Research Article

Minimum distance-unbalancedness of graphs with diameter 2 and given number of edges

Kexiang Xu ${ }^{1,2, *}$, Peiqi Yao ${ }^{1,2}$
${ }^{1}$ College of Science, Nanjing University of Aeronautics \& Astronautics, Nanjing, Jiangsu 210016, China
${ }^{2}$ MIIT Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles, Nanjing 210016, China

(Received: 28 October 2021. Received in revised form: 10 November 2021. Accepted: 11 November 2021. Published online: 16 November 2021.)
(c) 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For a graph G, and for two distinct vertices u and v of G, let $n_{G}(u, v)$ be the number of vertices of G that are closer in G to u than to v. The distance-unbalancedness of G is the sum of $\left|n_{G}(u, v)-n_{G}(v, u)\right|$ over all unordered pairs of distinct vertices u and v of G. We determine the minimum distance-unbalancedness of 2 -self-centered graphs with given number of edges. We also determine the minimum distance-unbalancedness of graphs with at least one universal vertex and given number of edges.

Keywords: distance-unbalancedness; total irregularity; graph of diameter 2.
2020 Mathematics Subject Classification: 05C12, 05C35.

1. Introduction

We consider only finite, simple, and undirected graphs. Given a graph $G=(V(G), E(G))$, we let $n(G)=|V(G)|$ and $m(G)=|E(G)|$. For any graph G, we denote by \bar{G} the complement of G. The set of neighbours of a vertex v in G is denoted by $N_{G}(v)$. The degree of $v \in V(G)$ is denoted by $d_{G}(v)$ or $d(v)$ for short if G is clear. A universal vertex is the vertex adjacent to all other vertices, and the maximum degree and the minimum degree of a graph G will be written as $\Delta(G)$ and $\delta(G)$, respectively. Denote by $\bar{d}(G)$ the average degree of a graph G and by $D(G)$ the set of the degrees of all vertices in G. Moreover, for any $a \in D(G)$, we denote by $\ell_{G}(a)$ the number of a in the degree sequence of G. For a graph G, and two vertices u and v of G, let $d_{G}(u, v)$ denote the distance in G between u and v, and let $n_{G}(u, v)$ be the number of vertices w of G that are closer to u than to v, that is, $d_{G}(u, w)<d_{G}(v, w)$. The eccentricity $e(v)$ of a vertex v is the maximum distance from v to all other vertices in G, that is, $e(v)=\max _{u \in V(G)} d(u, v)$. Moreover, the maximum eccentricity is the diameter of G and the minimum is the radius of G. A disconnected graph is said to have an infinite diameter. Clearly, any disconnected graph G has $\operatorname{diam}(G)>k$ for any positive integer k. A graph is self-centered if all its vertices have the same eccentricity. And a self-centered graph G is k-self-centered if all its vertices have eccentricity k. The distance-unbalancedness [5] of a graph G is

$$
\begin{equation*}
u B(G)=\sum_{\{u, v\} \subseteq V(G)}\left|n_{G}(u, v)-n_{G}(v, u)\right| . \tag{1}
\end{equation*}
$$

More results on $u B$ are reported in [7, 8]. The distance-unbalancedness can be viewed as the total version of Mostar index [3]. More other distance-based topological indices can be found in [6]. A graph G is highly distance-balanced [4] if $n_{G}(u, v)=n_{G}(v, u)$ for every two distinct vertices u and v of G, that is, $u B(G)=0$. The total irregularity, first introduced in [1], of a graph G is defined as

$$
\operatorname{irr}_{t}(G)=\sum_{\{u, v\} \subseteq V(G)}|d(u)-d(v)|
$$

Let \mathcal{G}_{n}^{2} be the set of graphs of order n with diameter 2 . For two vertex-disjoint graphs G and H, we denote by $G \cup H$ the union of graphs G and H. And the join $G \oplus H$ of graphs G and H is a new graph obtained from $G \cup H$ by joining each vertex of G with each vertex of H. In the rest of this paper we focus on the characterization of graphs from \mathcal{G}_{n}^{2} with $m=\binom{n}{2}-k$ edges minimizing the distance-unbalancedness. In Section 2, some preliminary results are proven. In Section 3 , we determine the minimum $u B$ of the graphs in \mathcal{G}_{n}^{2} with given number of edges with the corresponding minimal graphs.

[^0]
2. Preliminaries

Lemma 2.1. Let $G \in \mathcal{G}_{n}^{2}$ with $n \geq 3$. Then $\left|n_{G}(u, v)-n_{G}(v, u)\right|=|d(u)-d(v)|$ for every two distinct vertices u and v of G.
Proof. For any two distinct vertices $u, v \in V(G)$, we assume that $d(u)=k_{1}, d(v)=k_{2}$ and $\left|N_{G}(u) \cap N_{G}(v)\right|=p$. Next, we distinguish the following two cases.

Case 1. u and v are adjacent in G.
In this case we have $\left|N_{G}(u) \backslash N_{G}(v)\right|=k_{1}-p$ and $\left|N_{G}(v) \backslash N_{G}(u)\right|=k_{2}-p$. From the structure of G, any vertex in $N_{G}(u) \backslash N_{G}(v)$ except v is closer to u than to v in G, so is the vertex u itself. Therefore $n_{G}(u, v)=k_{1}-p$. Similarly, $n_{G}(v, u)=k_{2}-p$. It follows that $\left|n_{G}(u, v)-n_{G}(v, u)\right|=|d(u)-d(v)|$.

Case 2. u and v are not adjacent in G.
Similarly as above, we have $n_{G}(u, v)=\left|N_{G}(u) \backslash N_{G}(v)\right|+1=k_{1}-p+1$ and $n_{G}(v, u)=\left|N_{G}(v) \backslash N_{G}(u)\right|+1=k_{2}-p+1$. Then $\left|n_{G}(u, v)-n_{G}(v, u)\right|=|d(u)-d(v)|$ holds immediately.

From Lemma 2.1, the following result is obvious.
Corollary 2.1. For any $G \in \mathcal{G}_{n}^{2}$, we have $u B(G)=\operatorname{irr}_{t}(G)$.
From the definition of irr $_{t}$, the next result follows.
Proposition 2.1. $\operatorname{irr}_{t}(G)=\operatorname{irr}_{t}(\bar{G})$ for any graph G of order $n>1$.
Lemma 2.2. Let $G \in \mathcal{G}_{n}^{2}$ with $\{u, v, w\} \subseteq V(G)$, uv $\notin E(G)$, vw $\in E(G)$ and $G^{\prime}=G+u v-v w$. If $d_{G}(u)<d_{G}(v) \leq d_{G}(w)$, then $\operatorname{irr}_{t}(G) \geq \operatorname{irr}_{t}\left(G^{\prime}\right)$ with equality holding if and only if $d_{G}(v)=d_{G}(w)=d_{G}(u)+1$.

Proof. Note that the degree of vertex v in G^{\prime} remains unchanged with that in G. Let

$$
I(x)=\sum_{y \in\{u, w\}}\left[\left|d_{G}(y)-d(x)\right|-\left|d_{G^{\prime}}(y)-d(x)\right|\right]
$$

for any vertex $x \in V(G) \backslash\{u, w\}$ and

$$
I=\sum_{x \in V(G) \backslash\{u, w\}} I(x) .
$$

Observe that $I(x) \geq 0$ for any vertex $x \in V(G) \backslash\{u, w\}$. Then $I \geq 0$. By the structure of G and G^{\prime} and the assumption $d_{G}(u)<d_{G}(v) \leq d_{G}(w)$, we have

$$
\begin{aligned}
\operatorname{irr}_{t}(G)-\operatorname{irr}_{t}\left(G^{\prime}\right) & =I+\sum_{\{x, y\} \subseteq\{u, v, w\}}\left[\left|d_{G}(x)-d_{G}(y)\right|-\left|d_{G^{\prime}}(x)-d_{G^{\prime}}(y)\right|\right] \\
& \geq \sum_{\{x, y\} \subseteq\{u, v, w\}}\left[\left|d_{G}(x)-d_{G}(y)\right|-\left|d_{G^{\prime}}(x)-d_{G^{\prime}}(y)\right|\right] \\
& \geq 0 .
\end{aligned}
$$

Note that the last inequality holds if and only if $d_{G}(v)=d_{G}(w)=d_{G}(u)+1$. When $d_{G}(v)=d_{G}(w)=d_{G}(u)+1$, we have $I(x)=0$ for any vertex $x \in V(G) \backslash\{u, w\}$. Hence $\operatorname{irr}_{t}(G)=\operatorname{irr}_{t}\left(G^{\prime}\right)$ if and only if $d_{G}(v)=d_{G}(w)=d_{G}(u)+1$.

Lemma 2.3. Let $G \in \mathcal{G}_{n}^{2}$ with $\{u, v, w\} \subseteq V(G)$, $u v \notin E(G)$, vw $\in E(G)$ and $G^{\prime}=G+u v-v w$. If $d_{G}(u) \leq d_{G}(v)<d_{G}(w)$, then $\operatorname{irr}_{t}(G) \geq \operatorname{irr}_{t}\left(G^{\prime}\right)$ with equality holding if and only if $d_{G}(u)=d_{G}(v)=d_{G}(w)-1$.

Proof. Note that the degree of vertex v in G^{\prime} remains unchanged with that in G. Let

$$
I(x)=\sum_{y \in\{u, w\}}\left[\left|d_{G}(y)-d(x)\right|-\left|d_{G^{\prime}}(y)-d(x)\right|\right]
$$

for any vertex $x \in V(G) \backslash\{u, w\}$ and

$$
I=\sum_{x \in V(G) \backslash\{u, w\}} I(x) .
$$

Observe that $I(x) \geq 0$ for any vertex $x \in V(G) \backslash\{u, w\}$. Then $I \geq 0$.
By the structure of G and G^{\prime} and the assumption $d_{G}(u) \leq d_{G}(v)<d_{G}(w)$, we have

$$
\operatorname{irr}_{t}(G)-\operatorname{irr}_{t}\left(G^{\prime}\right)=I+\sum_{\{x, y\} \subseteq\{u, v, w\}}\left[\left|d_{G}(x)-d_{G}(y)\right|-\left|d_{G^{\prime}}(x)-d_{G^{\prime}}(y)\right|\right]
$$

$$
\geq \sum_{\{x, y\} \subseteq\{u, v, w\}}\left[\left|d_{G}(x)-d_{G}(y)\right|-\left|d_{G^{\prime}}(x)-d_{G^{\prime}}(y)\right|\right]
$$

≥ 0.
Note that the last inequality holds if and only if $d_{G}(u)=d_{G}(v)=d_{G}(w)-1$. When $d_{G}(u)=d_{G}(v)=d_{G}(w)-1$, we have $I(x)=0$ for any vertex $x \in V(G) \backslash\{u, w\}$. Hence $\operatorname{irr}_{t}(G)=\operatorname{irr}_{t}\left(G^{\prime}\right)$ if and only if $d_{G}(u)=d_{G}(v)=d_{G}(w)-1$.

Lemma 2.4. Let G be a graph of order n and size m such that $\bar{d}(G)$ is not an integer. If irr $_{t}(G)$ gets the minimum value, then $D(G)=\{\lfloor\bar{d}(G)\rfloor,\lceil\bar{d}(G)\rceil\}$.

Proof. Since $\bar{d}(G)$ is not an integer, then we have $|D(G)| \geq 2$. Setting $a=\lfloor\bar{d}(G)\rfloor$, then $\lceil\bar{d}(G)\rceil=a+1$. Thus $\Delta(G) \geq a+1$ and $0 \leq \delta(G) \leq a$.

Let G_{0} be a graph with minimum $i r r_{t}$. It suffices to prove $\Delta\left(G_{0}\right)=a+1$ and $\delta\left(G_{0}\right)=a$. For convenience, we denote $\Delta\left(G_{0}\right)=\Delta$ and $\delta\left(G_{0}\right)=\delta$. We first prove $\Delta=a+1$. Otherwise, we have $\Delta \geq a+2$. Then there exists a vertex w with $d_{G_{0}}(w)=\Delta$ and another vertex u with $d_{G_{0}}(u)=\delta \leq a$. So there exists a vertex $v \in N_{G_{0}}(w) \backslash N_{G_{0}}(u)$. If $d_{G}(v)>\delta$, then we construct a graph $G^{\prime}=G_{0}+u v-v w$. Then we have $\operatorname{irr}_{t}\left(G^{\prime}\right)<\operatorname{irr}_{t}\left(G_{0}\right)$ by Lemma 2.2, contradicting the minimality of G_{0}. If $d_{G}(v)=\delta$, then a new graph $G^{\prime \prime}=G+u v-v w$ can be constructed with $\operatorname{irr}_{t}\left(G^{\prime \prime}\right)<\operatorname{irr}_{t}(G)$ by Lemma 2.3 as a contradiction, again. Therefore $\Delta=a+1$ holds immediately.

Next we turn to the proof for $\delta=a$. If not, we have $0<\delta \leq a-1$. Then there exists a vertex u with $d_{G_{0}}(u)=\delta$ and another vertex w with $d_{G_{0}}(w)=\Delta \geq a+1$. So there exists a vertex $v \in N_{G_{0}}(w) \backslash N_{G_{0}}(u)$. If $d_{G}(v)>\delta$, then we construct a graph $G^{\prime}=G_{0}+u v-v w$ with $\operatorname{irr}_{t}\left(G^{\prime}\right)<\operatorname{irr}_{t}(G)$ by Lemma 2.2, contradicting the minimality of G_{0}. If $d_{G}(v)=\delta$, then a new graph $G^{\prime \prime}=G_{0}+u v-v w$ can be constructed with $\operatorname{irr}_{t}\left(G^{\prime \prime}\right)<\operatorname{irr}_{t}(G)$ by Lemma 2.3 as a contradiction, again. Thus we have $\delta=a$, completing the proof.

Note that if $\bar{d}(G)$ is an integer, then we can find a regular graph G^{*} such that $\operatorname{irr}_{t}\left(G^{*}\right)=0$. Obviously, the total irregularity of G^{*} is the minimum.

3. Main results

Let $k \leq h$ be positive integer(s). A graph G is called a $[k, h]$-graph if $k \leq d_{G}(v) \leq h$ for any $v \in V(G)$ and there are at least two vertices $x, y \in V(G)$ with $d_{G}(x)=k$ and $d_{G}(y)=h$. In particular, a $[k, k]$-graph is just a k-regular graph. Denote by $\mathcal{G}_{n}^{2}[k, h]$ with $k \leq h$ the set of all $[k, h]$-graphs in \mathcal{G}_{n}^{2}.

Theorem 3.1. Let G be a 2-self-centered graph of even order n and size $m=\binom{n}{2}-k$. If $2 k \equiv t(\bmod n)$ with $0 \leq t<n$, then $u B(G) \geq t(n-t)$ with equality holding if and only if $G \in \mathcal{G}_{n}^{2}[a, h]$ with $a=n-1-\left\lceil\frac{2 k}{n}\right\rceil$ and $h=a$ if $t=0$ or $h=a+1$ otherwise.

Proof. By Corollary 2.1, we only need to characterize the minimum 2-self-centered graphs with respect to irr_{t}. By Proposition 2.1, we can consider the complement \bar{G} of graph G. Since G is connected, we have $k \leq\binom{ n}{2}-n+1$.

Since $2 k \equiv t(\bmod n)$ with $0 \leq t<n$, there exists an integer c such that $2 k=c n+t$. If $t=0$, we have $\operatorname{irr}_{t}(\bar{G}) \geq 0$ with equality holding if and only if \bar{G} is a c-regular graph, that is, $G \in \mathcal{G}_{n}^{2}[a, a]$ with $a=n-1-\frac{2 k}{n}$. If $t>0$, then $\bar{d}(\bar{G})=\frac{2 k}{n}$ is not an integer with $\left\lfloor\frac{2 k}{n}\right\rfloor=c$. By Lemma 2.4, $D(\bar{G})=\{c, c+1\}$ if $\operatorname{irr}_{t}(\bar{G})$ gets the minimum value.

Assume that $\ell_{\bar{G}}(c)=x$ and $\ell_{\bar{G}}(c+1)=y$. Then $x+y=n$ and $c x+(c+1) y=t+c n$, which imply that $x=n-t$ and $y=t$. Therefore, \bar{G} is a graph with $n-t$ vertices of degrees c and t vertices of degrees $c+1$. Thus we have

$$
u B(G)=\operatorname{irr}_{t}(G)=\operatorname{irr}_{t}(\bar{G}) \geq t(n-t)
$$

with the last equality holds if and only if \bar{G} is a $[c, c+1]$-graph with $c=\left\lfloor\frac{2 k}{n}\right\rfloor$ and $G \in \mathcal{G}_{n}^{2}$, that is, $G \in \mathcal{G}_{n}^{2}[a, a+1]$ with $a=n-1-\left\lceil\frac{2 k}{n}\right\rceil$, completing the proof.

Theorem 3.2. Let G be a 2-self-centered graph of odd order n and size $m=\binom{n}{2}-k$. If $2 k \equiv t(\bmod 2 n)(0 \leq t<2 n)$, then

$$
u B(G) \geq\left\{\begin{array}{l}
t(n-t), \quad 0 \leq t \leq n-1 \\
(2 n-t)(t-n), \quad n+1 \leq t<2 n
\end{array}\right.
$$

with equality holding if and only if $G \in \mathcal{G}_{n}^{2}[a, h]$ with $a=n-1-\left\lceil\frac{2 k}{n}\right\rceil$ and $h=a$ if $t=0$ or $h=a+1$ otherwise.

Proof. By Corollary 2.1, we only need to characterize the minimum 2-self-centered graphs with respect to irr_{t}. By Proposition 2.1, we can consider the complement \bar{G} of graph G. Since $2 k \equiv t(\bmod 2 n)(0 \leq t<2 n)$, there exists an integer c such that $2 k=2 c n+t$.

If $t=0$, we have $\operatorname{irr}_{t}(\bar{G}) \geq 0$ with equality holding if and only if \bar{G} is a $2 c$-regular graph, that is, $G \in \mathcal{G}_{n}^{2}[a, a]$ with $a=n-1-\frac{2 k}{n}$. If $0<t \leq n-1$, then $\bar{d}(\bar{G})$ is not an integer with $\lfloor\bar{d}(\bar{G})\rfloor=2 c$. By Lemma 2.4, we have $D(\bar{G})=\{2 c, 2 c+1\}$ if $\operatorname{irr}_{t}(\bar{G})$ gets the minimum value. Assume that $\ell_{\bar{G}}(2 c)=x$ and $\ell_{\bar{G}}(2 c+1)=y$. Then $x+y=n$ and $2 c x+(2 c+1) y=t+2 c n$, which imply that $x=n-t$ and $y=t$. Therefore, \bar{G} is a graph with $n-t$ vertices of degrees $2 c$ and t vertices of degrees $2 c+1$. Thus we have $u B(G) \geq t(n-t)$ with equality holding if and only if \bar{G} is a $[2 c, 2 c+1]$-graph with $2 c=\left\lfloor\frac{2 k}{n}\right\rfloor$ and $G \in \mathcal{G}_{n}^{2}$, that is, $G \in \mathcal{G}_{n}^{2}[a, a+1]$ with $a=n-1-\left\lceil\frac{2 k}{n}\right\rceil$.

If $n+1 \leq t<2 n$, then $\bar{d}(\bar{G})$ is not an integer with $\lfloor\bar{d}(\bar{G})\rfloor=2 c+1$. By Lemma 2.4 , we have $D(\bar{G})=\{2 c+1,2 c+2\}$ if $\operatorname{irr}_{t}(\bar{G})$ gets the minimum value. Assume that $\ell_{\bar{G}}(2 c+1)=w$ and $\ell_{\bar{G}}(2 c+2)=z$. Similarly as above, we have $w=2 n-t$ and $z=t-n$. Therefore, \bar{G} is a graph with $2 n-t$ vertices of degrees $2 c+1$ and $t-n$ vertices of degrees $2 c+2$. Thus we have $u B(G) \geq(2 n-t)(t-n)$ with equality holding if and only if \bar{G} is a $[2 c+1,2 c+2]$-graph with $2 c+1=\left\lfloor\frac{2 k}{n}\right\rfloor$ and $G \in \mathcal{G}_{n}^{2}$, that is, $G \in \mathcal{G}_{n}^{2}[a, a+1]$ with $a=n-1-\left\lceil\frac{2 k}{n}\right\rceil$, completing the proof.

Note that $\overline{G \cup H}=\bar{G} \oplus \bar{H}$ has diameter 2 for any two vertex-disjoint graphs G and H such that at least one of them is non-complete. Combining it with a well-known fact that the complement of connected graph G has diameter 2 if G has a finite diameter greater than 3 (see [2]), we have the following result.

Remark 3.1. Let G be a graph with (in)finite diameter greater than 3. Then \bar{G} has diameter 2.
We give a sufficient condition on the set $\mathcal{G}_{n}^{2}[a, h]$ with $h \in\{a, a+1\}$ in terms of the complement.
Remark 3.2. Let G be a graph of order $n \geq 3$ with medges. If \bar{G} is $a\left[n-1-\left\lceil\frac{2 m}{n}\right\rceil\right.$, $\left.n-1-\left\lfloor\frac{2 m}{n}\right\rfloor\right]$-graph of diameter greater than 3 , then $G \in \mathcal{G}_{n}^{2}\left[\left\lfloor\frac{2 m}{n}\right\rfloor,\left\lceil\frac{2 m}{n}\right\rceil\right]$.

Note that Petersen graph and its complement have diameters 2, the former is 3-regular and the latter is 6-regular. Therefore Remark 3.2 is just a sufficient but not necessary condition of set $\mathcal{G}_{n}^{2}[a, h]$ with $h \in\{a, a+1\}$.

Theorem 3.3. Let $G \in \mathcal{G}_{n}^{2}$ of odd order n and size $m=\binom{n}{2}-k$ with $\Delta(G)=n-1$. If $2 k \equiv t(\bmod n-1)$ with $0 \leq t<n-1$, then $u B(G) \geq t(n-t-1)+2 k$ with equality holding if and only if $G \cong H \oplus K_{1}$ where H is an $[a, h]$-graph with $a=n-2-\left\lceil\frac{2 k}{n-1}\right\rceil$ and $h=a$ if $t=0$ or $h=a+1$ otherwise.

Proof. Since $\Delta(G)=n-1, \bar{G}$ contains at least one isolated vertex. Define G_{1} to be a graph obtained from \bar{G} by deleting an isolated vertex. Thus $u B(G)=\operatorname{irr}_{t}(G)=\operatorname{irr}_{t}(\bar{G})=\operatorname{irr}_{t}\left(G_{1}\right)+2 k$ by Corollary 2.1 and Proposition 2.1.

Since $2 k \equiv t(\bmod n-1)$ with $0 \leq t<n-1$, there exists an integer c such that $2 k=c(n-1)+t$. If $t=0$, we have $\operatorname{irr}_{t}\left(G_{1}\right) \geq 0$ with equality holding if and only if G_{1} is a c-regular graph with $\bar{G} \cong G_{1} \cup K_{1}$, that is, $G \cong H \oplus K_{1}$ where $H \cong \overline{G_{1}}$ is an a-regular graph with $a=n-2-\frac{2 k}{n-1}$.

If $t>0$, then $\bar{d}\left(G_{1}\right)$ is not an integer with $\left\lfloor\bar{d}\left(G_{1}\right)\right\rfloor=c$. By Lemma 2.4, we have $D\left(G_{1}\right)=\{c, c+1\}$ if $\operatorname{irr}_{t}\left(G_{1}\right)$ gets the minimum value. Assume that $\ell_{G_{1}}(c)=x$ and $\ell_{G_{1}}(c+1)=y$. Then $x+y=n-1$ and $c x+(c+1) y=c(n-1)+t$, which imply that $x=n-t-1$ and $y=t$. Therefore G_{1} is a graph with $n-t-1$ vertices of degrees c and t vertices of degrees $c+1$. Thus $u B(G)=\operatorname{irr}_{t}\left(G_{1}\right)+2 k \geq t(n-t-1)+2 k$ with equality holding if and only if G_{1} is a $[c, c+1]$-graph with $c=\left\lfloor\frac{2 k}{n-1}\right\rfloor$, that is, $G \cong H \oplus K_{1}$ where $H \cong \overline{G_{1}}$ is an $[a, a+1]$-graph with $a=n-2-\left\lceil\frac{2 k}{n-1}\right\rceil$.

Theorem 3.4. Let $G \in \mathcal{G}_{n}^{2}$ of even order n and size $m=\binom{n}{2}-k$ with $\Delta(G)=n-1$. If $2 k \equiv t(\bmod 2(n-1))$ with $0 \leq t<2 n-2$, then

$$
u B(G) \geq\left\{\begin{array}{l}
t(n-t-1)+2 k, \quad 0 \leq t \leq n-2 \\
(2 n-t-2)(t-n+1)+2 k, \quad n \leq t<2 n-2
\end{array}\right.
$$

with equality holding if and only if $G \cong H \oplus K_{1}$ where H is an $[a, h]$-graph with $a=n-2-\left\lceil\frac{2 k}{n-1}\right\rceil$ and $h=a$ if $t=0$ or $h=a+1$ otherwise .

Proof. Since $\Delta(G)=n-1, \bar{G}$ contains at least one isolated vertex. Let G_{1} to be a graph obtained from \bar{G} by deleting an isolated vertex. Thus $u B(G)=\operatorname{irr}_{t}(G)=\operatorname{irr}_{t}(\bar{G})=\operatorname{irr}_{t}\left(G_{1}\right)+2 k$ by Corollary 2.1 and Proposition 2.1.

Since $2 k \equiv t(\bmod 2(n-1))$ with $0 \leq t<2 n-2$, there exists an integer c such that $2 k=2 c(n-1)+t$. If $t=0$, we have $\operatorname{irr}_{t}\left(G_{1}\right) \geq 0$ with equality holding if and only if G_{1} is a $2 c$-regular graph, that is, $G \cong H \oplus K_{1}$ where $H \cong \overline{G_{1}}$ is an a-regular graph with $a=n-2-\frac{2 k}{n-1}$.

If $0<t \leq n-2$, then $\bar{d}\left(G_{1}\right)$ is not an integer with $\left\lfloor\bar{d}\left(G_{1}\right)\right\rfloor=2 c$. By Lemma 2.4, we have $D\left(G_{1}\right)=\{2 c, 2 c+1\}$ if irr $_{t}\left(G_{1}\right)$ gets the minimum value. Assume that $\ell_{G_{1}}(2 c)=x$ and $\ell_{G_{1}}(2 c+1)=y$. Then $x+y=n-1$ and $2 c x+(2 c+1) y=2 c(n-1)+t$,
which imply that $x=n-t-1$ and $y=t$. Therefore G_{1} is a graph with $n-t-1$ vertices of degrees $2 c$ and t vertices of degrees $2 c+1$. Thus $u B(G)=\operatorname{irr}_{t}\left(G_{1}\right)+2 k \geq t(n-t-1)+2 k$ with equality holding if and only if G_{1} is a $[2 c, 2 c+1]$-graph with $2 c=\left\lfloor\frac{2 k}{n-1}\right\rfloor$, that is, $G \cong H \oplus K_{1}$ where $H \cong \overline{G_{1}}$ is an $[a, a+1]$-graph with $a=n-2-\left\lceil\frac{2 k}{n-1}\right\rceil$.

If $n \leq t<2 n-2$, then $\bar{d}\left(G_{1}\right)$ is not an integer with $\left\lfloor\bar{d}\left(G_{1}\right)\right\rfloor=2 c+1$. By Lemma 2.4, we have $D\left(G_{1}\right)=\{2 c+1,2 c+2\}$ if $\operatorname{irr}_{t}\left(G_{1}\right)$ gets the minimum value. Assume that $\ell_{G_{1}}(2 c+1)=w$ and $\ell_{G_{1}}(2 c+2)=z$. Similarly as above, we have $w=2 n-t-2$ and $z=t-n+1$. Therefore, G_{1} is a graph with $2 n-t-2$ vertices of degree $2 c+1$ and $t-n+1$ vertices of degree $2 c+2$. Thus we have $u B(G)=\operatorname{irr}_{t}\left(G_{1}\right)+2 k \geq(2 n-t-2)(t-n+1)+2 k$ with equality holding if and only if G_{1} is a $[2 c+1,2 c+2]$-graph with $2 c+1=\left\lfloor\frac{2 k}{n-1}\right\rfloor$, that is, $G \cong H \oplus K_{1}$ where $H \cong \overline{G_{1}}$ is an $[a, a+1]$-graph with $a=n-2-\left\lceil\frac{2 k}{n-1}\right\rceil$.

In Theorems 3.1, 3.2, 3.3 and 3.4 we determine the minimal graphs from \mathcal{G}_{n}^{2} with given number of edges with respect to $u B$. We would like to end this paper with the following problem.

Problem 3.1. Determine the maximal graphs from \mathcal{G}_{n}^{2} with given number of edges with respect to $u B$.

References

[1] H. Abdo, S. Brandt, D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014) $201-206$.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.
[3] T. Došlić, I. Martinjak, R. Skrekovski, S. T. Spužević, I. Zubac, Mostar index, J. Math. Chem. 56 (2018) 2995-3013.
[4] Š. Miklavič, P. Šparl, l-distance-balanced graphs, Discrete Appl. Math. 244 (2018) 143-154.
[5] Š. Miklavič, P. Šparl, Distance-unbalancedness of graphs, Appl. Math. Comput. 405 (2021) 126233.
[6] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton 1992.
[7] M. Kramer, D. Rautenbach, Minimum distance-unbalancedness of trees, J. Math. Chem. 59 (2021) 942-950.
[8] M. Kramer, D. Rautenbach, Maximally distance-unbalanced trees, J. Math. Chem. 59 (2021) 2261-2269.

[^0]: *Corresponding author (kexxu1221@126.com).

