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Abstract

Let D = (V,A) be a digraph without isolated vertices. A vertex-degree based invariant I(D) related to a real func-
tion ϕ of D is defined as I(D) = 1

2

∑
uv∈A ϕ(d+u , d

−
v ), where d+u (respectively, d−u ) denotes the out-degree (respectively,

in-degree) of a vertex u. In this paper, we give the extremal values and extremal digraphs of I(D) over all digraphs with
n non-isolated vertices. By applying the obtained results, we determine the extremal values of some well-known vertex-
degree based topological indices of digraphs, such as the Randić index, the Zagreb indices, the sum-connectivity index, the
geometric-arithmetic index, the atom-bond connectivity index and the harmonic index, and characterize the corresponding
extremal digraphs.

Keywords: graph invariant; digraph; Randić index; Zagreb indices; sum-connectivity index; geometric-arithmetic index;
atom-bond connectivity index; harmonic index.
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1. Introduction

A digraphD = (V,A) is an ordered pair (V,A) consisting of a non-empty finite set V of vertices and a finite set A of ordered
pairs of distinct vertices called arcs (in particular, D has no loops). If a ∈ A is an arc from vertex u to vertex v, then we
indicate this by writing a = uv. The vertex u is the tail of a and the vertex v is its head. The out-degree (respectively,
in-degree) of a vertex u, denoted by d+u (respectively, d−u ) is the number of arcs with tail u (respectively, with head u). A
vertex u for which d+u = d−u = 0 is called an isolated vertex. We denote by Dn the set of all digraphs with n non-isolated
vertices.

Recently, J. Monsalve and J. Rada [7] extended the concept of vertex-degree based topological indices of graphs to
digraphs. They obtained the extremal values of the Randić index of digraphs over Dn, and found the extremal values of
the Randić index over the set of all oriented trees with n vertices. Also, they found the extremal values of the Randić index
over the set of all orientations of the path, the cycle with n vertices and the hypercube Hd of dimension d, respectively.

All the digraphs considered in this paper are strict, i.e., no loops and no two arcs with the same ends have the same
orientation.

A vertex-degree-based (VDB, for short) VDB invariant (or VDB topological index) I(D) related to a real function ϕ of a
digraph D with n non-isolated vertices is defined as

I(D) =
1

2

∑
1≤i,j≤n−1

aijϕij (1)

where ϕij = ϕ(i, j) and aij is the number of arcs in D of the form uv such that d+u = i and d−v = j, i.e., (i, j)-arcs in D.
Recall that if G is a graph, we can identify G with the symmetric digraph −→G by replacing every edge of G with a pair of

symmetric arcs. Under this correspondence,

I(G) =
∑

1≤i≤j≤n−1

mijϕij = I(
−→
G)

for any VDB topological index ϕ with ϕij = ϕji (symmetric) and mij the number of edges in G joining vertices of degree i
and j. In other words, The VDB topological index of digraphs is a generalization of the concept of VDB topological index
of graphs.
∗Corresponding author (zikaitang@163.com).
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In fact, a VDB topological index I(D) of a digraph is an invariant based on the weights of all arcs depending on the out
degrees of their tails and the in-degrees of their heads, i.e.,

I(G) =
∑
uv∈A

ϕ(d+u , d
−
v )

where ϕ(x, y) is a real function of x and y with ϕ(x, y) ≥ 0 and ϕ(x, y) = ϕ(y, x).

(i). If ϕ(x, y) = (xy)α, where α 6= 0 is a real number, then I(D) is the general Randić index of a digraph D. Furthermore,
I(D) is the Randić index, the second Zagreb index and the second modified Zagreb index for α = − 1

2 , α = 1 and
α = −1, respectively. For these indices of graphs, see [1,6,8,9].

(ii). If ϕ(x, y) = (x + y)α, then I(D) is the general sum-connectivity index of a digraph D. Further, I(G) is the sum-
connectivity index and the first Zagreb index for α = − 1

2 and α = 1, respectively. See [5,8,11,12] for graphs.

(iii). If ϕ(x, y) =
√
xy

1
2 (x+y)

, then I(D) is the first geometric-arithmetic index GA of a digraph D. See [10] for the first
geometric-arithmetic index of a graph.

(iv). If ϕ(x, y) =
√

x+y−2
xy , then I(G) is the atom-bond connectivity (ABC) index of a digraph D. See [3] for the atom-bond

connectivity index of a graph.

(v). If ϕ(x, y) = 2
x+y , then I(D) is the harmonic index of a digraph D. See [4] for the harmonic index of a graph.

In this paper, we give the extremal values and extremal graphs of the VDB topological indices over all digraphs with
n non-isolated vertices by a unified linear-programming modeling, and provide a unified approach to determining some
extremal values and characterizing extremal digraphs of Randić index, Zagreb indices, sum-connectivity index, GA index,
ABC index and harmonic index by using the linear programming methods.

2. General results on VDB invariants

LetD be a digraph on n ≥ 2 vertices without isolated vertices and aij be the number of arcs ofD from vertices of out-degree
i to vertices of in-degree j. If ϕ is symmetric, i.e. ϕij = ϕji for all 1 ≤ i < j ≤ n− 1, then we can simplify the expression in
(1) in the following

I(D) =
1

2

∑
1≤i≤j≤n−1

pijϕij (2)

where pij = aij + aji for i 6= j and 1 ≤ i, j ≤ n− 1, and pii = aii for all i = 1, 2, · · · , n− 1.
Note that pij = pji for all 1 ≤ i, j ≤ n− 1, and

n−1∑
j=1

pij + pii = ini, 1 ≤ i ≤ n− 1. (3)

where ni is the number of vertices of D with out-degree i or in-degree i. Also,

n1 + n2 + · · ·+ nn−1 = 2n− n0. (4)

The digraphs with n non-isolated vertices which satisfy the following conditions are of great interest to us

(i). {
pij = 0 for all (i, j) ∈ {(i, j) | 1 ≤ i ≤ j ≤ n− 1} − {(1, n− 1)},

n0 = 0.
(5)

i.e., a digraph with only (1, n−1)- or (n−1, 1)-arcs and the out-degree or in-degree of each vertex greater than 0. The
digraph obtained from the star on n vertices by replacing each of its edges with a pair of symmetric arcs satisfies (5).
The converse of this example does not hold since D1 = (V,A) is also a digraph satisfied (5), where V = {v1, v2, · · · , vn}
and A = {v1v2, v2v1, viv1, v2vi|3 ≤ i ≤ n}.

(ii). {
pij = 0 for all (i, j) ∈ {(i, j) | 1 ≤ i < j ≤ n− 1},

n0 = n.
(6)

i.e., the digraphs with only (i, i)-arcs (1 ≤ i ≤ n − 1) and the out-degree or in-degree of each vertex equal to 0. −→K2

satisfies (6), and D2 = (V,A) is also a digraph satisfied (6), where V = {v1, v2, v3, v4} and A = {v1v3, v1v4, v2v3, v2v4}.
All digraphs in which each component is −→K2 or D2 satisfy (6).
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(iii). {
pij = 0 for all (i, j) ∈ {(i, j) | 1 ≤ i < j ≤ n− 1},

n0 = 0.
(7)

i.e., the digraphs with only (i, i)-arcs (1 ≤ i ≤ n − 1) and the out-degree or in-degree of each vertex greater than 0.
The directed cycle−→C n on n vertices satisfies (7). All digraphs with n non-isolated vertices in which each component is
regular satisfy (7). The converse of this example does not hold since D3 = (V,A) is also a digraph satisfied (7), where
V = {v1, v2, v3, v4} and A = {v1v3, v1v4, v2v3, v2v4, v3v1, v4v2}.

We try to find min(I(G)) and max(I(G)) under the constraints (3) and (4). The following results give the solutions of this
problem for some VDB topological indices I(D), i.e., determine the extremal values and the correspond extremal digraphs
of I(D) over all digraphs on n vertices without isolated vertices.

Theorem 2.1. Let D be a digraph on n vertices without isolated vertices. Let

Lij =
n− 1

n

(
1

i
+

1

j

)
ϕ1,n−1 and S1 = {(i, j) | 1 ≤ i ≤ j ≤ n− 1} − {(1, n− 1)}.

Then

(i). If ϕij > Lij for all (i, j) ∈ S1, then I(D) ≥ n−1
2 ϕ1,n−1 with equality if and only if n0 = n and pij = 0 for all (i, j) ∈ S1,

i.e., D is the digraph −→K1,n−1 or −→Kn−1,1, a star on n vertices with its center of out-degree n− 1 or 0.

(ii). If ϕij < Lij for all (i, j) ∈ S1, then I(D) ≤ (n− 1)ϕ1,n−1 with equality if and only if n0 = 0 and pij = 0 for all (i, j) ∈ S1,
i.e., D satisfies the conditions (5).

Proof. From (3), we have

ni =
1

i

n−1∑
j=1

pij + pii

 , i = 2, 3, · · · , n− 2, (8)

n1 − p1,n−1 =

n−2∑
j=1

p1j + p11, (9)

(n− 1)nn−1 − p1,n−1 =

n−1∑
j=2

pj,n−1 + pn−1,n−1. (10)

By (4) and (8),

n1 + nn−1 = 2n− n0 −
n−2∑
i=2

1

i

n−1∑
j=1

pij + pii

 . (11)

Multiplying (9) by (n− 1) and adding (10), we obtain

(n− 1)(n1 + nn−1)− np1,n−1 = (n− 1)

n−2∑
j=1

p1j + (n− 1)p11 +

n−1∑
j=2

pj,n−1 + pn−1,n−1,

and by combining this equation with (11), we get

np1,n−1 = (n− 1)(n1 + nn−1)− (n− 1)

(
n−2∑
j=1

p1j + p11

)
−

(
n−1∑
j=2

pj,n−1 + pn−1,n−1

)

= (n− 1)

[
2n− n0 −

n−2∑
i=2

1
i

(
n−1∑
j=1

pij + pii

)]
− (n− 1)

(
n−2∑
j=1

p1j + p11

)
−

(
n−1∑
j=2

pj,n−1 + pn−1,n−1

)
.

Hence,

p1,n−1 = 2(n− 1)− n−1
n n0 − n−1

n

n−2∑
i=2

1
i

(
n−1∑
j=1

pij + pii

)
− n−1

n

(
n−2∑
j=1

p1j + p11

)
− 1

n

n−1∑
j=2

pj,n−1 − 1
npn−1,n−1

= 2(n− 1)− n−1
n n0 − n−1

n

[
n−1∑
i=1

1
i

(
n−1∑
j=1

pij + pii

)
− n

n−1p1,n−1

]

= 2(n− 1)− n−1
n n0 − n−1

n

[
n−1∑
i=1

1
i

(
n−1∑
j=1

pij + pii

)]
+ p1,n−1

= 2(n− 1)− n−1
n n0 − n−1

n

[ ∑
1≤i≤j≤n−1

( 1i +
1
j )pij

]
+ p1,n−1

= 2(n− 1)− n−1
n n0 − n−1

n

∑′
( 1i +

1
j )pij

4



H. Deng, Z. Tang, J. Yang, J. Yang, and M. You / Discrete Math. Lett. 9 (2022) 2–9 5

where
∑′ indicates summation over all (i, j) ∈ S1. Substituting it into (2), we obtain

2 I(D) = ϕ1,n−1p1,n−1 +
∑′

ϕijpij

= ϕ1,n−1[2(n− 1)− n−1
n n0 − n−1

n

∑′
( 1i +

1
j )pij ] +

∑′
ϕijpij

= [2(n− 1)− n−1
n n0]ϕ1,n−1 +

∑′
[ϕij − n−1

n ( 1i +
1
j )ϕ1,n−1]pij .

(12)

(i) If ϕij > Lij =
n−1
n ( 1i +

1
j )ϕ1,n−1 for all (i, j) ∈ S1, then (12) shows that I(D) ≥ 1

2 [2(n− 1)− n−1
n n0]ϕ1,n−1. Moreover,

I(D) ≥ n− 1

2
ϕ1,n−1

since n0 ≤ n, with equality if and only if n0 = n and pij = 0 for all (i, j) ∈ S1, i.e., D is the digraph −→K1,n−1 or −→Kn−1,1.
(ii) If ϕij < Lij for all (i, j) ∈ S1, then (12) shows that I(D) ≤ 1

2 [2(n− 1)− n−1
n n0]ϕ1,n−1. Moreover, I(D) ≤ (n− 1)ϕ1,n−1

since n0 ≥ 0, with equality if and only if n0 = 0 and pij = 0 for all (i, j) ∈ S1, i.e., D is a digraph satisfied (5).

Theorem 2.2. Let Mij =
n−1
2 ( 1i +

1
j )ϕn−1,n−1 and S2 = {(i, j) | 1 ≤ i ≤ j ≤ n− 1} − {(n− 1, n− 1)}. Then

(i). If ϕij > Mij for all (i, j) ∈ S2, then I(D) ≥ 1
4n(n − 1)ϕn−1,n−1 with equality if and only if n0 = n and pij = 0 for all

(i, j) ∈ S2, i.e., D =
−→
K2.

(ii). If ϕij < Mij for all (i, j) ∈ S2, then I(D) ≤ 1
2n(n − 1)ϕn−1,n−1 with equality if and only if n0 = 0 and pij = 0 for all

(i, j) ∈ S2, i.e., D is the digraph obtained from Kn by replacing each edge with a pair of symmetric arcs.

Proof. From (3) and (4), we obtain

nn−1 = (2n− n0)−
n−2∑
i=1

1
i

(
n−1∑
j=1

pij + pii

)

= (2n− n0)−

(
n−1∑
j=1

n−2∑
i=1

1
i pij +

n−2∑
i=1

1
i pii

)

= (2n− n0)−
∑

1≤i≤j≤n−1
( 1i +

1
j )pij +

1
n−1

n−2∑
j=1

pj,n−1 +
2

n−1pn−1,n−1.

By (3), it holds that
n−2∑
j=1

pn−1,j + 2pn−1,n−1 = (n− 1)nn−1

and
2pn−1,n−1 = (n− 1)nn−1 −

n−2∑
j=1

pn−1,j

= (n− 1)

[
(2n− n0)−

∑
1≤i≤j≤n−1

( 1i +
1
j )pij +

1
n−1

n−2∑
j=1

pj,n−1 +
2

n−1pn−1,n−1

]
−
n−2∑
j=1

pn−1,j

= (2n− n0)(n− 1)− (n− 1)
∑′′

( 1i +
1
j )pij

where
∑′′ indicates summation over all (i, j) ∈ S2. By substituting it into (2), we obtain

2 I(D) = ϕn−1,n−1pn−1,n−1 +
∑′′

ϕijpij

= ϕn−1,n−1[
1
2 (2n− n0)(n− 1)− 1

2 (n− 1)
∑′′

( 1i +
1
j )pij ] +

∑′′
ϕijpij

= 1
2 (2n− n0)(n− 1)ϕn−1,n−1 +

∑′′
[ϕij − n−1

2 ( 1i +
1
j )ϕn−1,n−1]pij .

(13)

(i) If ϕij > Mij for all (i, j) ∈ S2, then (13) shows that I(D) ≥ 1
4 (2n − n0)(n − 1)ϕn−1,n−1. Moreover, I(D) ≥ 1

4n(n −
1)ϕn−1,n−1 since n0 ≤ n, with equality if and only if n0 = n and pij = 0 for all (i, j) ∈ S2, i.e., D is a digraph with only
(n− 1, n− 1)-arcs and the out-degree or in-degree of each vertex equal to 0. So, D =

−→
K2.

(ii) If ϕij < Mij for all (i, j) ∈ S2, then (13) shows that I(D) ≤ 1
4 (2n − n0)(n − 1)ϕn−1,n−1. Moreover, I(D) ≤ 1

2n(n −
1)ϕn−1,n−1 since n0 ≥ 0, with equality if and only if n0 = 0 and pij = 0 for all (i, j) ∈ S2, i.e., D is the digraph obtained from
the complete graph Kn by replacing each edge with a pair of symmetric arcs.

Theorem 2.3. Let S3 = {(i, j) | 1 ≤ i 6= j ≤ n− 1}. Then

(i). If ϕij > Mij for all (i, j) ∈ S3, and iϕii = (n− 1)ϕn−1,n−1 for 1 ≤ i ≤ n− 2, then I(D) ≥ 1
4n(n− 1)ϕn−1,n−1 with equality

if and only if n0 = n and pij = 0 for all (i, j) ∈ S3, i.e., D is a digraph satisfied (6).

5
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(ii). If ϕij < Mij for all (i, j) ∈ S3, and iϕii = (n− 1)ϕn−1,n−1 for 1 ≤ i ≤ n− 2, then I(D) ≤ 1
2n(n− 1)ϕn−1,n−1 with equality

if and only if n0 = 0 and pij = 0 for all (i, j) ∈ S3, i.e., D is a digraph satisfied (7).

Proof. From (13), we have

2I(G) = 1
2 (2n− n0)(n− 1)ϕn−1,n−1 +

∑
1≤i<j≤n−1

[ϕij − n−1
2 ( 1i +

1
j )ϕn−1,n−1]pij +

n−2∑
i=1

[ϕii − n−1
i ϕn−1,n−1]pii. (14)

(i) If ϕij > Mij for all (i, j) ∈ S3, and iϕii = (n− 1)ϕn−1,n−1 for 1 ≤ i ≤ n− 2, then (14) shows that

I(D) ≥ 1

4
(2n− n0)(n− 1)ϕn−1,n−1.

Moreover, I(D) ≥ 1
4n(n− 1)ϕn−1,n−1 since n0 ≤ n, with equality if and only if n0 = n and pij = 0 for all (i, j) ∈ S3, i.e., D is

the digraph satisfied (6).
(ii) If ϕij < Mij for all (i, j) ∈ S3, and iϕii = (n− 1)ϕn−1,n−1 for 1 ≤ i ≤ n− 2, then (14) shows that

I(D) ≤ 1

4
(2n− n0)(n− 1)ϕn−1,n−1.

Moreover, I(D) ≤ 1
2n(n− 1)ϕn−1,n−1 since n0 ≥ 0, with equality if and only if n0 = 0 and pij = 0 for all (i, j) ∈ S3, i.e., D is

a digraph satisfied (7).

Theorems 2.1-2.3 show that the results on digraphs are different from the results on graphs in [2].

3. Applications

In this section, we give some results on Randić index, Zagreb indices, sum-connectivity index, GA index and ABC index
of digraphs by using Theorems 2.1-2.3.

3.1. The general Randić index of digraphs
Let ϕij = (ij)α. Then I(D) = Rα(D) = 1

2

∑
1≤i≤j≤n−1 pij(ij)

α is the general Randić index of a digraphD with n non-isolated
vertices. In particular, Rα(D) is the Randić index, the second Zagreb index and the modified Zagreb index of a digraph for
α = − 1

2 , α = 1 and α = −1, respectively.

(i) Let − 1
2 ≤ α < +∞. Then 2α+ 1 ≥ 0.

Note that ij ≤ ( i+j2 )2 and i, j ≤ n− 1, we have

(ij)α+1 ≤
(
i+ j

2

)2α+2

=
1

22α+2
(i+ j)2α+1(i+ j)

≤ 1

22α+2
[2(n− 1)]2α+1(i+ j) =

1

2
(n− 1)2α+1(i+ j),

and ϕij ≤ n−1
2 ( 1i +

1
j )ϕn−1,n−1 with equality if and only if (a) i = j = n − 1 for − 1

2 < α < +∞, or (b) i = j for α = − 1
2 . By

Theorems 2.2(ii) and 2.3(ii), we have

Rα(D) ≤ 1

2
n(n− 1)ϕn−1,n−1 =

1

2
n(n− 1)2α+1

with equality if and only if (a) D is the digraph obtained from Kn by replacing each edge with a pair of symmetric arcs for
− 1

2 < α < +∞, or (b)D is a digraph satisfied (7). So, (a) the digraph with the maximal general Randić index (including the
second Zagreb index) for − 1

2 < α < +∞ is the digraph obtained from Kn by replacing each edge with a pair of symmetric
arcs; (b) the digraphs with the maximal Randić index are those satisfied (7), see Theorem 3.7 in [7].

Corollary 3.1. If D ∈ Dn, then (a) Rα(D) ≤ 1
2n(n− 1)2α+1 for − 1

2 < α < +∞ with equality if and only if D is the digraph
obtained from Kn by replacing each edge with a pair of symmetric arcs; (b) (Theorem 3.7 in [7]) R− 1

2
(D) ≤ n

2 with equality
if and only if D satisfies (7).

(ii) Let −∞ < α ≤ −1.
Because ij ≤ ( i+j2 )2 and α ≤ −1, we have

(ij)α+1 ≥
(
i+ j

2

)2α+2

=
1

22α+2
(i+ j)2α+1(i+ j)

6
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≥ 1

22α+2
[2(n− 1)]2α+1(i+ j) =

1

2
(n− 1)2α+1(i+ j),

and ϕij ≥ n−1
2 ( 1i +

1
j )ϕn−1,n−1 with equality if and only if i = j = n− 1. By Theorem 2.2(i), we have

Rα(D) ≥ 1

4
n(n− 1)ϕn−1,n−1 =

1

4
n(n− 1)2α+1

with equality if and only ifD =
−→
K2. So, the digraph with the minimal general Randić index (including the modified Zagreb

index) for −∞ < α ≤ −1 is −→K2.

Corollary 3.2. If D ∈ Dn, then Rα(D) ≤ 1
4n(n− 1)2α+1 for −∞ < α ≤ −1 with equality if and only if D =

−→
K2.

(iii) Let − 1
2 ≤ α < 0.

In the following, we show that ϕij > n−1
n ( 1i + 1

j )ϕ1,n−1 for all (i, j) ∈ {(i, j) | 1 ≤ i ≤ j ≤ n − 1} − {(1, n − 1)}. Let
g(x, y) = (xy)α+1

x+y , where 1 ≤ x ≤ y ≤ n − 1. Note that αx + y + αy ≥ (2α + 1)x ≥ 0, ∂g
∂x = y(xy)α(αx+y+αy)

(x+y)2 = 0 and
∂g
∂y = x(xy)α(αx+x+αy)

(x+y)2 = 0 if and only if α = − 1
2 and x = y. So, the minimal point of g(x, y) in the region {(x, y) | 1 ≤ x ≤

y ≤ n − 1} is on the boundary of this region, and the minimal value of g(x, y) in the region {(x, y) | 1 ≤ x ≤ y ≤ n − 1} is
min{g(1, 1), g(1, n − 1)} = min{ 12 ,

(n−1)α+1

n }. If α ∈ (− 1
2 , 0), then (n−1)α+1

n < 1
2 for sufficiently large n; and if α = − 1

2 , then
(n−1)α+1

n < 1
2 for n ≥ 3. Hence, g(i, j) ≥ g(1, n− 1), and

(ij)α ≥ (n− 1)α+1

n
(
1

i
+

1

j
), i.e. ϕij ≥

n− 1

n
(
1

i
+

1

j
)ϕ1,n−1

with equality if and only if (i, j) = (1, n− 1). By Theorem 2.1(i), we have

Rα(D) ≥ n− 1

2
ϕ1,n−1 =

1

2
(n− 1)α+1

with equality if and only if D is the digraph −→K1,n−1 or −→Kn−1,1 for sufficiently large n. So, the digraph with the minimal
Randić index is −→K1,n−1 or −→Kn−1,1 over Dn for n ≥ 3; and the digraph with the minimal general Randić index for α ∈ (− 1

2 , 0)

is also −→K1,n−1 or −→Kn−1,1 over Dn for sufficiently large n.

Corollary 3.3. (a) (Theorem 3.11 in [7]) If D ∈ Dn, n ≥ 3, then R− 1
2
(D) ≥ 1

2

√
n− 1 with equality if and only if D =

−→
K1,n−1

or D =
−→
Kn−1,1;

(b) Let − 1
2 ≤ α < 0. If D ∈ Dn, then Rα(D) ≥ 1

2 (n− 1)α+1 for sufficiently large n, with equality if and only if D =
−→
K1,n−1 or

D =
−→
Kn−1,1.

3.2. The general sum-connectivity index of digraphs
Let ϕij = (i + j)α. Then I(D) = χα(D) = 1

2

∑
1≤i≤j≤n−1 pij(i + j)α is the general sum-connectivity index of a digraph D,

and χα(D) is the sum-connectivity index and the first Zagreb index of D for α = − 1
2 and α = 1, respectively.

(i) Let −1 ≤ α < +∞.
Because 1 ≤ i ≤ j ≤ n− 1 and α+ 1 ≥ 0,

ij ≤ (
i+ j

2
)2 =

(
i+ j

2

)1−α(
i+ j

2

)1+α

≤
(
i+ j

2

)1−α

(n− 1)1+α,

and ϕij = (i+j)α ≤ n−1
2 ( 1i +

1
j )[2(n−1)]

α = n−1
2 ( 1i +

1
j )ϕn−1,n−1 with equality if and only if (a) i = j = n−1 for−1 < α < +∞,

or (b) i = j for α = −1. By Theorems 2.2(ii) and 2.3(ii), we have

χα(D) ≤ 1

2
n(n− 1)ϕn−1,n−1 = 2α−1n(n− 1)α+1

with equality if and only if (a) D is the digraph obtained from the complete graph Kn by replacing each edge with a pair of
symmetric arcs, or (b) D satisfies (7). Especially, this shows that the graph with the maximal sum-connectivity index, or
the maximal first Zagreb index is Kn among all graphs of order n.

Corollary 3.4. If D ∈ Dn, then (a) χα(D) ≤ 2α−1n(n− 1)α+1 for − 1
2 < α < +∞ with equality if and only if D is the digraph

obtained fromKn by replacing each edge with a pair of symmetric arcs; (b) χ−1(D) ≤ n
4 with equality if and only ifD satisfies

(7).

7



H. Deng, Z. Tang, J. Yang, J. Yang, and M. You / Discrete Math. Lett. 9 (2022) 2–9 8

(ii) Let −1 ≤ α < 0.
We consider the function g(x, y) = (xy)(x + y)α−1, where 1 ≤ x ≤ y ≤ n − 1. It is easy to know that the minimal value of
g(x, y) = (xy)(x + y)α−1 in the region {(x, y) | 1 ≤ x ≤ y ≤ n − 1} is min{g(1, 1), g(1, n − 1)} = min{2α−1, (n − 1)nα−1}. If
α ∈ (− 1

2 , 0), then (n− 1)nα−1 < 2α−1 for sufficiently large n; and if α ∈ [−1,− 1
2 ], then (n− 1)nα−1 < 2α−1 for n ≥ 6. Hence,

g(i, j) ≥ g(1, n− 1), and
(i+ j)α ≥ (n− 1)nα−1(

1

i
+

1

j
), i.e., ϕij ≥

n− 1

n
(
1

i
+

1

j
)ϕ1,n−1

with equality if and only if (i, j) = (1, n− 1). By Theorem 2.1(i), we have

χα(D) ≥ 1

2
(n− 1)ϕ1,n−1 =

1

2
(n− 1)nα

with equality if and only if D is −→K1,n−1 or −→Kn−1,1 for α ∈ [−1, 0) and sufficiently large n, or for α ∈ [−1,− 1
2 ] and n ≥ 6.

So that the graph with the minimal general sum-connectivity index for α ∈ [−1,− 1
2 ] is −→K1,n−1 or −→Kn−1,1 over Dn; and

the digraph with the minimal general sum-connectivity index for α ∈ [−1, 0) is also −→K1,n−1 or −→Kn−1,1 over Dn when n is
sufficiently large.

Corollary 3.5. Let D ∈ Dn. If α ∈ [−1,− 1
2 ] and n ≥ 6, or α ∈ [−1, 0) and n is sufficiently large, then χα(D) ≥ 1

2 (n − 1)nα

with equality if and only if D is −→K1,n−1 or −→Kn−1,1.

3.3. The geometric-arithmetic index of digraphs

Let ϕij =
√
ij

1
2 (i+j)

. Then I(D) = GA(D) = 1
2

∑
1≤i≤j≤n−1 pij

√
ij

1
2 (i+j)

is the first geometric-arithmetic index GA of a digraph D.
(i) Note that ϕn−1,n−1 = 1 and (ij)

3
2 ≤ ( i+j2 )3 = i+j

8 (i + j)2 ≤ n−1
4 (i + j)2, i.e.

√
ij

1
2 (i+j)

≤ n−1
2 ( 1i +

1
j ), we have ϕij ≤

n−1
2 ( 1i +

1
j )ϕn−1,n−1 with equality if and only if i = j = n− 1. By Theorem 2.2(ii),

GA(D) ≤ 1

2
n(n− 1)ϕn−1,n−1 =

1

2
n(n− 1)

with equality if and only if D is the digraph obtained from Kn by replacing each edge with a pair of symmetric arcs.
(ii) It is easy to know that the minimal value of g(x, y) = (xy)

3
2

(x+y)2 in the region {(x, y) | 1 ≤ x ≤ y ≤ n− 1} is g(1, n− 1) =

(n−1)
3
2

n2 , g(i, j) ≥ g(1, n− 1), i.e. (ij)
3
2

(i+j)2 ≥
(n−1)

3
2

n2 . Hence,
√
ij

1
2 (i+ j)

≥ n− 1

n
(
1

i
+

1

j
)

√
n− 1
1
2n

i.e., ϕij ≥
n− 1

n
(
1

i
+

1

j
)ϕ1,n−1

with equality if and only if (i, j) = (1, n− 1). By Theorem 2.1(i), we have

GA(D) ≥ 1

2
(n− 1)ϕ1,n−1 =

(n− 1)
3
2

n

with equality if and only if D is −→K1,n−1 or −→Kn−1,1.
So, we obtain the digraphs with the maximal and the minimal geometric-arithmetic index GA over Dn.

Corollary 3.6. If D ∈ Dn, then GA(D) ≤ 1
2n(n − 1) with equality if and only if D is the digraph obtained from Kn by

replacing each edge with a pair of symmetric arcs; GA(D) ≥ (n−1)
3
2

n with equality if and only if D is −→K1,n−1 or −→Kn−1,1.

3.4. The atom-bond connectivity index of digraphs

Let ϕij =
√

i+j−2
ij , then I(D) = ABC(D) = 1

2

∑
1≤i≤j≤n−1 pij

√
i+j−2
ij is the ABC index of a digraph D. Since 1 ≤ i ≤ j ≤

n− 1,
i+ j − 2

ij
≤ 2(n− 2)

ij
≤ 2(n− 2)

(ij)2

(
i+ j

2

)2

≤ n− 2

2

(
i+ j

ij

)2

,

and
√

i+j−2
ij ≤

√
n−2
2 ( i+jij ), i.e., ϕij ≤ n−1

2 ( 1i +
1
j )ϕn−1,n−1 with equality if and only if i = j = n− 1. By Theorem 2.2(ii), we

have
ABC(D) ≤ 1

2
n(n− 1)ϕn−1,n−1 =

1

2
n
√
2n− 4

with equality if and only if D is the digraph obtained from Kn by replacing each edge with a pair of symmetric arcs.
This shows that the digraphs with the maximal ABC index over Dn is the digraph obtained from Kn by replacing each

edge with a pair of symmetric arcs.

Corollary 3.7. If D ∈ Dn, then ABC(D) ≤ 1
2n
√
2n− 4 with equality if and only if D is the digraph obtained from Kn by

replacing each edge with a pair of symmetric arcs.

8
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3.5. The harmonic index of digraphs
Let ϕij = 2

i+j . Then I(D) = h(D) = 1
2

∑
1≤i≤j≤n−1 pij

2
i+j is the harmonic index of a digraph D.

(i) Note that
ϕij =

2

i+ j
≤ i+ j

2ij
=
n− 1

2

(
1

i
+

1

j

)
ϕn−1,n−1

with equality if and only if i = j, and iϕii = 1 = (n− 1)ϕn−1,n−1, from Theorem 2.3(ii), we have

h(D) ≤ 1

2
n(n− 1)ϕn−1,n−1 =

n

2

with equality if and only if D is a digraph satisfied (7).
(ii) Also, the minimal value of g(x, y) = (xy)

(x+y)2 in the region {(x, y) | 1 ≤ x ≤ y ≤ n − 1} is g(1, n − 1) = n−1
n2 , we have

g(i, j) = ij
(i+j)2 ≥

n−1
n2 = g(1, n− 1) and

ϕij =
2

i+ j
≥ n− 1

n

(
1

i
+

1

j

)
2

n
=
n− 1

n

(
1

i
+

1

j

)
ϕ1,n−1

with equality if and only if (i, j) = (1, n− 1). By Theorem 2.1(i), we have

h(D) ≥ 1

2
(n− 1)ϕ1,n−1 =

n− 1

n

with equality if and only if D is −→K1,n−1 or −→Kn−1,1.
So, we obtain the digraphs with the minimal and maximal harmonic index over Dn.

Corollary 3.8. If D ∈ Dn, then h(D) ≤ n
2 with equality if and only if D is a digraph satisfied (7); h(D) ≥ n−1

n with equality
if and only if D is −→K1,n−1 or −→Kn−1,1.
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