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Abstract

For a graph G, let uv be an edge of G. The weight of uv is defined as 2(d(u)+d(v))−1, where d(u) and d(v) denote the degree
of the vertices u and v, respectively. In this paper, we consider the harmonic index H(G) which is the sum of weights of all
edges of G, and obtain the extremal values of trees in terms of the order and domination number of G. We also characterize
the extremal trees.
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1. Introduction

Let G = (V,E) be a simple connected graph with vertex set V and edge set E. A tree is a graph G with n vertices and n− 1

edges. Denote by Pn and Sn the path and the star on n vertices, respectively.
The set of neighbours of v is defined as N(v) = {u ∈ V (G) | uv ∈ E(G)}, and d(v) = |N(v)| is called the degree of v.

If d(v) = 1, then v is a pendant vertex and its neighbour is called a support vertex. The maximum vertex degree of a
graph G is denoted by ∆(G) = max{d(v) | v ∈ V (G)}. For a vertex set D ⊆ V (G), if every vertex in V (G)\D is adjacent
to at least one vertex in D, then we say D is a dominating set of G. The domination number of G, denoted by γ(G), is the
minimum cardinality of D. Let T (n, γ) be the set of trees with n vertices and domination number γ. The diameter of a
tree is the number of edges of the longest path between any two pendant vertices. If the diameter of a tree T is d, then we
call v0v1 · · · vd a diameter path of T , denoted by diam(T ). For the terminology and notations not defined here, we refer the
readers to [3].

In 2009 and 2010, Trinajstić and Zhou proposed sum-connectivity index [12] and general sum-connectivity index [13],
respectively. Later, they obtained lots of results on general sum-connectivity index [6, 9, 11, 12]. As far as we know, the
harmonic index

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)

was first appeared in [7]. In fact, it can be treated as a special case of general sum-connectivity index. In chemical
properties, the harmonic index exhibits a strong correlation to the molecules such as boiling point, structure sensitivity
and abruptness [8]. In mathematics, the relations between the harmonic index and other graph invariants are considered,
such as matching number, chromatic number and the girth of a graph [1, 5, 10, 11, 14]. Recently, the domination number
is studied in connection with some other vertex-degree-based topological indices [2, 4]. In the following, we mainly study
the connection between the harmonic index and domination number.

2. Bounds for the harmonic index on T (n, γ)

Definition 2.1. Let Tn,γ ∈ T (n, γ) and it is obtained from the star Sn−γ+1 by attaching a pendant edge to its γ − 1 pendant
vertices, respectively. For any T ∈ T (n, γ), if ∆(T ) = n− γ, then T ∼= Tn,γ .

To simplify the calculations, we take f(n, γ) = 2
5n+ 3

10γ −
1
6 −

1
30 (n− 3γ) = 11

30n+ 2
5γ −

1
6 .

Lemma 2.1. Let T ∈ T (n, γ). Suppose that there exists a vertex v ∈ V (T ) such that d (v) = i ≥ 3, N (v) = {u1, u2, · · ·ui},
d(ui) = j ≥ 2 and d(uk) = 1 for all k ∈ {1, 2, · · · , i− 1}. Set T ′ = T − u1, if H(T ′) ≤ f(n− 1, γ), then H(T ) < f(n, γ).
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Figure 1: The graph Tn,γ .

Proof. Obviously, the domination number of T ′ is also γ, so we have

H(T ) = H(T ′) +
4

i(i+ 1)
− 2

(i+ j)(i+ j − 1)

≤ 2

5
(n− 1) +

3

10
γ − 1

6
− 1

30
(n− 1− 3γ) +

4

i(i+ 1)

= f(n, γ)− 11

30
+

4

i(i+ 1)

< f(n, γ),

since − 11
30 + 4

i(i+1) < 0 for any i ≥ 3. We complete the proof.

Theorem 2.1. Let T ∈ T (n, γ), n ≥ 3 then H(T ) ≤ f(n, γ).

Proof. For n = 3, 4, we have

H(P3) =
4

3
= f(3, 1), H(P4) =

11

6
< f(4, 2) and H(S4) =

3

2
< f(4, 1).

Now, suppose the result is true for any tree with n − 1 vertices and then we consider the trees of order n. We take a
diameter path diam(T ) = v0v1 · · · vd in T . By Lemma 2.1, we can assume that d(v1) = 2. Thus, we only need to discuss the
following two cases.

Case 1. d(v2) = m ≥ 3. Denote N(v2) = {v1, v3, w1, w2, · · · , wm−2}, d(wl) = sl ≤ 2 and d(v3) = k . Then we take
T ′′ = T − {v0, v1}. It is clear that there exists a dominating set D in T such that v1 ∈ D(T ) and v2 ∈ N(D \ {v1}), which
implies γ(T ) = γ(T ′′) + 1. Since

− 7

15
+

6

(m+ 2)(m+ 1)
< 0

for any m ≥ 3, we get

H(T ) = H(T ′′)− 2

m− 1 + k
−
m−2∑
l=1

2

m− 1 + sl
+

m−2∑
l=1

2

m+ sl
+

2

m+ 2
+

2

1 + 2
+

2

m+ k

≤ f(n, γ)− 17

15
−
m−2∑
l=1

2

(m+ sl)(m− 1 + sl)
+

2

2 +m
+

2

3

≤ f(n, γ)− 7

15
+

6

(m+ 2)(m+ 1)

< f(n, γ).

Case 2. d(v2) = 2. Denote N(v3) = {v2, v4, x1, x2, · · · , xk−2} and d(v4) = r, d(xl) = tl for every l ∈ {1, · · · , k − 2}. For any
l ∈ {1, · · · , k − 2}, if there exist two vertices y1, y2 such that y1 ∈ N(xl) and y2 ∈ N(y1), then we get a diameter path of T ,
i.e., y2y1xlv3v4 · · · vd, then by the above discussion, we can assume that tl = d(y1) = 2.

Subcase 2.1. k ≥ 3. Let T ′′′ = T − {v1, v2, v3}, then we have

H(T ) = H(T ′′′)− 2

k − 1 + r
−
k−2∑
l=1

2

k − 1 + tl
+

k−2∑
l=1

2

k + tl
+

2

k + r
+

2

k + 2
+

2

2 + 2
+

2

2 + 1

≤ 2

5
(n− 3) +

3

10
(γ − 1)− 1

6
− 1

30
(n− 3− 3(γ − 1))− 2(k − 2)

(k + 2)(k + 1)
+

2

k + 2
+

1

2
+

2

3
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= f(n, γ)− 1

3
+

6

(k + 2)(k + 1)

< f(n, γ),

since − 1
3 + 6

(k+2)(k+1) < 0 for any k ≥ 3.

Subcase 2.2. k = 2. Denote N(v4) = {v3, a1, · · · , ar−1} and d(al) = pl for every l ∈ {1, 2, · · · , r − 1}.
If r = 2, then we consider the tree T3 = T − {v0, v1, v2}, we have

H(T ) = H(T3)− 2

1 + 2
+

2× 3

2 + 2
+

2

1 + 2
≤ 2

5
(n− 3) +

3

10
(γ − 1)− 1

6
− 1

30
(n− 3γ) +

3

2
= f(n, γ).

For r ≥ 3, if pl ≤ 2 for every l ∈ {1, 2, · · · , r − 1}, let T4 = T − {v0, v1, v2, v3}, we have

H(T ) = H(T4)−
r−1∑
l=1

2

r − 1 + pl
+

r−1∑
l=1

2

r + pl
+

2

2 + r
+

4

2 + 2
+

2

2 + 1

≤ 2

5
(n− 4) +

3

10
(γ − 1)− 1

6
− 1

30
(n− 4− 3(γ − 1))−

r−1∑
l=1

2

(r − 1 + pl)(r + pl)
+

2

2 + r
+

5

3

≤ f(n, γ)− 1

5
+

4

(r + 2)(r + 1)
< f(n, γ).

where − 1
5 + 4

(r+2)(r+1) < 0 for any r ≥ 3.
Let p1 = max {p1, · · · , pr−1} ≥ 3, and N(a1) = {v4, b1, b2, · · · , bp1−1}, by the above case and Lemma 2.1, we assume that

every vertex in N(bl) \ {a1} is a pendant vertex for any l ∈ {1, 2, · · · , q1 − 1} and 1 ≤ d(bl) ≤ 2. Denote by qi the number
of vertices in {b1, b2, · · · , bp1−1} with degree i. Consider the edge e = v4a1, Tv4 and Ta1 are two components of T − e, which
contain the vertex v4 and a1, respectively. Then

H(T ) = H(Tv4) +H(Ta1)−
r−1∑
l=2

2

r − 1 + pl
+

r−1∑
l=2

2

r + pl
+

2

p1 + r
− 2

r − 1 + 2

+
2

r + 2
− 2q1
p1 − 1 + 1

+
2q1
p1 + 1

− 2q2
p1 − 1 + 2

+
2q2
p1 + 2

≤ f(n, γ)− 1

6
− 2(r − 2)

(r − 1 + p1)(r + p1)
+

2

p1 + r
− 2

1 + r
+

2

2 + r
− 2q1

(p1 + 1)(p1 + 2)
− 2q2

(p1 + 1)(p1 + 2)

≤ f(n, γ)− 1

6
+

2(p1 + 1)

(p1 + 3)(p1 + 2)
− 2(p1 − 1)

(p1 + 1)(p1 + 2)
− 2

(r + 1)(r + 2)

= f(n, γ)− 1

6
+

8

(p1 + 1)(p1 + 2)(p1 + 3)
− 2

(r + 1)(r + 2)
≤ f(n, γ),

since − 1
6 + 8

(p1+1)(p1+2)(p1+3) < 0 , for all p1 ≥ 3 .

Lemma 2.2. Let
h(n, k) =

k

(n− k)(n− k + 1)
− k − 1

(n− k + 1)(n− k + 2)
,

then h(n, k + 1
2 ) > h(n, k) and h(n, k) > h(n+ 1, k), for any n > 2 and 1 ≤ k ≤ n− 2.

Proof. First, we see that h(n, k + 1
2 ) > h(n, k) for any k ≤ n− 2.

h

(
n, k +

1

2

)
− h (n, k) =

k + 1
2(

n− k − 1
2

) (
n− k + 1

2

) − k − 1
2(

n− k + 1
2

) (
n− k + 3

2

)
= k(

1(
n− k − 1

2

) (
n− k + 1

2

) − 1(
n− k + 1

2

) (
n− k + 3

2

)
− 1

(n− k) (n− k + 1)
+

1

(n− k + 1) (n− k + 2)
)

+
1

2
(
n− k − 1

2

) (
n− k + 1

2

) +
1

2
(
n− k + 1

2

) (
n− k + 3

2

) − 1

(n− k + 1) (n− k + 2)
.

Since
1

(x− 1
2 )(x+ 1

2 )
− 1

(x+ 1
2 )(x+ 3

2 )
− 1

x(x+ 1)
+

1

(x+ 1)(x+ 2)
=

8

(x− 1
2 )(x+ 1

2 )(x+ 3
2 )
− 2

x(x+ 1)(x+ 2)
> 0,
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for all x > 0, so
1

(n− k − 1
2 )(n− k + 1

2 )
− 1

(n− k + 1
2 )(n− k + 3

2 )
− 1

(n− k)(n− k + 1)
+

1

(n− k + 1)(n− k + 2)
> 0,

for any n− k ≥ 2.

1

2(x− 1
2 )(x+ 1

2 )
+

1

2(x+ 1
2 )(x+ 3

2 )
− 1

(x+ 1)(x+ 2)
=

2

(x− 1
2 )(x+ 3

2 )
− 1

(x+ 1)(x+ 2)
> 0,

for all x > 0, so
1

2(n− k − 1
2 )(n− k + 1

2 )
+

1

2(n− k + 1
2 )(n− k + 3

2 )
− 1

(n− k + 1)(n− k + 2)
> 0,

thus h(n, k + 1
2 ) > h(n, k).

Since

h(n, k)− h(n+ 1, k) =
k

(n− k)(n− k + 1)
− k − 1

(n− k + 1)(n− k + 2)
− k

(n− k + 1)(n− k + 2)
+

k − 1

(n− k + 2)(n− k + 3)

=
6k

(n− k)(n− k + 1)(n− k + 2)(n− k + 3)
+

2

(n− k + 1)(n− k + 2)(n− k + 3)

is a positive function for any n− k ≥ 2, hence we have the required inequality.

Theorem 2.2. Let T ∈ T (n, γ), then

H(T ) ≥ 2

(
n− 2γ + 1

n− γ + 1
+ (γ − 1)

(
1

3
+

1

n− γ + 2

))
.

Proof. We use induction on the number of vertices. It’s easy to check that the inequality holds for the star S4 and the path
P4. Thus we can suppose it is true for any tree with n− 1 vertices. We denote

g(n, γ) = 2

(
n− 2γ + 1

n− γ + 1
+ (γ − 1)

(
1

3
+

1

n− γ + 2

))
.

Analogously, we suppose that diam(G) = v0v1 · · · vd is a diameter path in T . Let us take N(v1) = {v0, v2, u1, · · · , ui−2},
N(v2) = {v1, v3, w1, · · ·wm−2} and d(wl) = sl, for every l ∈ {1, · · · ,m− 2}. Take T ′ = T − v0 for consideration and we study
the following two cases.

Case 1. If γ(T ′) = γ(T ), then

H(T ) = H(T ′)− 2(i− 2)

i− 1 + 1
− 2

i− 1 +m
+

2(i− 1)

i+ 1
+

2

2 +m

≥ 2

(
n− 2γ

n− γ
+ (γ − 1)

(
1

n− γ + 1
+

1

3

))
+

4

i(i+ 1)
− 2

(i+m)(i+m− 1)

= g(n, γ) + 2

(
−γ

(n− γ)(n− γ + 1)
+

γ − 1

(n− γ + 1)(n− γ + 2)

)
+

4

i(i+ 1)
− 2

(i+ 2)(i+ 1)
.

If n = i + 2, then we have the graph shown in Figure 1 with m = 1, so we may assume n ≥ i + 3. Since γ ≤ n−i+2
2 and

n ≥ i+ 3, by Lemma 2.2 we know that

γ

(n− γ)(n− γ + 1)
− γ − 1

(n− γ + 1)(n− γ + 2)
≤

n−i+2
2

(n2 + i
2 − 1)(n2 + i

2 )
+

n−i
2

(n2 + i
2 + 1)

≤ 5

2(i+ 1
2 )(i+ 3

2 )
− 3

2(i+ 3
2 )(i+ 5

2 )
,

then

− 2

(
γ

(n− γ)(n− γ + 1)
− γ − 1

(n− γ + 1) (n− γ + 2)

)
+

4

i (i+ 1)
− 2

(i+ 2) (i+ 1)

≥ −5(
i+ 1

2

) (
i+ 3

2

) +
3(

i+ 3
2

) (
i+ 5

2

) +
4

i (i+ 1)
− 2

(i+ 2) (i+ 1)
=

6
(
14i2 + 37i+ 20

)
i (i+ 1) (i+ 2) (2i+ 1) (2i+ 3) (2i+ 5)

> 0,

therefore, H(T ) > g(n, γ).

Case 2. If γ(T ′) = γ(T )− 1, then i = 2 and there exists a minimum dominating set D of T such that v2 ∈ D. Therefore,

H(T ) = H(T ′)− 2

1 +m
+

2

2 +m
+

2

1 + 2
≥ 2

(
n− 2γ + 2

n− γ + 1
+ (γ − 2)

(
1

3
+

1

n− γ + 2

))
− 2

(m+ 1) (m+ 2)
+

2

3
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= g (n, γ) + 2

(
1

(n− γ + 1) (n− γ + 2)
− 1

(m+ 1) (m+ 2)

)
.

If m ≥ n− γ, it’s done, but this only happens when γ = n−m. Since n−m = γ ≤ n
2 , we have n ≤ 2m (see the graph in

Figure 1).
If m ≤ n − γ − 1, we denote N(v2) = {v1, v3, w1, w2, · · · , wm−2} and d(wl) = sl for any l ∈ {1, 2, · · · ,m− 2}. We assume

that sl = 1 or wl is a support vertex with sl = 2 for any l ∈ {1, 2, · · · ,m− 2}. If v3 is a vertex of degree 1 or a support
vertex of degree 2, then the graph is one of the trees shown in Figure 1, which satisfies the equality. For otherwise, we
have s1 = · · · = sr1 = 1, sr1+1 = · · · = sr1+r2 = 2 and r1 + r2 = m− 2, then we consider the following situation.

If d(w1) = 1, set T1 = T − w1, then γ(T1) = γ(T ). Since

γ − (2 + r2) ≤ n− (m+ 1 + r2)

2
,

we have
γ ≤ n− r1 + 1

2
,

and consequently,

H(T ) = H(T1)− 2 (r1 − 1)

m− 1 + 1
+

2 (r1 − 1)

j + 1
− 2 (r2 + 1)

m− 1 + 2
+

2 (r2 + 1)

m+ 2
− 2

d(v3) +m− 1
+

2

d(v3) +m
+

2

m+ 1

≥ 2

(
n− 2γ

n− γ
+ (γ − 1)

(
1

3
+

1

n− γ + 1

))
− 2 (r1 − 1)

m (m+ 1)
− 2 (r2 + 1)

(m+ 1) (m+ 2)
− 2

(m+ 1) (m+ 2)
+

2

m+ 1

= g (n, γ)− 2γ

(n− γ) (n− γ + 1)
+

2 (γ − 1)

(n− γ + 1) (n− γ + 2)
+

2 (m− r1 + 1)

m (m+ 1)
− 2 (m− r1)

(m+ 1) (m+ 2)
.

We know that there exists r ≥ 0 such that n = r1 + 2r2 + 5 + r, so

γ ≤ (r1 + 2r2 + 5 + r)− r1 + 1

2
= r2 + 3 +

r

2

and by Lemma 2.2, we can conclude that h (n, γ) ≤ h
(
r1 + 2r2 + 5 + r, r2 + 3 + r

2

)
, which means

− 2γ

(n− γ) (n− γ + 1)
+

2 (γ − 1)

(n− γ + 1) (n− γ + 2)
≥

−2
(
r2 + 3 + r

2

)(
m+ r

2

) (
m+ r

2 + 1
) +

2
(
r2 + 2 + r

2

)(
m+ r

2 + 1
) (
m+ r

2 + 2
)

= −
2
(
m+ r

2 + 1− r1
)(

m+ r
2

) (
m+ r

2 + 1
) +

2
(
m+ r

2 − r1
)(

m+ r
2 + 1

) (
m+ r

2 + 2
) .

For
f(x) =

x− r1 + 1

x(x+ 1)
− x− r1

(x+ 1)(x+ 2)
,

if r1 ≤ x, then for any x ≥ 2,

f ′(x) = −4 + 12x+ 15x2 + 6x3 − 2r1(2 + 6x+ 3x2)

x2(1 + x)2(2 + x)2

≤ −4 + 12x+ 15x2 + 6x3 − 2x(2 + 6x+ 3x2)

x2(1 + x)2(2 + x)2
=

−2− 3x

x2(1 + x)2(2 + x)
< 0.

Therefore, f(x) is a decreasing function for any x ≥ r1. Since m + r
2 ≥ m ≥ r1, so if r = 0, then the graph is one of the

graph shown in Figure 1, for otherwise, we have f(m+ r
2 ) < f(m), which implies that

2(m− r1 + 1)

m(m+ 1)
− 2(m− r1)

(m+ 1)(m+ 2)
≥

2
(
m+ r

2 + 1− r1
)(

m+ r
2

) (
m+ r

2 + 1
) +

2
(
m+ r

2 − r1
)(

m+ r
2 + 1

) (
m+ r

2 + 2
) ,

consequently, H(T ) > g(n, γ).

3. Extremal trees for the harmonic index on T (n, γ)

Let H be a set of trees with P3k ∈H , where k is a positive integer number, then we construct new graphs in family H in
the following two ways (see Figure 2).
(i) If T ′ ∈ H satisfies that there exists a vertex v belongs to a minimum dominating set of T ′ such that N(v) = {u1, u2},
d(u1) = d(u2) = 2, then attach a path of length 3t+ 1 to the vertex v, we get a new tree T , which is also in H .
(ii) If T ′ ∈H , v ∈ V (T ′) is a pendant vertex, then attach a path of length 3t to the vertex v, we get a new tree T in H .

In fact, the trees constructed in (ii) are completely contained those constructed in (i), we consider the trees in two ways
since it will bring convenience to the proof of the following theorem.
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Figure 2: Two examples in graph family H .

Lemma 3.1. If T ∈H , then H(T ) = f(n(T ), γ(T )).

Proof. If T ∼= P3k, obviously it is true.
(i) We suppose that there exists T ′ ∈ H satisfying H(T ′) = f(n(T ′), γ(T ′)) and there exists v ∈ V (T ′) such that

N(v) = {u1, u2}, d(u1) = d(u2) = 2, where v belongs to a minimum dominating set in T ′. Then we attach a path of length
3t+ 1 to v, we have

H(T ) = H(T ′) +H(P )− 2

(
2

2 + 2
+

1

2 + 1

)
+ 2

(
3

2 + 3
+

1

2 + 2

)
=

2

5
n(T ′) +

3

10
γ(T ′)− 1

6
− 1

30
(n(T ′)− 3γ(T ′)) +

2

5
(3t+ 1) +

3

10
t− 1

30
(3t+ 1− 3t)

=
2

5
n(T ) +

3

10
γ(T )− 1

6
− 1

30
(n(T )− 3γ(T )).

(ii) If T ′ ∈H satisfies that H(T ′) = f(n(T ′), γ(T ′)), and T ′ has a pendant vertex v, then we attach a path of 3t to v, we
obtain

H(T ) = H(T ′) +H(P )− 2× 2

1 + 2
+ 3× 2

2 + 2

=
2

5
n(T ′) +

3

10
γ(T ′)− 1

6
− 1

30
(n(T ′)− 3γ(T ′)) +

1

6
+ 2

(
2

1 + 2
+

3t− 3

2 + 2

)
=

2

5
n(T ) +

3

10
γ(T )− 1

6
− 1

30
(n(T )− 3γ(T )).

Theorem 3.1. If T ∈ T (n, γ), then H(T ) = f(n(T ), γ(T )) if and only if T ∈H .

Proof. By Lemma 3.1, we only need to prove sufficiency. By contradiction, suppose T ∗ ∈ T (n, γ) is the tree with minimum
number of vertices satisfying H(T ∗) = f(n(T ∗), γ(T ∗)) and T ∗ /∈ H . Take a diameter path diam(T ∗) = v0v1 · · · vd of T ∗,
then by the proof of Theorem 2.1, we may assume that d(v1) = d(v2) = d(v3) = 2, d(v4) = 3 or d(v4) = 2 and p1, p2 ≤ 2.
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If d(v4) = 3 and p1, p2 ≤ 2 and we set T4 = T ∗ − {v0, v1, v2, v3}, then

H(T ∗) = H(T4)− 2

2 + p1
− 2

2 + p2
+

2

3 + p1
+

2

3 + p2
+

2

5
+ 1 +

2

3

≤ 2

5
(n− 4) +

3

10
(γ − 1)− 1

6
− 1

30
(n− 4− 3(γ − 1))− 2

2 + p1
− 2

2 + p2
+

2

3 + p1
+

2

3 + p2
+

2

5
+ 1 +

2

3

= f(n, γ) +
1

5
− 2

(p1 + 2)(p1 + 3)
− 2

(p2 + 2)(p2 + 3)
.

If p1 = 1 or p2 = 1, then
1

5
− 2

(p1 + 2)(p1 + 3)
− 2

(p2 + 2)(p2 + 3)
< 0,

a contradiction. Otherwise p1 = p2 = 2, then

1

5
− 2

(p1 + 2)(p1 + 3)
− 2

(p2 + 2)(p2 + 3)
= 0

and
H(T4) =

2

5
n(T4) +

3

10
γ(T4)− 1

6
− 1

30
(n(T4)− 3γ(T4)).

If T4 ∈H , since v4 belongs to a minimum dominating set and p1 = p2 = 2, then T ∗ ∈H . Therefore, T4 /∈H and we get a
contradiction with the minimality of T ∗.

If d(v4) = 2 and we take T3 = T ∗ − {v0, v1, v2}, we have

H(T ∗) =H(T3)− 2

1 + 2
+

2× 3

2 + 2
+

2

1 + 2
≤ 2

5
(n− 3) +

3

10
(γ − 1)− 1

6
− 1

30
(n− 3γ) +

3

2
= f(n, γ)

thus
H(T3) =

2

5
n(T3) +

3

10
γ(T3)− 1

6
− 1

30
(n(T3)− 3γ(T3)).

If T3 ∈H , since v3 is a pendant vertex of T3, so T ∗ ∈H . Therefore, T3 /∈H , a contradiction to the minimality of T ∗.

Through the above whole discussion, we obtain the following theorem.

Theorem 3.2. If T ∈ T (n, γ), then

H(T ) = 2

(
n− 2γ + 1

n− γ + 1
+ (γ − 1)

(
1

3
+

1

n− γ + 2

))
if and only if T ∼= Tn,γ .
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