zagreb index
xy Second Zagreb index

(x+ y)2 First hyper-Zagreb index
(xy)2 Second hyper-Zagreb index

x−3 + y−3 Modified first Zagreb index
|x− y| Albertson index

(x/y + y/x)/2 Extended index
(x− y)2 Sigma index
1/
√
xy Randić index

√
xy Reciprocal Randić index

1/
√
x+ y Sum-connectivity index

√
x+ y Reciprocal sum-connectivity index

2/(x+ y) Harmonic index√
(x+ y − 2)/(xy) ABC index

[xy/(x+ y − 2)]3 Augmented Zagreb index
x2 + y2 Forgotten index
x−2 + y−2 Inverse degree

2
√
xy/(x+ y) Geometric-arithmetic index

(x+ y)/2
√
xy Arithmetic-geometric index

xy/(x+ y) Inverse sum index
x+ y + xy First Gourava index
(x+ y)xy Second Gourava index

(x+ y + xy)2 First hyper-Gourava index
[(x+ y)xy]2 Second hyper-Gourava index

1/
√
x+ y + xy Sum-connectivity Gourava index√
(x+ y)xy Product-connectivity Gourava index√
x2 + y2 Sombor index
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From Table 1, one can see that these chemical indices have the following unified definition. Let f(x, y) be a symmetric real
function and G be a graph. The degree-based topological index or chemical index can be defined as

TIf (G) =
∑

uv∈E(G)

f(du, dv),

which was mentioned by Gutman in [19]. This was also called the bond-incident-degree index BID(G) by Vukičević and
Durdević in [46]. We also address it as the graphical function-index of a graph with edge-weight function f(x, y). This
topological index can also be represented as TIf (G) =

∑
(i,j)∈K mijf(i, j), where mij is the number of edges between a

vertex of degree i and a vertex of degree j and K = {(i, j) ∈ N : 1 ≤ i ≤ j ≤ n−1}. For a family G of graphs, we call a graph
G minimal in G if TIf (G) = minH∈G TIf (H), and maximal in G if TIf (G) = maxH∈G TIf (H).

Another graphical function-index introduced by Linial and Rozenman in [36] is defined as follows. Let f(x) be a real
function. The graphical function-index Hf (G) of G with vertex-weight function f(x) is defined as

Hf (G) =
∑

u∈V (G)

f(du).

Notice that by taking the symmetric real function f(x, y) equal to f(x)/x + f(y)/y for some real function f(x), one can
deduce that Hf (G) is a special case of TIf (G).

One can see that from a graphical index, one gets a number from an edge-weighted or vertex-weighted graph, i.e., each
index maps a molecular graph to a single number, which hopefully represents the structure of the graph. We often get the
conclusion that for any graphical index φ, it is almost sure (with high probability) that for every graph G there is another
graph G′ such that φ(G′) = φ(G) but G′ is not isomorphic to G. This is a sad news for people trying to invent graphical
indices that can distinguish among graph structures. Nevertheless, if we use a matrix to represent the structure of a
molecular graph with weights separately distributed on its pairs of adjacent vertices, it will completely keep the structural
information of the graph, i.e., a matrix keeps much more structural information than an index. This motivates us to
introduce the following notion of matrix. Let f(x, y) be a symmetric real function, and denote by di the degree of a vertex
i in G. Then a weighted adjacency matrix Af (G) of G is defined in [12] as follows: the ij-entry of Af (G) is

Af (G)(i, j) =

f(di, dj), ij ∈ E(G),

0, otherwise.

So, we get a symmetric real matrix, and call it the function-weighted adjacency matrix ofG, or simply f -weighted adjacency
matrix, with edge-weight function f(x, y). All the eigenvalues of Af (G) are real, say λ1, λ2, · · · , λn and the spectral radius
is ρ(Af (G)) = max1≤i≤n |λi|.

Although the study on the graphical function-indices TIf and Hf , and on the f -weighted adjacency matrix Af has
started only in recent years, there have been quite a few publications about them. So, after the above preparations, we are
going to survey the results that we know in this direction. Though Hf can be reduced to a TIf , we give separate surveys
to them because Hf has its own advantages due to the real function f(x) with only a single variable.

3. Results on the graphical function-index Hf(G)

Before proceeding, we need more notation and terminology as given below.
Given a real function f(x), let f1(x) = f(x + 1) − f(x) and f11 = (f1)1. We say that f is convex (concave) if f11 ≥ (≤)0,

and f is strictly convex (concave) if f11 > (<)0.
Recently, Tomescu in [43,44] studied Hf (G) for a convex function f . He gave some upper bounds for the function-index

Hf (G) and the function f is required to satisfy some other properties except for the convexity. These results are stated as
follows.

Theorem 3.1. [43] If G ∈ G(n,m) maximizes (minimizes)Hf (G) where f(x) is strictly convex (concave), then G has at most
one nontrivial connected component C and C has a vertex of degree |V (C)| − 1.

Theorem 3.2. [44] Let n ≥ 2 and G ∈ G(n,m) such that 1 ≤ m ≤ n− 1. If f(x) is a strictly convex function having property
that f(x) is differentiable and its derivative is strictly convex, then it holds that

Hf (G) ≤ f(m) +mf(1) + (n−m− 1)f(0),

with equality if and only if G = Sm+1 ∪ (n−m− 1)K1.
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Theorem 3.3. [44] If n ≥ 3, n ≤ m ≤ 2n − 3, f(x) is a strictly convex function having property that f(x) is differentiable
and its derivative is strictly convex, and G ∈ G(n,m) is connected, then it holds that

Hf (G) ≤ f(n− 1) + f(m− n+ 2) + (m− n+ 1)f(2) + (2n−m− 3)f(1),

with equality if and only if G = K1 ∨ (K1,m−n+1 ∪ (2n−m− 3)K1) (see Figure 1).

. . . . . .

K1 ∨ (K1,n−m+1 ∪ (2n−m− 3)K1)Figure 1: The maximal graph K1 ∨ (K1,m−n+1 ∪ (2n−m− 3)K1) in Theorem 3.3.

As one can see, Tomescu’s results are all about the upper bounds of Hf (G). Ali et al. in [1] gave the following lower
bound for connected (n,m)-graphs with fewer edges.

Theorem 3.4. [1] Let n ≥ 4 and n + 1 ≤ m ≤ 3n/2. If f(x) is a convex (concave) function, then among all connected
(n,m)-graphs, the graphs G in G(n,m) minimize Hf (G).

Let f be a strictly convex function. Recently, we proved in [27] that the extremal graphs are exactly the almost regular
graphs, which covers the result of Ali et al.

Theorem 3.5. [27] Let n ≥ 2 and G be an (n,m)-graph with 1 ≤ m ≤ n(n− 1)/2, and let k = b2m/nc and r = 2m− kn. If
f is a strictly convex function, then it holds that

Hf (G) ≥ rf(k + 1) + (n− r)f(k),

and the equality holds if and only if G ∈ G(n,m).

Note that graphs in G(n,m) can be disconnected (see Figure 2). We then constructed connected graphs to show the
following result.

v1 v2 v3 . . . vn−1 vn

v1
v2

v3

vn−2

vn−1 vn

Figure 2: Some connected and disconnected almost regular graphs when m = n− 1.

Theorem 3.6. [27] Let n ≥ 2 and G be a connected (n,m)-graph with n − 1 ≤ m ≤ n(n− 1)/2, and let k = b2m/nc and
r = 2m− kn. If f is a strictly convex function, then it holds that

Hf (G) ≥ rf(k + 1) + (n− r)f(k),

and the equality holds if and only if G is connected and G ∈ G(n,m).

Actually, in [27] we also elaborated some algorithms to generate all the minimal graphs and minimal connected
graphs, respectively. It is easy to see that G(n,m) 6= ∅, that is, there always exists a graph G with degree sequence
d = (d1, d2, . . . , dn) where di = k + 1 and dj = k for 1 ≤ i ≤ r and r + 1 ≤ j ≤ n. In fact, it is easy to see that the degree
sequence is graphical simply by verifying the conditions in [23]. At first, we give an algorithm to construct some connected
graphs with this degree sequence.
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Algorithm 1 Find an (n,m)-graph G with degree sequence d = (d1, d2, . . . , dn) where di = k + 1 and dj = k for 1 ≤ i ≤ r
and r + 1 ≤ j ≤ n.
Input: E(0) = ∅, d(0)′ = d and V (0)′ = (v

(0)′

1 , v
(0)′

2 , . . . , v
(0)′

n ).
Output: An (n,m)-graph G = (V (l), E(l−1)) with degree sequence d = (d1, d2, . . . , dn) where di = k + 1 and dj = k for

1 ≤ i ≤ r and r + 1 ≤ j ≤ n.
1: Set l = 1.
2: Find a permutation σ, such that σd(l−1)′ = (d

(l)
1 , d

(l)
2 , . . . , d

(l)
n ) is non-increasing for d(l−1)′ = (d

(l−1)′
1 , d

(l−1)′
2 , . . . , d

(l−1)′
n ).

Denote σV (l−1)′ = (v
(l)
1 , v

(l)
2 , . . . , v

(l)
n ) = V (l).

3: if d(l)1 6= 0 then
4: Set E(l) = E(l−1) ∪ {v(l)1 v

(l)
j |j = 2, 3, . . . , d

(l)
1 + 1} and d(l)′ = (0, d

(l)
2 − 1, . . . , d

(l)

d
(l)
1 +1

− 1, d
(l)

d
(l)
1 +2

, . . . , d
(l)
n ).

5: else go to 7.
6: Set l = l + 1 and go to 2.
7: return G = (V (l), E(l−1)).

By choosing different permutations σ in Algorithm 1, we can obtain some connected (n,m)-graphs G ∈ G(n,m) which
minimize the value of Hf (G) for every pairs of n and m. However, from [38] we can get the following algorithm, which can
generate all graphs of G(n,m).

Algorithm 2 Find all (n,m)-graphs with degree sequence d = (d1, d2, . . . , dn) where di = k+ 1 and dj = k for 1 ≤ i ≤ r and
r + 1 ≤ j ≤ n.
Input: n, m and d = (d1, d2, . . . , dn) where di = k + 1 and dj = k for 1 ≤ i ≤ r and r + 1 ≤ j ≤ n.
Output: G(n,m) for any given n and m.
1: Construct a complete n-partite graph H = (P1, P2, . . . , Pn), such that each Pi for 1 ≤ i ≤ r has k + 1 vertices and each
Pj for r + 1 ≤ j ≤ n has k vertices.

2: Find all perfect matchings in H, denoted by {M1,M2, . . . ,Ml}.
3: Set G(n,m) = ∅ and s = 1.
4: while s ≤ l do
5: Construct a new graph Gs with vertex-set {p1, p2, . . . , pn} and pi ∼ pj if and only if there is an edge between Pi and
Pj in Ms.

6: if Gs does not have multiple edges and Gs � G for any G ∈ G(n,m) then
7: Set G(n,m) = G(n,m)

⋃
{Gs}.

8: else G(n,m) = G(n,m).
9: Set s = s+ 1 and go to 4.

10: return G(n,m).

Note that to check that Gs � G for any G ∈ G(n,m) is a very hard nut to crack. Although this algorithm can be used to
generate all graphs of G(n,m), it cannot guarantee the existence of any graph in G(n,m).

The following Algorithm 3 (similar to Algorithm 2) can be used to find all connected graphs in G(n,m).

Algorithm 3 Find all connected (n,m)-graphs with degree sequence d = (d1, d2, . . . , dn) where di = k + 1 and dj = k for
1 ≤ i ≤ r and r + 1 ≤ j ≤ n.

Input: n, m and d = (d1, d2, . . . , dn) where di = k + 1 and dj = k for 1 ≤ i ≤ r and r + 1 ≤ j ≤ n.
Output: All connected graphs in G(n,m) for any given n and m, denoted by G∗(n,m).
1: Construct a complete n-partite graph H = (P1, P2, . . . , Pn), such that each Pi for 1 ≤ i ≤ r has k + 1 vertices and each
Pj for r + 1 ≤ j ≤ n has k vertices.

2: Find all perfect matchings in H, denoted by {M1,M2, . . . ,Ml}.
3: Set G∗(n,m) = ∅ and s = 1.
4: while s ≤ l do
5: Construct a new graph Gs with vertex-set {p1, p2, . . . , pn} and pi ∼ pj if and only if there is an edge between Pi and
Pj in Ms.

6: if Gs is connected with no multiple edges and Gs � G for any G ∈ G∗(n,m) then
7: Set G∗(n,m) = G∗(n,m)

⋃
{Gs}.

8: else G∗(n,m) = G∗(n,m).
9: Set s = s+ 1 and go to 4.

10: return G∗(n,m).
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Note that although Algorithm 3 can be used to generate all connected graphs of G(n,m), it cannot guarantee the exis-
tence of any connected graph in G(n,m).

Remark 3.1. As one can see, there are still problems that are left unsolved for the extremal structures on Hf ; for examples,
if we consider graphs with more edges, i.e., m ≥ 2n− 2 edges, what will happen about the maximal graphs in G(n,m) ?

4. Results on the graphical function index TIf(G)

Rada and Cruz in [39] obtained some extremal results for graphs in G(n) with n vertices but without isolated vertices. For
a topological index TIf with an associated function g(i, j) = ijf(i,j)

i+j , define the sets

Kmin(g) = {(r, s) ∈ K : g(r, s) = min g(i, j)}

and
Kmax(g) = {(r, s) ∈ K : g(r, s) = max g(i, j)},

and the complements of Kmin(g) and Kmax(g) in K are denoted by Kc
min(g) and Kc

max(g), respectively. Their results are
stated as follows.

Theorem 4.1. [39] Let g(i, j) = ijf(i,j)
i+j . Then for every G ∈ G(n),

n

(
min

(i,j)∈K
g(i, j)

)
≤ TIf (G) ≤ n

(
max

(i,j)∈K
g(i, j)

)
,

Moreover, equality on the left-hand side occurs if and only ifmpq = 0 for all (p, q) ∈ Kc
min(g), while equality on the right-hand

side occurs if and only if mrs = 0 for all (r, s) ∈ Kc
max(g).

Theorem 4.2. [39] Let g(i, j) = ijf(i,j)
i+j . Assume Kmin(g) = {(1, 1)} and n is odd. If g(1, 2) < g(i, j) for all (i, j) ∈ K such

that (i, j) /∈ {(1, 1), (1, 2)}, Then for every G ∈ G(n),

TIf (G) ≥ (n− 3)g(1, 1) + 3g(1, 2),

and equality occurs if and only if G = n−3
2 K2 ∪ P3 (see Figure 3).

. . .

n−3
2

K2 ∪ P3

Figure 3: The minimal graph in Theorem 4.2.

Theorem 4.3. [39] Let g(i, j) = ijf(i,j)
i+j . Assume that Kmax(g) = {(1, 1)} and n is odd.

1. If g(1, 2) ≥ g(2, 2) ≥ g(i, j) for all (i, j) ∈ K such that (i, j) /∈ {(1, 1), (1, 2), (2, 2)}, then

TIf (G) ≤ (n− 3)g(1, 1) + 3g(1, 2)

for all graphs G ∈ G(n), and equality occurs if and only if G = n−3
2 K2 ∪ P3 (see Figure 4).

2. If g(2, 2) ≥ g(1, 2) ≥ g(i, j) for all (i, j) ∈ K such that (i, j) /∈ {(1, 1), (1, 2), (2, 2)}, then

TIf (G) ≤ (n− 3)g(1, 1) + 3g(2, 2)

for all graphs G ∈ G(n), and equality occurs if and only if G = n−3
2 K2 ∪ C3 (see Figure 4).

3. If g(1, 2) = g(2, 2) ≥ g(i, j) for all (i, j) ∈ K such that (i, j) /∈ {(1, 1), (1, 2), (2, 2)}, then

TIf (G) ≤ (n− 3)g(1, 1) + 3g(1, 2) = (n− 3)g(1, 1) + 3g(2, 2)

for all graphs G ∈ G(n), and equality occurs if and only if G = n−3
2 K2 ∪ P3 or n−3

2 K2 ∪ C3.
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. . .

n−3
2

K2 ∪ P3

. . .

n−3
2

K2 ∪ C3

Figure 4: The maximal graphs in Theorem 4.3.

Later, Cruz and Rada in [9] obtained some extremal results for trees with the weight function being an exponential
type. Let Tn be the set of all trees on n vertices. It is well known that Pn and Sn are extremal graphs with respect to most
of graphical indices over Tn, as we can see in Table 2 from [5,13,15,16,34,35,47,48,51,52].

Table 2: Extremal trees for some graphical indices.
M1 M2 χ H GA SC ABC AZ

minimal tree Pn Pn Sn Sn Sn Sn ? Sn
maximal tree Sn Sn Pn Pn Pn Pn Sn Sbn/2−1c,dn/2−1e (n ≥ 19)

The exponential of TIf is defined as the edge-weighted topological index eTIf induced by

eTIf (G) =
∑

uv∈E(G)

ef(du,dv).

The results of exponential topological indices from [8,9,11,50] are summarized in Table 3.

Table 3: Extremal trees for some graphical function-indices with weight-functions being exponential types.
eM1 eM2 eχ eH eGA eSC eABC eAZ

minimal tree Pn Pn Sn Sn Sn Sn ? Sn
maximal tree Sn Sbn/2−1c,dn/2−1e Pn Pn Pn Pn Sn Sbn/2−1c,dn/2−1e

One can see that the above know results are only about graphs on n vertices but without given number m of edges, or
about functions f(x, y) of exponential type. Recently, we studied graphs with n vertices and m edges, and with much more
general functions f(x, y). Before proceeding to summarizing our results, we need the following notation and terminology
about the edge-weight function f(x, y). Let f1(x, y) = f(x+ 1, y)− f(x, y) and f2(x, y) = f(x, y + 1)− f(x, y). Naturally, let
f11 := (f1)1 and f12 := (f1)2. f(x, y) is called (strictly) monotonically increasing if f1 is non-negative (no-positive). Notice
that if f(x, y) is partial differentiable and ∂f

∂x is positive (non-negative), then f1 is positive (non-negative). The convexity of
a real function is stated as follows: f(x, y) is called convex if for any (x1, y1), (x2, y2) and µ ∈ (0, 1), f(µx1 + (1− µ)x2, µy1 +

(1 − µ)y2) ≤ µf(x1, y1) + (1 − µ)f(x2, y2). Notice that the convexity of f implies that f11 ≥ 0. The following properties of
a function will frequently appear. We say that a function f(x, y) has the property P (P ′) if for any x1 + y1 = x2 + y2 and
|x1−y1| > |x2−y2|, f(x1, y1) > (<) f(x2, y2). It is not difficult to see that a symmetric and convex function has the property
P .

Recently, we studied the extremal problems in [26] for TIf in graph family G(n,m) consisting of graphs with n vertices
and m edges, and got the following results.

Theorem 4.4. [26] Let n and m be integers such that n ≥ 2 and 1 ≤ m ≤ n(n − 1)/2. If f(x, y) is convex and partial
differentiable with ∂f

∂x ≥ 0, then we have
TIf (G) ≥ mf(2m/n, 2m/n)

for any (n,m)-graph G, and the bound is sharp since all regular graphs can achieve the lower bound.

For graphs with very few edges, we got the following results.

Theorem 4.5. [26] Let n and m be integers such that n ≥ 2 and 1 ≤ m ≤ n/2. If f(x, y) is symmetric and f1 > 0, then for
any (n,m)-graph G, we have TIf (G) ≥ mf(1, 1), and the equality holds if and only if G = mK2 ∪ (n− 2m)K1 (see Figure 5).

Notice that these minimal graphs are all almost regular graphs. Next, for graphs with a little more edges, we have the
following result.
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mK2 ∪ (n− 2m)K1

. . .. . .

Figure 5: The maximal graph mK2 ∪ (n− 2m)K1 in Theorem 4.5.

Theorem 4.6. [26] Suppose n and m are integers such that n ≥ 2 and n/2 ≤ m ≤ n − 1. If f(x, y) satisfies that f1 > 0,
f11 > 0, f12 ≥ 0 and f(1, 3) > f(2, 2), then every minimal graph in G(n,m) is an almost regular graph. Moreover, if
f(1, 1) + f(2, 2) = 2f(1, 2), then every almost regular graphs is also a minimal graph in G(n,m).

For a nontrivial component G1 of a graph G, a vertex v is a universal vertex in G1 if dv = |V (G1)| − 1. In this situation,
the maximal graphs have the following property.

Theorem 4.7. [26] Suppose n and m are integers such that n ≥ 2 and 1 ≤ m ≤ n(n − 1)/2. If f(x, y) has the property P
and satisfies that f1 > 0 and f11 > 0, then the maximal graphs in G(n,m) have exactly one nontrivial component, and the
component has a universal vertex.

When m ≤ n− 1, the unique maximal graph is the union of a star and some isolated vertices.

Theorem 4.8. [26] Suppose n andm are integers such that n ≥ 2 and 1 ≤ m ≤ n−1. LetG be an (n,m)-graph. If f(x, y) has
the property P and satisfies f1 > 0, then TIf (G) ≤ mf(1,m), and the equality holds if and only if G = K1,m ∪ (n−m− 1)K1.

When m is larger, the unique maximal graph among all connected (n,m)-graphs with fewer edges is shown as follows.

Theorem 4.9. [26] Suppose n and m are integers such that n ≥ 3 and n− 1 ≤ m ≤ 2n− 3. Let γ = m− n+ 1 and Gc(n,m)

be the family of connected graphs with n vertices and m edges. If f(x, y) has the property P and satisfies that f1 > 0, f11 > 0

and f111 ≥ 0, then we have that for anyG ∈ Gc(n,m), TIf (G) ≤ (n−γ−2)f(n−1, 1)+γf(n−1, 2)+γf(γ+1, 2)+f(n−1, γ+1),
and the equality holds if and only if G = K1 ∨ (K1,γ ∪ (n− γ − 2)K1) (see Figure 6).

. . . . . .

K1 ∨ (K1,n−m+1 ∪ (2n−m− 3)K1)Figure 6: The maximal graph K1 ∨ (K1,γ ∪ (n− γ − 2)K1 in Theorem 4.9.

Remark 4.1. Similarly as one can see, there are still problems that are left unsolved for the extremal structures on TIf , for
examples, if we consider graphs with more edges, i.e., m ≥ 2n − 2 edges, what will happen about the maximal graphs in
G(n,m) ?

5. Extremal spectral radius results on the f -weighted adjacency matrix Af

The spectral properties, such as spectral radius, maximum and minimum eigenvalues, energy, etc. should be studied for
these f -weighted adjacency matrices. Actually, there have already been many publications along with this topic. Here we
would like to point out that the f -weighted adjacency matrices of graphs with degree-based weights behave quite different
from the traditional (0,1)-adjacency matrix, for example, there is no monotonicity for the spectral radius, for example, if
the weight function f is taken from the ABC-index.

We have obtained the following results on the extremal spectral radius problem.

Theorem 5.1. [10] Let T be a tree of order n ≥ 3, and A(T ) is the adjacency matrix of T . Then

ρ(A(Pn)) ≤ ρ(A(T )) ≤ ρ(A(Sn)).

The equalities hold if and only if T ∼= Pn or Sn, respectively.

64



X. Li and D. Peng / Discrete Math. Lett. 9 (2022) 57–66 65

Theorem 5.2. [37] Let f(x, y) = 1/
√
xy be the weight function for Randić index. If G is a non-empty graph, then

ρ(Af (G)) = 1.

Theorem 5.3. [6] Let f(x, y) =
√

(x+ y − 2)/(xy) be the weight function for ABC index. Then

ρ(Af (Pn)) ≤ ρ(A(T )) ≤ ρ(Af (Sn)).

The equalities hold if and only if T ∼= Pn or Sn, respectively.

One can see that the extremal graphs vary quite sensitively depending on the weight functions f . Our purpose is to
study the extremal spectral radius problem in a unified way. So far we have only got the following results.

Theorem 5.4. [33] Assume that f(x, y) > 0 is a symmetric real function, increasing and convex in variable x. Then the
tree of order n with largest spectral radius of Af (T ) is Sn or a double star Sd,n−d for some d ∈ {2, . . . , n− 2} (see Figure 7).

Sd,n−d

. . . . . .

d n− d

. . .

Sn

n− 1

Figure 7: A star and a double star.

It can be seen here that we get new extremal trees i.e., the double stars, which are different from those given in the
first three results.

Theorem 5.5. [33] Assume that f(x, y) has a form P (x, y) or
√
P (x, y), where P (x, y) is a symmetric polynomial with

nonnegative coefficients and zero constant term. Then the tree of order n (n ≥ 9) with the smallest spectral radius of Af (T )

is unique and it is Pn.

Remark 5.1. Our approach is just a start. More efforts are needed in order to deepen the research on the extremal problems.
For examples, one can focus on considering different graph or tree families. One can also consider the weight function f

having some other nice properties.

6. Concluding remarks

It is just a starting point to unify the solutions for extremal problems of graphical function-indices and f -weighted matrix.
In this way, we do not need to deal with chemical or graphical indices and degree-based weighted adjacency matrices of
graphs with weight functions as various topological indices one by one separately. However, at the moment, we only solved
the case when the indices are defined by a symmetric function f(x, y) with some particular properties. For those functions
f(x, y) with less restrictions, further study is needed, depending on their functional properties, and on the graph families
we focus on. This survey gives a hope that in the near future more results can be worked out for much wider classes of
graphical function-indices and f -weighted adjacency matrices and/or for much wider families of graphs.

For graph energies, the asymptotic values were obtained in [30–32] for f -weighted adjacency and Laplacian matri-
ces with degree based and degree-distance-based entries where the function f has very relaxed conditions; for example,
continuous and/or differentiable. Since they are about extremal results, we omit their details in this survey.
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[46] D. Vukičević, J. D- urd-ević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes,

Chem. Phys. Lett. 515 (2011) 186–189.
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