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Abstract

We introduce a degree–based variable topological index inspired on the power (or generalized) mean. We name this new index
as the mean Sombor index: mSOα(G) =

∑
uv∈E(G) [(d

α
u + dαv ) /2]1/α. Here, uv denotes the edge of the graph G connecting

the vertices u and v, du is the degree of the vertex u, and α ∈ R\{0}. We also consider the limit cases mSOα→0(G) and
mSOα→±∞(G). Indeed, for given values of α, the mean Sombor index is related to well-known topological indices such as
the inverse sum indeg index, the reciprocal Randić index, the first Zagreb index, the Stolarsky–Puebla index and several
Sombor indices. Moreover, through a quantitative structure property relationship (QSPR) analysis we show that mSOα(G)
correlates well with several physicochemical properties of octane isomers. Some mathematical properties of the mean
Sombor index as well as bounds and new relationships with known topological indices are also discussed.
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1. Preliminaries

For two positive real numbers x,y, the power mean or generalized mean PMα(x, y) with exponent α ∈ R\{0} is given as

PMα(x, y) =

(
xα + yα

2

)1/α

, (1)

see e.g. [2, 17]. PMα(x, y) is also known as Hölder mean. For given values of α, PMα(x, y) reproduces well-known mean
values. As examples, in Table 1 we show some expressions for PMα(x, y) for selected values of α with their corresponding
names, when available.

Table 1: Expressions for the generalized mean PMα(x, y) for selected values of α.
α PMα(x, y) name (when available)

−∞ PMα→−∞(x, y) = min(x, y) minimum value

−1 PM−1(x, y) =
2xy

x+ y
harmonic mean

0 PMα→0(x, y) =
√
xy geometric mean

1/2 PM1/2(x, y) =

(√
x+
√
y

2

)2

1 PM1(x, y) =
x+ y

2
arithmetic mean

2 PM2(x, y) =

(
x2 + y2

2

)1/2

root mean square

3 PM3(x, y) =

(
x3 + y3

2

)1/3

cubic mean

∞ PMα→∞(x, y) = max(x, y) maximum value
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There is a well known inequality for the power mean, namely [3,9,13]: For any α1 < α2,

PMα1
(x, y) ≤ PMα2

(x, y) , (2)

where the equality is attained for x = y.

2. The mean Sombor index

A large number of graph invariants of the form

TI(G) =
∑

uv∈E(G)

F (du, dv) (3)

are currently been studied in mathematical chemistry; where uv denotes the edge of the graph G connecting the vertices
u and v, du is the degree of the vertex u, and F (x, y) is an appropriate chosen function, see e.g. [4,15,16].

Inspired by the power mean and given a simple graph G = (V (G), E(G)), here we choose the function F (x, y) in Equa-
tion (3) as the power mean PMα(x, y) and define the degree–based variable topological index

mSOα(G) =
∑

uv∈E(G)

(
dαu + dαv

2

)1/α

, (4)

where α ∈ R\{0}. We name mSOα(G) as the mean Sombor index.

Table 2: Expressions for the mean Sombor index mSOα(G) for selected values of α.
α mSOα(G) index equivalence

−∞ mSOα→−∞(G) =
∑

uv∈E(G)

min(du, dv) SPα→−∞(G)

−1 mSO−1(G) =
∑

uv∈E(G)

2dudv
du + dv

2ISI(G)

0 mSOα→0(G) =
∑

uv∈E(G)

√
dudv R−1(G)

1/2 mSO1/2(G) =
∑

uv∈E(G)

(√
du +

√
dv

2

)2

2−2KA1
1/2,2(G)

1 mSO1(G) =
∑

uv∈E(G)

du + dv
2

2−1M1(G)

2 mSO2(G) =
∑

uv∈E(G)

(
d2
u + d2

v

2

)1/2

2−1/2SO(G)

3 mSO3(G) =
∑

uv∈E(G)

(
d3
u + d3

v

2

)1/3

2−1/3KA1
3,1/3(G)

∞ mSOα→∞(G) =
∑

uv∈E(G)

max(du, dv) SPα→∞(G)

Note that for given values of α, the mean Sombor index is related to known topological indices: mSO−1(G) = 2ISI(G),
where ISI(G) is the inverse sum indeg index [18, 19], mSOα→0(G) = R−1(G), where R−1(G) is the reciprocal Randić
index [6], and mSO1(G) = M1(G)/2, where M1(G) is the first Zagreb index [7]. Also, it is relevant to stress that the
mean Sombor index is related to several Sombor indices: mSO2(G) = 2−1/2SO(G), where SO(G) is the Sombor in-
dex [5], mSOα(G) = 2−1/αSOα(G), where SOα(G) is the α-Sombor index [14], and mSOα(G) = 2−1/αKA1

α,1/α(G), where
KA1

α,β(G) =
∑
uv∈E(G) (dαu + dαv )

β is the first (α, β) −KA index [8]. In addition, the limit cases mSOα→±∞(G) correspond
with the limit cases SPα→±∞(G) of the recently introduced Stolarsky–Puebla index [10].

In Table 2 we report some expressions for mSOα(G) for selected values of α that we identify with known topological
indices.

3. QSPR study of mSOα(G) on octane isomers

As a first application of mean Sombor indices, here we perform a quantitative structure property relationship (QSPR)
study of mSOα(G) to model some physicochemical properties of octane isomers. Here we choose to study the following
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properties: acentric factor (AcentFac), boiling point (BP), heat capacity at constant pressure (HCCP), critical temperature
(CT), relative density (DENS), standard enthalpy of formation (DHFORM), standard enthalpy of vaporization (DHVAP),
enthalpy of formation (HFORM), heat of vaporization (HV) at 25◦C, enthalpy of vaporization (HVAP), and entropy (S). The
experimental values of the physicochemical properties of the octane isomers were kindly provided by Dr. S. Mondal, see
Table 2 in Ref. [12].
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Figure 1: Mean Sombor index mSOα(G) vs. the physicochemical properties of octane isomers, for the values of α that
maximize the correlations: (a) α = 0, (b) α = −8.19, (c) α = −0.87, (d) α = −2.05, (e) α = −0.53, (f) α = −1.28, (g) α → ∞,
(h) α = −4.23, (i) α→ −∞, (j) α→∞, and (k) α = 0.58. Red dashed lines are the linear QSPR models of Equation (5), with
the regression and statistical parameters resumed in Table 3.

In Figure 1 we plot mSOα(G) vs. the physicochemical properties of octane isomers for the values of α that maximize
the absolute value of Pearson’s correlation coefficient r; see Table 3. Moreover, in Figure 1 we tested the following linear
regression model

P = c1[mSOα(G)] + c2, (5)

where P represents a given physicochemical property. In Table 3 we resume the regression and statistical parameters of
the linear QSPR models (see the red dashed lines in Figure 1) given by Equation (5).

From Table 3 we can conclude that mSOα(G) provides good predictions of AcentFac, BP, HCCP, DHVAP, HFORM, HV,
HVAP, and S for which the correlation coefficients (absolute values) are closer or higher than 0.9. Note that for all these
physicochemical properties of octane isomers the statistical significance of the linear model of Equation (5) is far below 5%.
Also notice that the mean Sombor index that better correlates (linearly) with the AcentFac is mSOα→0(G), which indeed
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Table 3: For the physicochemical properties P reported in Figure 1: values of α that maximize the absolute value of
Pearson’s correlation coefficient r. c2, c1, SE, F , and SF are the intercept, slope, standard error, F -test, and statistical
significance, respectively, of the linear QSPR models of Equation (5).

property P α r c2 c1 SE F SF

AcentFac 0 −0.990 0.988 −0.046 0.005 749.116 7.25E-15
BP −8.19 0.886 14.115 8.946 2.929 58.126 1.00E-06

HCCP −0.87 0.928 −21.216 3.604 0.504 98.128 3.13E-08
CT −2.05 0.717 30.048 20.859 6.788 16.934 8.10E-04

DENS −0.53 0.702 0.134 0.042 0.022 15.518 1.17E-03
DHFORM −1.28 0.781 −26.253 2.331 0.546 24.924 1.33E-04

DHVAP ∞ −0.962 11.375 −0.117 0.108 196.401 2.11E-10
HFORM −4.23 0.912 −77.705 2.220 0.530 78.903 1.39E-07

HV −∞ 0.895 15.880 2.036 1.286 4.622 4.72E-02
HVAP ∞ −0.921 80.550 −0.592 0.813 89.724 5.81E-08

S 0.58 −0.956 160.060 −3.655 1.372 98.128 3.13E-08

coincides with the reciprocal Randić index. Moreover, we found that |r| is maximized when α→∞, for DHVAP and HVAP,
and when α → −∞ for HV. This means that the limiting cases mSOα→±∞(G) are also relevant from an application point
of view.

4. Inequalities involving mSOα(G)

Equation (2) can be straightforwardly used to state a monotonicity property for themSOα(G) index, as well as inequalities
for related indices. That is, if α1 < α2 we have,

mSOα1(G) ≤ mSOα2(G) , (6)

which implies, for the the first (a, b)−KA index, that

2−1/α1KA1
α1,1/α1

(G) ≤ 2−1/α2KA1
α2,1/α2

(G) , α1 < α2 , (7)

and moreover
2ISI(G) ≤ R−1(G) ≤ 2−2KA1

1/2,2(G) ≤ 2−1M1(G) ≤ 2−1/2SO(G) . (8)

Note that this last inequality involves the inverse sum indeg index, the reciprocal Randić index, the (a, b)−KA index, the
first Zagreb index, and the Sombor index. It is fair to acknowledge that the very last inequality in (8) was already included
in the Theorem 3.1 of [11].

In what follows we will state bounds for the mean Sombor index as well as new relationships with known topological
indices.

We will use the following particular case of Jensen’s inequality.

Lemma 4.1. If g is a convex function on R and x1, . . . , xm ∈ R, then

g
(x1 + · · ·+ xm

m

)
≤ 1

m

(
g(x1) + · · ·+ g(xm)

)
.

If g is strictly convex, then the equality is attained in the inequality if and only if x1 = · · · = xm.

Theorem 4.1. Let G be a graph with m edges and α ∈ R; if α > 1 then

mSOα(G) ≤ m1−1/α

21/α

(
Mα+1

1 (G)
)1/α

,

if α < 1 and α 6= 0 then

mSOα(G) ≥ m1−1/α

21/α

(
Mα+1

1 (G)
)1/α

,

and the equality in each bound is attained for a connected graph G if and only if G is regular or biregular.
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Proof. Assume first that α > 1 then, for x ≥ 0, x1/α is a concave function and by Lemma 4.1 we have

1

m

∑
uv∈E(G)

(
dαu + dαv

2

)1/α

≤

 1

2m

∑
uv∈E(G)

(dαu + dαv )

1/α

=
1

21/αm1/α

 ∑
u∈V (G)

dα+1
u

1/α

=
1

21/αm1/α

(
Mα+1

1 (G)
)1/α

.

Assume now that α < 1 and α 6= 0, then x1/α is a convex function and by Jensen’s inequality we obtain

1

m

∑
uv∈E(G)

(
dαu + dαv

2

)1/α

≥

 1

2m

∑
uv∈E(G)

(dαu + dαv )

1/α

=
1

21/αm1/α

 ∑
u∈V (G)

dα+1
u

1/α

=
1

21/αm1/α

(
Mα+1

1 (G)
)1/α

.

If G is regular or biregular, with maximum and minimum degrees ∆ and δ, respectively,

mSOα(G) = m

(
∆α + δα

2

)1/α

=
m1−1/α

21/α
(m(∆α + δα))

1/α
=
m1−1/α

21/α

(
Mα+1

1 (G)
)1/α

.

If any of these equalities hold, for every uv, u′v′ ∈ E(G), by Lemma 4.1, we have dαu + dαv = dαu′ + dαv′ . In particular if we
take u = u′ we have dv = dv′ , so all the neighbors of a vertex u ∈ V (G) have the same degree. Thus, since G is a connected
graph, G is regular or biregular.

In order to prove the next result we need an additional technical result. In [1, Theorem 3] appears a converse of Hölder
inequality, which in the discrete case can be stated as follows [1, Corollary 2].

Lemma 4.2. If 1 < p, q <∞ with 1/p+ 1/q = 1, xj , yj ≥ 0 and ayqj ≤ x
p
j ≤ by

q
j for 1 ≤ j ≤ k and some positive constants a, b,

then: ( k∑
j=1

xpj

)1/p( k∑
j=1

yqj

)1/q

≤ Kp(a, b)

k∑
j=1

xjyj ,

where

Kp(a, b) =


1

p

(a
b

)1/(2q)

+
1

q

( b
a

)1/(2p)

, if 1 < p < 2 ,

1

p

( b
a

)1/(2q)

+
1

q

(a
b

)1/(2p)

, if p ≥ 2 .

If xj > 0 for some 1 ≤ j ≤ k, then the equality in the bound is attained if and only if a = b and xpj = ayqj for every
1 ≤ j ≤ k.

Theorem 4.2. Let G be a graph with m edges, maximum degree ∆ and minimum degree δ, let 0 < α < 1, then

mSOα(G) ≤ m1−1/α

21/α
Kα

(
Mα+1

1 (G)
)1/α

where

Kα
α =


α
(

∆
δ

)α−α2

2 + (1− α)
(

∆
δ

)−α2

2 , if 0 < α ≤ 1
2 ,

α
(

∆
δ

)α2−α
2 + (1− α)

(
∆
δ

)α2

2 , if 1
2 < α < 1 ,

the equality holds if and only if G is a regular graph.

Proof. For each uv ∈ E(G) we have
δα ≤ dαu + dαv

2
≤ ∆α .

If we take xj = dαu , yj = dαv and p = 1/α by Lemma 4.2 we have

m1−α (mSOα(G))
α

=

 ∑
uv∈E(G)

(
dαu + dαv

2

)1/α
α ∑

uv∈E(G)

1
1

1−α

1−α

≤ Kα
α

∑
uv∈E(G)

dαu + dαv
2

=
1

2
Kα
αM

α+1
1 (G) ,
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where

Kα
α =


α
(

∆
δ

)α−α2

2 + (1− α)
(

∆
δ

)−α2

2 , if 0 < α ≤ 1
2 ,

α
(

∆
δ

)α2−α
2 + (1− α)

(
∆
δ

)α2

2 , if 1
2 < α < 1 ,

and the equality holds if and only if δ = ∆, i.e., G is regular.

The following inequalities are known for x, y > 0:
xa + ya < (x+ y)a ≤ 2a−1(xa + ya) if a > 1,

2a−1(xa + ya) ≤ (x+ y)a < xa + ya if 0 < a < 1,

(x+ y)a ≤ 2a−1(xa + ya) if a < 0,

(9)

and the equality in the second, third or fifth bound is attained for each a if and only if x = y.

Proposition 4.1. Let G be a graph and α ∈ R\{0}, then

2−1/αSO(G) < mSOα(G) ≤ 2−1/2SO(G) if 0 < α < 2,

2−1/2SO(G) ≤ mSOα(G) < 2−1/αSO(G) if α > 2,

mSOα(G) ≤ 2−1/2SO(G) if α < 0 ,

and the equality in the second, third or fifth bound is attained for each α if and only if each connected component of G is a
regular graph.

Proof. If we divide each one of the inequalities in (9) by 2a we obtain

2−a (xa + ya) <

(
x+ y

2

)a
≤ xa + ya

2
if a > 1,

xa + ya

2
≤
(
x+ y

2

)a
< 2−a (xa + ya) if 0 < a < 1,

(
x+ y

2

)a
≤ xa + ya

2
if a < 0.

If we take x = dαu , y = dαv and a = 2/α; then the previous inequalities give

2−2/α
(
d2
u + d2

v

)
<

(
dαu + dαv

2

)2/α

≤ d2
u + d2

v

2
if 0 < α < 2,

d2
u + d2

v

2
≤
(
dαu + dαv

2

)2/α

< 2−2/α
(
d2
u + d2

v

)
if α > 2,

(
dαu + dαv

2

)2/α

≤ d2
u + d2

v

2
if α < 0,

and the equality in the second, third or fifth bounds are attained for each a if and only if du = dv. From this we obtain

2−1/α
(
d2
u + d2

v

)1/2
<

(
dαu + dαv

2

)1/α

≤ 2−1/2
(
d2
u + d2

v

)1/2 if 0 < α < 2,

2−1/2
(
d2
u + d2

v

)1/2 ≤ (dαu + dαv
2

)1/α

< 2−1/α
(
d2
u + d2

v

)1/2 if α > 2,

(
dαu + dαv

2

)1/α

≤ 2−1/2
(
d2
u + d2

v

)1/2 if α < 0,

and the equality in the second, third or fifth bounds are attained for each a if and only if du = dv. The desired result is
obtained by adding up for each uv ∈ E(G).

The following result appears in [13].

Lemma 4.3. If ai > 0 for 1 ≤ i ≤ k and r ∈ R, then
k∑
i=1

ari ≥ k1−r

(
k∑
i=1

ai

)r
, if r ≤ 0 or r ≥ 1,

k∑
i=1

ari ≤ k1−r

(
k∑
i=1

ai

)r
, if 0 ≤ r ≤ 1.
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Proposition 4.2. If G is a graph with m edges, then
KAα,β(G) ≥ m1−β(Mα+1

1 (G))β if β ≤ 0 or β ≥ 1,

KAα,β(G) ≤ m1−β(Mα+1
1 (G))β if 0 ≤ β ≤ 1 .

Proof. If we take ai = dαu + dav and r = β, by Lemma 4.3 we have

∑
uv∈E(G)

(dαu + dav)
β ≥ m1−β

 ∑
uv∈E(G)

(dαu + dav)

β

, if β ≤ 0 or β ≥ 1,

∑
uv∈E(G)

(dαu + dav)
β ≤ m1−β

 ∑
uv∈E(G)

(dαu + dav)

β

, if 0 ≤ β ≤ 1.

Given a graph G, let us define the mean Sombor matrix mSMα(G) with entries

auv :=


(
dαu+dαv

2

)1/α

, if uv ∈ E(G) ,

0, otherwise .
(10)

One can easily check the following result about the trace of the matrix mSMα(G)2:

tr
(
mSMα(G)2

)
=

∑
uv∈E(G)

(
dαu + dαv

2

)2/α

. (11)

Denote by σ2 the variance of the sequence of the terms
{(

dαu+dαv
2

)1/α
}

appearing in the definition of mSOα(G).

Proposition 4.3. Let G be a graph, then

mSOa(G) =

√
m

2
tr (mSMα(G)2)−m2σ2 .

Proof. By the definition of σ2, we have

σ2 =
1

m

∑
uv∈E(G)

((
dαu + dαv

2

)1/α
)2

−

 1

m

∑
uv∈E(G)

(
dαu + dαv

2

)1/α
2

,

then using the expression (11) we have

σ2 =
1

2m
tr
(
mSMα(G)2

)
− 1

m2
mSOα(G)2,

and the result follows from this equality.

Theorem 4.3. Let G be any graph, then mSO2(G) ≤ M1(G) −M1/2
2 (G) , where M1/2

2 is the variable second Zagreb index
Mα

2 at α = 1/2, and the equality is attained if and only if each connected component of G is a regular graph.

Proof. Let be δ, ∆ the minimum and maximum degree of G, respectively. Let’s analyze the behavior of the function

f(x, y) = (x+ y −√xy )
2 − x2 + y2

2
,

for δ ≤ x ≤ y ≤ ∆. We have
∂f

∂x
(x, y) = 2(x+ y −√xy )

(
1− 1

2

√
y

x

)
− x = x− 3

√
xy + 3y −

y
√
y

√
x

=
x
√
x− 3x

√
y + 3y

√
x− y√y

√
x

=

(√
x−√y

)3
√
x

≤ 0 ,

so f is a decreasing function for each y. Thus, we have f(x, y) ≥ f(y, y) = 0, so

x+ y −√xy ≥
√
x2 + y2

2
,

and the equality is attained if and only if x = y. Therefore for any uv ∈ E(G),

du + dv −
√
dudv ≥

√
d2
u + d2

v

2

and the equality is attained if and only if du = dv. The desired result is obtained by adding up for each uv ∈ E(G).
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5. Discussion and conclusions

We have introduced a degree–based variable topological index inspired on the power mean (also known as generalized
mean and Hölder mean). We named this new index as the mean Sombor index mSOα(G), see Equation (4). For given
values of α, the mean Sombor index is related to well-known topological indices, in particular with several Sombor indices.

In addition, through a QSPR study, we showed that mean Sombor indices are suitable to model acentric factor, boiling
point, heat capacity at constant pressure, standard enthalpy of vaporization, enthalpy of formation, heat of vaporization
at 25◦C, enthalpy of vaporization, and entropy of octane isomers; see Section 3.

We have also discussed some mathematical properties of mean Sombor indices as well as stated bounds and new re-
lationships with known topological indices; see Section 4, where the mean Sombor matrix was also introduced in Equa-
tion (10).

Finally, we would like to remark that, in addition to all the known indices that the mean Sombor index reproduces, we
discover the indices

mSO−∞(G) ≡ mSOα→−∞(G) =
∑

uv∈E(G)

min(du, dv)

and
mSO∞(G) ≡ mSOα→∞(G) =

∑
uv∈E(G)

max(du, dv) ;

which, from the QSPR study of Section 3, were shown to be good predictors of the standard enthalpy of vaporization, the
enthalpy of vaporization, and the heat of vaporization at 25◦C of octane isomers. It is fair to mention that several known
topological indices include the min/max functions; among them we can mention the min-max (and max-min) rodeg index,
the min-max (and max-min) sdi index, and the min-max (and max-min) deg index, introduced in Ref. [19]. However, to
the best of our knowledge, the indices mSO±∞(G) have not been theoretically studied before (for an exception, where the
equivalent Stolarsky–Puebla indices have been computationally applied to random networks, see [10]). Thus, we believe
that a theoretical study of these two new indices is highly pertinent.
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