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Abstract

The Szeged index is a bond-additive topological descriptor that quantifies each bond’s terminal atoms based on their
closeness sets which is measured by multiplying the number of atoms in the closeness sets. Based on the high correlation
between the Szeged index and physico-chemical properties of chemical compounds, Szeged-like indices have been proposed
by considering closeness sets with bond counts and other mathematical operations like addition and subtraction. As there
are many ways to compute the Szeged-like indices, the cut method is predominantly used due to its complexity compared to
other approaches based on algorithms and interpolations. Yet, we here analyze the usefulness of the cut method in the case
of melem structures and find that it is less effective when the size and shape of the cavities change in the structures.
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1. Introduction

Chemical graph theory is applied extensively in the field of quantitative structural activity and property relationships
(QSAR/QSPR), which has great importance in modern chemistry, pharmocology, chemometrics, toxicology, and so on [4,
6, 19]. This has led to the emergence of various molecular descriptors, predominantly the topological indices, for the
prediction of physicochemical properties of compounds, as research shows that the properties of compounds are intimately
related to their underlying topological nature. The need to represent a molecular structure by a single number arises
from the fact that most molecular properties are recorded as single numbers. Therefore, QSPR modelling reduces to a
correlation between the two sets of numbers via an algebraic expression [14]. During the past decades, various topological
indices have been defined and studied for their development in the study of quantitative structure-property relations
[1,4,6,7,10,11,15,21].

Wiener’s pioneering work in predicting the boiling point of parrafin using the path number broadened the scope of
QSAR/QSPR studies by predicting various correlations between the physicochemical properties of chemical compounds.
Since then, many indices were introduced based on the distance, degree, and bond additive invariants of a graph. Gutman
introduced the vertex variant of the Szeged index based on the bond-additive structural invariant that was used to ease
the computation of the Wiener indices for trees, and since its existence, a lot of research has been devoted towards its study
as a useful molecular topological descriptor. Various physicochemical properties of organic compounds such as molecular
volume, boiling point, vapour pressure, molar volume, van der Waals volume, proton-ligand formation constants and so
on were modelled using Szeged index (see [11]). Consequently, several variations of the Szeged index were introduced for
possible applications in QSAR/QSPR studies [7, 16]. In particular, the PI index has fairly good structural selectivity and
correlation ability [10], while the Mostar index provides a quantitative measure of distance nonbalancedness as well as a
measure of the global peripherality of molecular structures [1,3,5].

To formally define the Szeged-like indices, we need to recall a few graph theoretical notions. The open neighborhood
NG(v) of a simple connected graph G, consisting of a vertex set V (G) and an edge set E(G), is the set of vertices adjacent to
v. Its cardinality is the degree of v and denoted by dG(v). For an edge e = xy in E(G), the weighted sum/product is based on
the degree of the end-vertices and is given by w~(e|G) = dG(x)~ dG(y) where ~ ∈ {+, ∗}. For any two vertices x, y ∈ V (G),
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the distance dG(x, y) between them is the number of edges in a shortest path from the vertex x to y. The shortest distance
between the vertex x and the edge f = uv ∈ E(G) is defined as dG(x, f) = min{dG(x, u), dG(x, v)}. The cardinalities of the
closeness sets of an edge f = uv are defined in the following.

(i) nu(f |G) = |Nu(f |G)| = | {z ∈ V (G) : dG(u, z) < dG(v, z)} |.

(ii) mu(f |G) = |Mu(f |G)| = | {h ∈ E(G) : dG(u, h) < dG(v, h)} |.

(iii) nv(f |G) and mv(f |G) are analogous to (i)-(ii).

Based on the above notations, we now define the Szeged-like topological indices in the following form [3,18],

wSz◦k(G) =
∑

f=uv∈E(G)

w(f |G) |pu(f |G) ◦ pv(f |G)|

whereas the reductions can be accomplished by assigning appropriate values to k,w, p and employing mathematical oper-
ations at ◦.

1. vertex Szeged Szv(G): k = v, w = 1, p = n, ◦ = ∗

2. edge Szeged Sze(G): k = e, w = 1, p = m, ◦ = ∗

3. vertex PI PIv(G): k = v, w = 1, p = n, ◦ = +

4. edge PI PIe(G): k = e, w = 1, p = m, ◦ = +

5. vertex Mostar Mov(G): k = v, w = 1, p = n, ◦ = −

6. edge Mostar Moe(G): k = e, w = 1, p = m, ◦ = −

7. weighted-plus vertex Szeged w+Szv(G): k = v, w = w+, p = n, ◦ = ∗

8. weighted-plus edge Szeged w+Sze(G): k = e, w = w+, p = m, ◦ = ∗

9. weighted-plus vertex PI w+PIv(G): k = v, w = w+, p = n, ◦ = +

10. weighted-plus edge PI w+PIe(G): k = e, w = w+, p = m, ◦ = +

11. weighted-plus vertex Mostar w+Mov(G): k = v, w = w+, p = n, ◦ = −

12. weighted-plus edge Mostar w+Moe(G): k = e, w = w+, p = m, ◦ = −

13. weighted-product vertex Szeged w∗Szv(G): k = v, w = w∗, p = n, ◦ = ∗

14. weighted-product edge Szeged w∗Sze(G): k = e, w = w∗, p = m, ◦ = ∗

15. weighted-product vertex PI w∗PIv(G): k = v, w = w∗, p = n, ◦ = +

16. weighted-product edge PI w∗PIe(G): k = e, w = w∗, p = m, ◦ = +

17. weighted-product vertex Mostar w∗Mov(G): k = v, w = w∗, p = n, ◦ = −

18. weighted-product edge Mostar w∗Moe(G): k = e, w = w∗, p = m, ◦ = −

Melem is a trimer of melamine with excellent photocatalytic and photoresponsive properties that have great potential
for several applications as they posses high stability, low cell toxicity and high efficiency. It is a new, efficient and metal-free
ecofriendly blue emitting material composed of carbon, nitrogen, and hydrogen with the molecular formula C6N7(NH2)3
[8, 17,20]. Each melem unit cell consists of three hexagons arranged in a triangular manner which is called a heptazine.
The melem chain and ring structures are displayed in Figures 1a and 1b, which are obtained by assembling melem unit
cells in linear and circular forms. The melem chain with s units is denoted by MC[s] while the melem ring is denoted by
MR[s].

In this paper, we discuss the cut method based on the Djoković-Winkler relation and analyze its efficacy in the compu-
tation of the Szeged-like topological indices in melem chain and ring structures.
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(a) (b)

Figure 1: Melem structure with three units (a) Chain form (b) Ring form.

2. The cut method

The cut method was introduced in order to simplify the computation of topological indices and to derive closed formulas
for chemically important families of graphs. The method is based on the Djoković-Winkler relation Θ which is defined as
follows. Two bonds b1 = c1d1 and b2 = c2d2 are in relation Θ if dG(c1, c2) + dG(d1, d2) 6= dG(c1, d2) + dG(c2, d1). The relation
Θ is reflexive and symmetric, but not transitive in general whereas the transitive closure Θ∗ forms an equivalence relation
thereby enabling the Θ∗-partition of the edge set E(G) as E1, . . . , Ep. These classes split each of the graphs G − Ei into
two or more smaller components. The quotient graph G/Ei is defined as a graph in which the vertices are the connected
components of G−Ei, and two components A1 and A2 are linked by an edge if there exists an edge xy ∈ Ei such that x ∈ A1

and y ∈ A2. To ease the computational process we make use of the recently developed concept where these quotient graphs
are reduced to a strenght-weighted graph with vertex and edge sets consisting of their corresponding strenght-weighted
parameters.

A graph G with strength-weighted functions (SWV , SWE) assigned to the vertex set V (G) and edge set E(G) is a
strength-weighted graph [2] Gsw = (G,SWV , SWE), where SWV is the pair (wv, sv) of a vertex weight function wv : V (G)→
R+

0 and a strength function sv : V (G)→ R+
0 , while SWE is the pair (we, se) of an edge weight function we : E(G)→ R+

0 and
a strength function se : E(G)→ R+

0 . The distance function of the strength-weighted graph Gsw remains the same as in the
graph G, while the degree and the bond closeness set parameters of a vertex u and an edge f = uv are defined as follows.

(i) dGsw
(u) =

∑
x∈NGsw (u)

se(ux).

(ii) nu(f |Gsw) =
∑

x∈Nu(f |Gsw)

wv(x).

(iii) mu(f |Gsw) =
∑

x∈Nu(f |Gsw)

sv(x) +
∑

h∈Mu(f |Gsw)

se(h).

Hence, the Szeged-like indices of Gsw can be in the form

wSz◦k(Gsw) =
∑

f=uv∈E(Gsw)

w(f |Gsw) |pu(f |Gsw) ◦ pv(f |Gsw)|

such that simple Szeged, PI and Mostar will take weighted measure as the edge strength value se and wSz◦k(G) =

wSz◦k(Gsw) whenever wv = 1, sv = 0, se = 1.
The seminal paper [12] developed the cut method for the Wiener index and for the case when Θ is transitive. In [13],

the method was extened to general graphs, that is, to compute the Wiener index of an arbitrary graph no matter whether
Θ is transitive or not. Here we consider the currently most general set-up of the cut method in terms of strength weighted
graphs as recently proposed in [2] as follows. Let G be a molecular graph with the Θ∗-partition E(G) = {E1, . . . , Ep}. Then

wSz◦k(G) =

p∑
i=1

wSz◦k(G/Ei, (w
i
v, s

i
v), (wi

e, s
i
e)),

where
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M. Arockiaraj, S. Mushtaq, S. Klavžar, J. C. Fiona, and K. Balasubramanian / Discrete Math. Lett. 9 (2022) 49–56 52

(i) wi
v : V (G/Ei)→ R+

0 , wi
v(X) =

∑
x∈V (X)

wv(x), ∀ X ∈ V (G/Ei),

(ii) siv : V (G/Ei)→ R+
0 , siv(X) =

∑
xy∈E(X)

se(xy) +
∑

x∈V (X)

sv(x), ∀ X ∈ V (G/Ei),

(iii) wi
e : E(G/Ei)→ R+

0 , wi
e(XY ) =

∑
xy∈Ei

x∈V (X), y∈V (Y )

we(xy),∀ XY ∈ E(G/Ei),

and in particular,

• for weighted-plus, wi
e(XY ) = w+i

e (XY ) =
∑

xy∈Ei

x∈V (X),y∈V (Y )

(dG(x) + dG(y)),∀ XY ∈ E(G/Ei),

• for weighted-product, wi
e(XY ) = w∗ie (XY ) =

∑
xy∈Ei

x∈V (X), y∈V (Y )

dG(x) ∗ dG(y),∀ XY ∈ E(G/Ei).

(iv) sie : E(G/Ei)→ R+
0 , sie(XY ) =

∑
xy∈Ei

x∈V (X), y∈V (Y )

se(xy),∀ XY ∈ E(G/Ei).

3. Szeged-like indices of melem structures

Theorem 3.1. Let MC[s] be a melem chain of dimension s where s ≥ 2.

1. Szv(MC[s]) = 90s(5s2 + 7s− 2).

2. Sze(MC[s]) = 18s(36s2 + 19s− 15).

3. PIv(MC[s]) = 18s(15s + 1).

4. PIe(MC[s]) = 6s(54s− 7).

5. Mov(MC[s]) = 3(60s2 − 22s− 3 + 3(−1)s).

6. Moe(MC[s]) = 8(27s2 − 10s− 1 + (−1)s).

7. w+Szv(MC[s]) = 3s(775s2 + 1095s− 322).

8. w+Sze(MC[s]) = 18s(186s2 + 101s− 78).

9. w+PIv(MC[s]) = 2(46s− 1)(15s + 1).

10. w+PIe(MC[s]) = 2(828s2 − 127s + 1).

11. w+Mov(MC[s]) = 1
2 (1830s2 − 752s− 97 + 101(−1)s).

12. w+Moe(MC[s]) = 2(549s2 − 228s− 22 + 23(−1)s).

13. w∗Szv(MC[s]) = 9s(325s2 + 465s− 142).

14. w∗Sze(MC[s]) = 54s(78s2 + 44s− 33).

15. w∗PIv(MC[s]) = 6(19s− 1)(15s + 1).

16. w∗PIe(MC[s]) = 6(342s2 − 64s + 1).

17. w∗Mov(MC[s]) = 3
2 (750s2 − 356s− 43 + 47(−1)s).

18. w∗Moe(MC[s]) = 6(225s2 − 108s− 10 + 11(−1)s).

Proof. There are s + 2 pendant bonds in MC[s], each of them forming a separate Θ-class Pi, 1 ≤ i ≤ s + 2. The quotient
graph MC[s]/Pi is the complete bipartite graph K1,1 with partite sets {Ap

i } and {Bp
i } with vertex weights wi

v(Ap
i ) = 1,

wi
v(Bp

i ) = 15s, vertex strengths siv(Ap
i ) = 0, siv(Bp

i ) = 18s − 1, edge weights w+i
e (Ap

iB
p
i ) = 4, w∗ie (Ap

iB
p
i ) = 3, and edge

strength sie(A
p
iB

p
i ) = 1. There are two bridging bonds between two consecutive heptazines, we shall denote them FBi and

SBi, 1 ≤ i ≤ s − 1. Due to chain arrangement, the graph theoretical measures of FBi are equivalent to those of SBs−i

and hence, we restrict our computation to only FBi. As before, the quotient graph MC[s]/FBi has partite set {Ab
i} and
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M. Arockiaraj, S. Mushtaq, S. Klavžar, J. C. Fiona, and K. Balasubramanian / Discrete Math. Lett. 9 (2022) 49–56 53

{Bb
i } with weighted graph theoretical measures wi

v(Ab
i ) = 15i, wi

v(Bb
i ) = 15(s− i) + 1, siv(Ad

i ) = 18i− 1, siv(Bb
i ) = 18(s− i),

w+i
e (Ab

iB
b
i ) = 5, w∗ie (Ab

iB
b
i ) = 6, and sie(A

b
iB

b
i ) = 1.

We now reckon the bonds of heptazines based on the horizontal and slanting types. For 1 ≤ i ≤ s, let FHi and SHi be
the Θ-classes constructed from the first and second layers horizontal bonds of ith heptazine. The quotient graphs produced
by FHi and SHi are also K1,1, but the vertex weights, vertex strengths, edge weights, edge strength for FHi and SHi are
4, 15s− 3, 3, 18s− 5, 10, 12, 2 and 9, 15s− 8, 9, 18s− 12, 16, 21, 3 respectively. As we did for horizontal bonds, let FOi and SOi

(1 ≤ i ≤ s) be the Θ-classes constructed from the first and second layers’ obtuse bonds of ith heptazine. Then the weighted
measures for the quotient graphs K1,1 produced by FOi and SOi are respectively 15i − 11, 15(s − i) + 12, 18i − 15, 18(s −
i) + 13, 10, 12, 2 and 15i− 6, 15(s− i) + 7, 18i− 9, 18(s− i) + 6, 16, 21, 3. Finally, let FAi and SAi (1 ≤ i ≤ s) be the Θ-classes
constructed from the acute bonds and the graph theoretical quantities of the ith obtuse Θ-class are equivalent to (s−i+1)th

acute Θ-class due to their symmetrical nature. Therefore, the computation of all forms of Szeged-like indices can be done
from the following equation.

wSz◦k(MC[s]) =

s+2∑
i=1

wSz◦k(MC[s]/Pi) +

s−1∑
i=1

{wSz◦k(MC[s]/FBi) + wSz◦k(MC[s]/SBi)}

+

s∑
i=1

{wSz◦k(MC[s]/FHi) + wSz◦k(MC[s]/SHi)}+

s∑
i=1

{wSz◦k(MC[s]/FOi) + wSz◦k(MC[s]/SOi)}

+

s∑
i=1

{wSz◦k(MC[s]/FAi) + wSz◦k(MC[s]/SAi)}

= (s + 2)Mo(MC[s]/Pi) + 2

s−1∑
i=1

wSz◦k(MC[s]/FBi) +

s∑
i=1

{wSz◦k(MC[s]/FHi) + wSz◦k(MC[s]/SHi)}

+ 2

s∑
i=1

{wSz◦k(MC[s]/FOi) + wSz◦k(MC[s]/SOi)}.

Theorem 3.2. Let MR[s] be a melem chain of dimension s ≥ 2.

1. Szv(MR[s]) = 1
2s(9(150s2 + 120s− 73)− (−1)s19).

2. Sze(MR[s]) = 2s(486s2 + 63s− 187− (−1)s(18s− 1)).

3. PIv(MR[s]) = 270s2.

4. PIe(MR[s]) = 2s(3(54s− 11)− 2(−1)s).

5. Mov(MR[s]) = 2s(15(3s− 1) + (−1)s).

6. Moe(MR[s]) = 4s(27s− 7).

7. w+Szv(MR[s]) = s
4 (5(2790s2 + 2256s− 1379)− 193(−1)s).

8. w+Sze(MR[s]) = s(5022s2 + 702s− 1967− (−1)s(198s− 15)).

9. w+PIv(MR[s]) = 1380s2.

10. w+PIe(MR[s]) = 2s(9(92s− 19)− 11(−1)s).

11. w+Mov(MR[s]) = s(450s− 163 + 11(−1)s).

12. w+Moe(MR[s]) = 12s(45s− 13).

13. w∗Szv(MR[s]) = 3s
4 (5850s2 + 4800s− 2953− 79(−1)s).

14. w∗Sze(MR[s]) = 3s(2106s2 + 324s− 845− (−1)s(90s− 9)).

15. w∗PIv(MR[s]) = 1710s2.

16. w∗PIe(MR[s]) = 6s(18(19s− 4)− 5(−1)s).

17. w∗Mov(MR[s]) = s(540s− 219 + 15(−1)s)

18. w∗Moe(MR[s]) = 216s(3s− 1).

53
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Proof. We use two different cases to compute the Szeged-like indices of melem rings based on the odd and even number
of melem units. In the case of even s, we identify the appropriate Θ∗-classes and then use a strength-weighted quotient
graph to obtain the necessary results. But if s is odd, the strength-weighted quotient graph is more complex, and hence we
partition the bonds of corresponding quotient graph based on the cardinalities of the closeness sets of terminal vertices.

Case 1 (s even): For 1 ≤ i ≤ s, let PPi be a Θ-class that contains the peripheral pendant bond of MR[s]. The quotient graph
MR[s]/PPi is the complete bipartite graph K1,1 with partite sets {Ap

i } and {Bp
i } with strength and weighted quantities

wi
v(Ap

i ) = 1, wi
v(Bp

i ) = 15s − 1, siv(Ap
i ) = 0, siv(Bp

i ) = 18s − 1, w+i
e (Ap

iB
p
i ) = 4, w∗ie (Ap

iB
p
i ) = 3, and sie(A

p
iB

p
i ) = 1. Two

diametrically-opposite bridging bonds exist between two melem units of interval s/2, denoted as FDi and SDi, respectively
where 1 ≤ i ≤ s. The graph theoretical measures of FDi are equivalent to SDi due to ring arrangement, and in addition
the vertex strength-weighted values are equal for the quotient graph K1,1 arising from MR[s]/FDi. The vertex strength
and vertex weight of MR[s]/FDi are 15s/2 and 9s− 1 respectively, while edge weight and edge strength are {10, 12} and 2.

Figure 2: Quotient graph corresponds to the slanting bonds of two diametrically-opposite melem units.

For 1 ≤ i ≤ s/2, let DSi be a Θ∗-class encompassing the slanting bonds of two diametrically-opposite melem units of
MR[s]. The vertex and edge strength-weighted quotient graph MR[s]/DSi is shown in Figure 2. As we constructed for
MC[s], let FHi and SHi be the Θ-classes for horizontal bonds for MR[s]. Here FHi and SHi generate an identical quotient
graph K1,1, but the vertex weights, vertex strengths, edge weights, edge strength for FHi and SHi are 4, 15s − 4, 3, 18s −
5, 10, 12, 2 and 9, 15s − 9, 9, 18s − 12, 16, 21, 3 respectively. We compute the required indices by simplifying the following
equation.

wSz◦k(MR[s]) =

s∑
i=1

wSz◦k(MR[s]/PPi) +

s∑
i=1

{wSz◦k(MR[s]/FDi) + wSz◦k(MR[s]/SDi)}+

s/2∑
i=1

wSz◦k(MR[s]/DSi)

+

s∑
i=1

{wSz◦k(MR[s]/FHi) + wSz◦k(MR[s]/SHi)}.

Case 2 (s odd): In this case, we use the Θ-classes PPi, FHi and SHi, where 1 ≤ i ≤ s as in Case 1. It is important to
note that all the slanting and bridging bonds belong to the single Θ∗-class SB and the corresponding quotient graph is
displayed in Figure 3. We now classify the bonds of the quotient graph by considering the cardinalities of closeness sets in
which the graph theoretical quantities are given in Table 1. Hence, the Szeged-like indices are derived from the following
equation.

wSz◦k(MR[s]) =

s∑
i=1

wSz◦k(MR[s]/PPi) + wSz◦k(MR[s]/SB) +

s∑
i=1

{wSz◦k(MR[s]/FHi) + wSz◦k(MR[s]/SHi)}.
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(a) (b)

Figure 3: (a) Quotient graph corresponds to all slanting and bridging bonds of MR[9] (b) A fragment of the figure based on
the closeness sets classification.

Table 1: Graph theoretical quantities of MR[s]/SB based on the cardinality of the closeness sets of end-vertices.

Class |ci|
eij = uijvij ∈ ci

nuij nvij muij mvij w+(eij) w∗(eij)

c1 6s s1 + 9 s1 + 6 s2 + 9 s2 + 5 5 6

c2 2s s1 + 8 s1 + 7 s2 + 8 s2 + 6 6 9

c3 2s s1 + 9 s1 + 6 s2 + 8 s2 + 5 5 6

c4 2s s1 + 11 s1 + 4 s2 + 12 s2 + 3 5 6

s1 = 15(s− 1)/2, s2 = 18(s− 1)/2

4. Concluding remarks

It is evident that the cut method is effective in the case of melem chain, but when applied to melem ring, it is weak
and requires some other methods to compute the Szeged-like indices successfully. Topological indices developed here are
expected to find applications in the characterization of melems and melem chains which act as a bridge between molecular
states and graphitic carbon nitrides of importance in low dimensional materials [8]. Furthermore, as demonstrated in
the previous work [9], the edge equivalence classes obtained through the cut method can also be useful in the efficient
computation of enthalpies of formations of large periodic networks containing melem chains in terms of the bond enthalpies
of each representative in the edge equivalance classes.
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