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Abstract

For a graph G, and for two distinct vertices u and v of G, let nG(u, v) be the number of vertices of G that are closer in G to u
than to v. The distance-unbalancedness of G is the sum of |nG(u, v)− nG(v, u)| over all unordered pairs of distinct vertices
u and v of G. We determine the minimum distance-unbalancedness of 2-self-centered graphs with given number of edges.
We also determine the minimum distance-unbalancedness of graphs with at least one universal vertex and given number
of edges.
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1. Introduction

We consider only finite, simple, and undirected graphs. Given a graph G = (V (G), E(G)), we let n(G) = |V (G)| and
m(G) = |E(G)|. For any graph G, we denote by G the complement of G. The set of neighbours of a vertex v in G is denoted
by NG(v). The degree of v ∈ V (G) is denoted by dG(v) or d(v) for short if G is clear. A universal vertex is the vertex
adjacent to all other vertices, and the maximum degree and the minimum degree of a graph G will be written as ∆(G)

and δ(G), respectively. Denote by d(G) the average degree of a graph G and by D(G) the set of the degrees of all vertices
in G. Moreover, for any a ∈ D(G), we denote by `G(a) the number of a in the degree sequence of G. For a graph G, and two
vertices u and v of G, let dG(u, v) denote the distance in G between u and v, and let nG(u, v) be the number of vertices w of
G that are closer to u than to v, that is, dG(u,w) < dG(v, w). The eccentricity e(v) of a vertex v is the maximum distance
from v to all other vertices in G, that is, e(v) = maxu∈V (G) d(u, v). Moreover, the maximum eccentricity is the diameter of G
and the minimum is the radius of G. A disconnected graph is said to have an infinite diameter. Clearly, any disconnected
graph G has diam(G) > k for any positive integer k. A graph is self-centered if all its vertices have the same eccentricity.
And a self-centered graph G is k-self-centered if all its vertices have eccentricity k. The distance-unbalancedness [5] of a
graph G is

uB(G) =
∑

{u,v}⊆V (G)

|nG(u, v)− nG(v, u)|. (1)

More results on uB are reported in [7, 8]. The distance-unbalancedness can be viewed as the total version of Mostar
index [3]. More other distance-based topological indices can be found in [6]. A graph G is highly distance-balanced [4] if
nG(u, v) = nG(v, u) for every two distinct vertices u and v of G, that is, uB(G) = 0. The total irregularity, first introduced
in [1], of a graph G is defined as

irrt(G) =
∑

{u,v}⊆V (G)

|d(u)− d(v)|.

Let G2n be the set of graphs of order n with diameter 2. For two vertex-disjoint graphs G and H, we denote by G ∪ H
the union of graphs G and H. And the join G ⊕ H of graphs G and H is a new graph obtained from G ∪ H by joining
each vertex of G with each vertex of H. In the rest of this paper we focus on the characterization of graphs from G2n with
m =

(
n
2

)
−k edges minimizing the distance-unbalancedness. In Section 2, some preliminary results are proven. In Section

3, we determine the minimum uB of the graphs in G2n with given number of edges with the corresponding minimal graphs.
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2. Preliminaries

Lemma 2.1. Let G ∈ G2n with n ≥ 3. Then |nG(u, v)− nG(v, u)| = |d(u)− d(v)| for every two distinct vertices u and v of G.

Proof. For any two distinct vertices u, v ∈ V (G), we assume that d(u) = k1, d(v) = k2 and |NG(u) ∩ NG(v)| = p. Next, we
distinguish the following two cases.

Case 1. u and v are adjacent in G.
In this case we have |NG(u) \ NG(v)| = k1 − p and |NG(v) \ NG(u)| = k2 − p. From the structure of G, any vertex in
NG(u) \ NG(v) except v is closer to u than to v in G, so is the vertex u itself. Therefore nG(u, v) = k1 − p. Similarly,
nG(v, u) = k2 − p. It follows that |nG(u, v)− nG(v, u)| = |d(u)− d(v)|.

Case 2. u and v are not adjacent in G.
Similarly as above, we have nG(u, v) = |NG(u) \ NG(v)| + 1 = k1 − p + 1 and nG(v, u) = |NG(v) \ NG(u)| + 1 = k2 − p + 1.
Then |nG(u, v)− nG(v, u)| = |d(u)− d(v)| holds immediately.

From Lemma 2.1, the following result is obvious.

Corollary 2.1. For any G ∈ G2n , we have uB(G) = irrt(G).

From the definition of irrt, the next result follows.

Proposition 2.1. irrt(G) = irrt(G) for any graph G of order n > 1.

Lemma 2.2. Let G ∈ G2n with {u, v, w} ⊆ V (G), uv /∈ E(G), vw ∈ E(G) and G′ = G + uv − vw. If dG(u) < dG(v) ≤ dG(w),
then irrt(G) ≥ irrt(G′) with equality holding if and only if dG(v) = dG(w) = dG(u) + 1.

Proof. Note that the degree of vertex v in G′ remains unchanged with that in G. Let

I(x) =
∑

y∈{u,w}

[
|dG(y)− d(x)| − |dG′(y)− d(x)|

]
for any vertex x ∈ V (G) \ {u,w} and

I =
∑

x∈V (G)\{u,w}

I(x).

Observe that I(x) ≥ 0 for any vertex x ∈ V (G) \ {u,w}. Then I ≥ 0. By the structure of G and G′ and the assumption
dG(u) < dG(v) ≤ dG(w), we have

irrt(G)− irrt(G′) = I +
∑

{x,y}⊆{u,v,w}

[
|dG(x)− dG(y)| − |dG′(x)− dG′(y)|

]

≥
∑

{x,y}⊆{u,v,w}

[
|dG(x)− dG(y)| − |dG′(x)− dG′(y)|

]
≥ 0.

Note that the last inequality holds if and only if dG(v) = dG(w) = dG(u) + 1. When dG(v) = dG(w) = dG(u) + 1, we have
I(x) = 0 for any vertex x ∈ V (G) \ {u,w}. Hence irrt(G) = irrt(G

′) if and only if dG(v) = dG(w) = dG(u) + 1.

Lemma 2.3. Let G ∈ G2n with {u, v, w} ⊆ V (G), uv /∈ E(G), vw ∈ E(G) and G′ = G + uv − vw. If dG(u) ≤ dG(v) < dG(w),
then irrt(G) ≥ irrt(G′) with equality holding if and only if dG(u) = dG(v) = dG(w)− 1.

Proof. Note that the degree of vertex v in G′ remains unchanged with that in G. Let

I(x) =
∑

y∈{u,w}

[
|dG(y)− d(x)| − |dG′(y)− d(x)|

]
for any vertex x ∈ V (G) \ {u,w} and

I =
∑

x∈V (G)\{u,w}

I(x).

Observe that I(x) ≥ 0 for any vertex x ∈ V (G) \ {u,w}. Then I ≥ 0.
By the structure of G and G′ and the assumption dG(u) ≤ dG(v) < dG(w), we have

irrt(G)− irrt(G′) = I +
∑

{x,y}⊆{u,v,w}

[
|dG(x)− dG(y)| − |dG′(x)− dG′(y)|

]
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≥
∑

{x,y}⊆{u,v,w}

[
|dG(x)− dG(y)| − |dG′(x)− dG′(y)|

]
≥ 0.

Note that the last inequality holds if and only if dG(u) = dG(v) = dG(w) − 1. When dG(u) = dG(v) = dG(w) − 1, we have
I(x) = 0 for any vertex x ∈ V (G) \ {u,w}. Hence irrt(G) = irrt(G

′) if and only if dG(u) = dG(v) = dG(w)− 1.

Lemma 2.4. Let G be a graph of order n and size m such that d(G) is not an integer. If irrt(G) gets the minimum value,
then D(G) = {bd(G)c, dd(G)e}.

Proof. Since d(G) is not an integer, then we have |D(G)| ≥ 2. Setting a = bd(G)c, then dd(G)e = a+ 1. Thus ∆(G) ≥ a+ 1

and 0 ≤ δ(G) ≤ a.
Let G0 be a graph with minimum irrt. It suffices to prove ∆(G0) = a + 1 and δ(G0) = a. For convenience, we denote

∆(G0) = ∆ and δ(G0) = δ. We first prove ∆ = a + 1. Otherwise, we have ∆ ≥ a + 2. Then there exists a vertex w with
dG0(w) = ∆ and another vertex u with dG0(u) = δ ≤ a. So there exists a vertex v ∈ NG0(w) \ NG0(u). If dG(v) > δ, then
we construct a graph G′ = G0 + uv − vw. Then we have irrt(G′) < irrt(G0) by Lemma 2.2, contradicting the minimality
of G0. If dG(v) = δ, then a new graph G′′ = G + uv − vw can be constructed with irrt(G

′′) < irrt(G) by Lemma 2.3 as a
contradiction, again. Therefore ∆ = a+ 1 holds immediately.

Next we turn to the proof for δ = a. If not, we have 0 < δ ≤ a − 1. Then there exists a vertex u with dG0
(u) = δ and

another vertex w with dG0(w) = ∆ ≥ a + 1. So there exists a vertex v ∈ NG0(w) \NG0(u). If dG(v) > δ, then we construct
a graph G′ = G0 + uv − vw with irrt(G′) < irrt(G) by Lemma 2.2, contradicting the minimality of G0. If dG(v) = δ, then a
new graph G′′ = G0 + uv − vw can be constructed with irrt(G

′′) < irrt(G) by Lemma 2.3 as a contradiction, again. Thus
we have δ = a, completing the proof.

Note that if d(G) is an integer, then we can find a regular graph G∗ such that irrt(G∗) = 0. Obviously, the total
irregularity of G∗ is the minimum.

3. Main results

Let k ≤ h be positive integer(s). A graph G is called a [k, h]-graph if k ≤ dG(v) ≤ h for any v ∈ V (G) and there are at least
two vertices x, y ∈ V (G) with dG(x) = k and dG(y) = h. In particular, a [k, k]-graph is just a k-regular graph. Denote by
G2n[k, h] with k ≤ h the set of all [k, h]-graphs in G2n.

Theorem 3.1. Let G be a 2-self-centered graph of even order n and size m =
(
n
2

)
− k. If 2k ≡ t (mod n) with 0 ≤ t < n, then

uB(G) ≥ t(n − t) with equality holding if and only if G ∈ G2n[a, h] with a = n − 1 − d 2kn e and h = a if t = 0 or h = a + 1

otherwise.

Proof. By Corollary 2.1, we only need to characterize the minimum 2-self-centered graphs with respect to irrt. By Propo-
sition 2.1, we can consider the complement G of graph G. Since G is connected, we have k ≤

(
n
2

)
− n+ 1.

Since 2k ≡ t (mod n) with 0 ≤ t < n, there exists an integer c such that 2k = cn + t. If t = 0, we have irrt(G) ≥ 0 with
equality holding if and only if G is a c-regular graph, that is, G ∈ G2n[a, a] with a = n − 1 − 2k

n . If t > 0, then d(G) = 2k
n is

not an integer with b 2kn c = c. By Lemma 2.4, D(G) = {c, c+ 1} if irrt(G) gets the minimum value.
Assume that `G(c) = x and `G(c + 1) = y. Then x + y = n and cx + (c + 1)y = t + cn, which imply that x = n − t and

y = t. Therefore, G is a graph with n− t vertices of degrees c and t vertices of degrees c+ 1. Thus we have

uB(G) = irrt(G) = irrt(G) ≥ t(n− t)

with the last equality holds if and only if G is a [c, c + 1]-graph with c = b 2kn c and G ∈ G2n, that is, G ∈ G2n[a, a + 1] with
a = n− 1− d 2kn e, completing the proof.

Theorem 3.2. Let G be a 2-self-centered graph of odd order n and size m =
(
n
2

)
− k. If 2k ≡ t (mod 2n) (0 ≤ t < 2n), then

uB(G) ≥

t(n− t), 0 ≤ t ≤ n− 1;

(2n− t)(t− n), n+ 1 ≤ t < 2n

with equality holding if and only if G ∈ G2n[a, h] with a = n− 1− d 2kn e and h = a if t = 0 or h = a+ 1 otherwise.
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Proof. By Corollary 2.1, we only need to characterize the minimum 2-self-centered graphs with respect to irrt. By Propo-
sition 2.1, we can consider the complement G of graph G. Since 2k ≡ t (mod 2n) (0 ≤ t < 2n), there exists an integer c such
that 2k = 2cn+ t.

If t = 0, we have irrt(G) ≥ 0 with equality holding if and only if G is a 2c-regular graph, that is, G ∈ G2n[a, a] with
a = n− 1− 2k

n . If 0 < t ≤ n− 1, then d(G) is not an integer with bd(G)c = 2c. By Lemma 2.4, we have D(G) = {2c, 2c+ 1} if
irrt(G) gets the minimum value. Assume that `G(2c) = x and `G(2c+ 1) = y. Then x+ y = n and 2cx+ (2c+ 1)y = t+ 2cn,
which imply that x = n − t and y = t. Therefore, G is a graph with n − t vertices of degrees 2c and t vertices of degrees
2c+1. Thus we have uB(G) ≥ t(n− t) with equality holding if and only ifG is a [2c, 2c+1]-graph with 2c = b 2kn c andG ∈ G2n,
that is, G ∈ G2n[a, a+ 1] with a = n− 1− d 2kn e.

If n + 1 ≤ t < 2n, then d(G) is not an integer with bd(G)c = 2c + 1. By Lemma 2.4, we have D(G) = {2c + 1, 2c + 2} if
irrt(G) gets the minimum value. Assume that `G(2c + 1) = w and `G(2c + 2) = z. Similarly as above, we have w = 2n − t
and z = t − n. Therefore, G is a graph with 2n − t vertices of degrees 2c + 1 and t − n vertices of degrees 2c + 2. Thus we
have uB(G) ≥ (2n− t)(t− n) with equality holding if and only if G is a [2c+ 1, 2c+ 2]-graph with 2c+ 1 = b 2kn c and G ∈ G2n,
that is, G ∈ G2n[a, a+ 1] with a = n− 1− d 2kn e, completing the proof.

Note that G ∪H = G⊕H has diameter 2 for any two vertex-disjoint graphs G and H such that at least one of them is
non-complete. Combining it with a well-known fact that the complement of connected graph G has diameter 2 if G has a
finite diameter greater than 3 (see [2]), we have the following result.

Remark 3.1. Let G be a graph with (in)finite diameter greater than 3. Then G has diameter 2.

We give a sufficient condition on the set G2n[a, h] with h ∈ {a, a+ 1} in terms of the complement.

Remark 3.2. Let G be a graph of order n ≥ 3 with m edges. If G is a [n− 1− d 2mn e, n− 1− b 2mn c]-graph of diameter greater
than 3, then G ∈ G2n[b 2mn c, d

2m
n e].

Note that Petersen graph and its complement have diameters 2, the former is 3-regular and the latter is 6-regular.
Therefore Remark 3.2 is just a sufficient but not necessary condition of set G2n[a, h] with h ∈ {a, a+ 1}.

Theorem 3.3. LetG ∈ G2n of odd order n and sizem =
(
n
2

)
−k with ∆(G) = n−1. If 2k ≡ t (mod n−1) with 0 ≤ t < n−1, then

uB(G) ≥ t(n− t− 1) + 2k with equality holding if and only if G ∼= H ⊕K1 where H is an [a, h]-graph with a = n− 2− d 2k
n−1e

and h = a if t = 0 or h = a+ 1 otherwise.

Proof. Since ∆(G) = n − 1, G contains at least one isolated vertex. Define G1 to be a graph obtained from G by deleting
an isolated vertex. Thus uB(G) = irrt(G) = irrt(G) = irrt(G1) + 2k by Corollary 2.1 and Proposition 2.1.

Since 2k ≡ t (mod n − 1) with 0 ≤ t < n − 1, there exists an integer c such that 2k = c(n − 1) + t. If t = 0, we have
irrt(G1) ≥ 0 with equality holding if and only if G1 is a c-regular graph with G ∼= G1 ∪ K1, that is, G ∼= H ⊕ K1 where
H ∼= G1 is an a-regular graph with a = n− 2− 2k

n−1 .
If t > 0, then d(G1) is not an integer with bd(G1)c = c. By Lemma 2.4, we have D(G1) = {c, c + 1} if irrt(G1) gets the

minimum value. Assume that `G1(c) = x and `G1(c+ 1) = y. Then x+ y = n−1 and cx+ (c+ 1)y = c(n−1) + t, which imply
that x = n − t − 1 and y = t. Therefore G1 is a graph with n − t − 1 vertices of degrees c and t vertices of degrees c + 1.
Thus uB(G) = irrt(G1) + 2k ≥ t(n− t− 1) + 2k with equality holding if and only if G1 is a [c, c+ 1]-graph with c = b 2k

n−1c,
that is, G ∼= H ⊕K1 where H ∼= G1 is an [a, a+ 1]-graph with a = n− 2− d 2k

n−1e.

Theorem 3.4. LetG ∈ G2n of even order n and sizem =
(
n
2

)
−k with ∆(G) = n−1. If 2k ≡ t (mod 2(n−1)) with 0 ≤ t < 2n−2,

then

uB(G) ≥

t(n− t− 1) + 2k, 0 ≤ t ≤ n− 2;

(2n− t− 2)(t− n+ 1) + 2k, n ≤ t < 2n− 2

with equality holding if and only if G ∼= H ⊕ K1 where H is an [a, h]-graph with a = n − 2 − d 2k
n−1e and h = a if t = 0 or

h = a+ 1 otherwise.

Proof. Since ∆(G) = n − 1, G contains at least one isolated vertex. Let G1 to be a graph obtained from G by deleting an
isolated vertex. Thus uB(G) = irrt(G) = irrt(G) = irrt(G1) + 2k by Corollary 2.1 and Proposition 2.1.

Since 2k ≡ t (mod 2(n− 1)) with 0 ≤ t < 2n− 2, there exists an integer c such that 2k = 2c(n− 1) + t. If t = 0, we have
irrt(G1) ≥ 0 with equality holding if and only if G1 is a 2c-regular graph, that is, G ∼= H⊕K1 whereH ∼= G1 is an a-regular
graph with a = n− 2− 2k

n−1 .
If 0 < t ≤ n− 2, then d(G1) is not an integer with bd(G1)c = 2c. By Lemma 2.4, we have D(G1) = {2c, 2c+ 1} if irrt(G1)

gets the minimum value. Assume that `G1(2c) = x and `G1(2c+1) = y. Then x+y = n−1 and 2cx+(2c+1)y = 2c(n−1)+ t,
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which imply that x = n − t − 1 and y = t. Therefore G1 is a graph with n − t − 1 vertices of degrees 2c and t vertices of
degrees 2c+ 1. Thus uB(G) = irrt(G1) + 2k ≥ t(n− t− 1) + 2k with equality holding if and only if G1 is a [2c, 2c+ 1]-graph
with 2c = b 2k

n−1c, that is, G ∼= H ⊕K1 where H ∼= G1 is an [a, a+ 1]-graph with a = n− 2− d 2k
n−1e.

If n ≤ t < 2n− 2, then d(G1) is not an integer with bd(G1)c = 2c+ 1. By Lemma 2.4, we have D(G1) = {2c+ 1, 2c+ 2} if
irrt(G1) gets the minimum value. Assume that `G1(2c+1) = w and `G1(2c+2) = z. Similarly as above, we havew = 2n−t−2

and z = t−n+1. Therefore, G1 is a graph with 2n− t−2 vertices of degree 2c+1 and t−n+1 vertices of degree 2c+2. Thus
we have uB(G) = irrt(G1) + 2k ≥ (2n− t− 2)(t−n+ 1) + 2k with equality holding if and only if G1 is a [2c+ 1, 2c+ 2]-graph
with 2c+ 1 = b 2k

n−1c, that is, G ∼= H ⊕K1 where H ∼= G1 is an [a, a+ 1]-graph with a = n− 2− d 2k
n−1e.

In Theorems 3.1, 3.2, 3.3 and 3.4 we determine the minimal graphs from G2n with given number of edges with respect
to uB. We would like to end this paper with the following problem.

Problem 3.1. Determine the maximal graphs from G2n with given number of edges with respect to uB.
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[5] Š. Miklavič, P. Šparl, Distance-unbalancedness of graphs, Appl. Math. Comput. 405 (2021) 126233.
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