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Abstract
Let G be a graph and denote by du the degree of a vertex u of G. The sum of the numbers e

√
(du−1)2+(dv−1)2 over all edges

uv of G is known as the exponential reduced Sombor index. A chemical tree is a tree with the maximum degree at most 4.
In this paper, a conjecture posed by Liu et al. [MATCH Commun. Math. Comput. Chem. 86 (2021) 729–753] is disproved
and its corrected version is proved.
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1. Introduction

Let G be a graph. The sets of edges and vertices of G are represented by E(G) and V (G), respectively. For the vertex
v ∈ V (G), the degree of v is denoted by dG(v) (or simply by dv if only one graph is under consideration). A vertex u ∈ V (G)

is said to be a pendent vertex if du = 1. The degree set of G is the set of all unequal degrees of vertices of G. The set NG(u)

consists of the vertices of the graph G that are adjacent to the vertex v. The members of NG(u) are known as neighbors of
u. A chemical tree is the tree of maximum degree at most 4. The (chemical-)graph-theoretical terminology and notation
that are used in this study without explaining here can be found in the books [1,2,11].

For the graph G, the Sombor index and reduced Sombor index abbreviated as SO and SOred, respectively, are defined [5]
as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v and SOred(G) =

∑
uv∈E(G)

√
(du − 1)2 + (dv − 1)2.

These degree-based graph invariants, introduced recently in [5], have attained a lot of attention from researchers in a very
short time, which resulted in many publications; for example, see the review papers [4,9], and the papers listed therein.

The following exponential version of the reduced Sombor index was considered in [10]:

eSOred(G) =
∑

uv∈E(G)

e
√

(du−1)2+(dv−1)2 .

Let ni denote the number of vertices in the graph G with degree i. The cardinality of the set consisting of the edges
joining the vertices of degrees i and j in the graph G is denoted by mi,j . Denote by Tn the class of chemical trees of order
n such that n2 + n3 ≤ 1 and m1,3 = m1,2 = 0. Deng et al. [3] proved that the members of the class Tn are the only trees
possessing the maximum value of the reduced Sombor index for every n ≥ 11. Keeping in mind this result of Deng et al. [3],
Liu et al. [10] posed the following conjecture concerning the exponential reduced Sombor index for chemical trees.

Conjecture 1.1. [10] Among all chemical trees of a fixed order n, the members of the class Tn are the only trees possessing
the maximum value of the exponential reduced Sombor index for every n ≥ 11.

Conjecture 1.1 was also discussed in [12] and was left open. In fact, there exist counter examples to Conjecture 1.1; for
instance, for the trees T1 and T2 depicted in Figure 1, it holds that

278 ≈ eSOred(T1) = 8e3 + e3
√
2 + 2e

√
10 < e + 7e3 + 2e3

√
2 + e

√
10 = eSOred(T2) ≈ 306.

The next theorem gives a corrected statement of Conjecture 1.1.
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T1 T2

Figure 1: The trees T1 and T2 providing a counterexample to Conjecture 1.1.

Theorem 1.1. For n ≥ 7, if T is a chemical tree of order n, then

eSOred(T ) ≤ 1

3

(
2e3 + e3

√
2
)
n +

1

3

(
2e3 − 5e3

√
2
)

+



1

3

(
3e− 5e3 − e3

√
2 + 3e

√
10
)

if n ≡ 0 (mod 3)

1

3

(
6e2 − 7e3 − 2e3

√
2 + 3e

√
13
)

if n ≡ 1 (mod 3)

0 if n ≡ 2 (mod 3),

with equality if and only if
• the degree set of T is {1, 2, 4} and n2 = m2,4 = m1,2 = 1, whenever n ≡ 0 (mod 3);
• the degree set of T is {1, 3, 4} and n3 = m3,4 = 1 and m1,3 = 2, whenever n ≡ 1 (mod 3);
• the degree set of T is {1, 4} whenever n ≡ 2 (mod 3).

2. Proof of Theorem 1.1

If T is a chemical tree of order n with n ≥ 3, then

eSOred(T ) =
∑

1≤i≤j≤4

mi,j e
√

(i−1)2+(j−1)2 , (1)

n1 + n2 + n3 + n4 = n , (2)

n1 + 2n2 + 3n3 + 4n4 = 2(n− 1) , (3)∑
1≤i≤4
i 6=j

mj,i + 2mj,j = j · nj for j = 1, 2, 3, 4. (4)

By solving the system of equations (2)–(4) for the unknowns m1,4,m4,4, n1, n2, n3, n4 and then inserting the values of m4,4

and m1,4 (these two values are well-known, see for example [6]) in Equation (1), one gets

eSOred(T ) =
1

3

(
2e3 + e3

√
2
)
n +

1

3

(
2e3 − 5e3

√
2
)

+
1

3

(
3e− 4e3 + e3

√
2
)
m1,2

+
1

9

(
9e2 − 10e3 + e3

√
2
)
m1,3 +

1

3

(
3e
√
2 − 2e3 − e3

√
2
)
m2,2

+
1

9

(
9e
√
5 − 4e3 − 5e3

√
2
)
m2,3 +

1

3

(
3e
√
10 − e3 − 2e3

√
2
)
m2,4

+
1

9

(
9e2
√
2 − 2e3 − 7e3

√
2
)
m3,3 +

1

9

(
9e
√
13 − e3 − 8e3

√
2
)
m3,4. (5)

We take

Γ(T ) =
1

3

(
3e− 4e3 + e3

√
2
)
m1,2

+
1

9

(
9e2 − 10e3 + e3

√
2
)
m1,3 +

1

3

(
−2e3 + 3e

√
2 − e3

√
2
)
m2,2

+
1

9

(
−4e3 − 5e3

√
2 + 9e

√
5
)
m2,3 +

1

3

(
−e3 − 2e3

√
2 + 3e

√
10
)
m2,4

+
1

9

(
−2e3 + 9e2

√
2 − 7e3

√
2
)
m3,3 +

1

9

(
−e3 − 8e3

√
2 + 9e

√
13
)
m3,4. (6)

≈ −0.8653m1,2 − 7.1958m1,3 − 32.4742m2,2 − 38.2323m2,3

− 29.4651m2,4 − 41.6713m3,3 − 27.2888m3,4. (7)
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Then, Equation (5) can be written as

eSOred(T ) =
1

3

(
2e3 + e3

√
2
)
n +

1

3

(
2e3 − 5e3

√
2
)

+ Γ(T ) . (8)

For any given integer n greater than 4, it is evident from Equation (8) that a tree T attains the greatest value of eSOred

over the class of all chemical trees of order n if and only if T possess the greatest value of Γ in the considered class. As a
consequence, we consider Γ(T ) instead of eSOred(T ) in the next lemma.

Lemma 2.1. Let T be a chemical tree of order n, where n ≥ 7. The inequality

Γ(T ) <
1

3

(
6e2 − 7e3 − 2e3

√
2 + 3e

√
13
)

(≈ −41.6804),

holds if any of the following conditions holds:

(i) max{m3,3,m2,2,m2,3} ≥ 1,

(ii) max{m3,4,m2,4} ≥ 2,

(iii) n2 + n3 ≥ 2.

Proof. Take an edge uv ∈ E(T ) with du, dv ∈ {2, 3}. Since n ≥ 7, at least one of the two vertices u, v has at least two non-
pendent neighbors. Hence, if max{m3,3,m2,2,m2,3} ≥ 1 then either m3,3 +m2,2 +m2,3 ≥ 2 or max{m3,4,m2,4} ≥ 1 and hence
the required inequality follows from (6). Also, note that the desired inequality follows from (6) whenever max{m3,4,m2,4} ≥
2. In what follows, assume that m3,3 = m2,2 = m2,3 = 0, n2 + n3 ≥ 2, and max{m3,4,m2,4} ≤ 1.

Assume that n3 6= 0. Let w ∈ V (T ) be a vertex of degree 3 and take NT (w) = {w1, w2, w3}. Since m3,3 = m2,3 = 0, one
has dwi

∈ {1, 4} for i = 1, 2, 3. Since n ≥ 7, we have dwi
= 4 for at least one i ∈ {1, 2, 3}. Hence, if n3 ≥ t then m3,4 ≥ t.

Similarly, if n2 ≥ s then m2,4 ≥ s. Thus, if either n2 ≥ 2 or n3 ≥ 2 then we have max{m2,4,m3,4} ≥ 2, a contradiction.
Consequently, we must have n2 = n3 = 1, which implies that m2,4 ≥ 1 and m3,4 ≥ 1, and hence the required inequality
follows from (6).

Proof of Theorem 1.1. If either of the inequalities max{m3,3,m2,2,m2,3} ≥ 1, max{m3,4,m2,4} ≥ 2, and n2 + n3 ≥ 2, holds,
then by using Lemma 2.1 and Equation (8), one has

eSOred(T ) <
1

3

(
2e3 + e3

√
2
)
n +

1

3

(
2e3 − 5e3

√
2
)

+
1

3

(
6e2 − 7e3 − 2e3

√
2 + 3e

√
13
)

<
1

3

(
2e3 + e3

√
2
)
n +

1

3

(
2e3 − 5e3

√
2
)

+
1

3

(
3e− 5e3 − e3

√
2 + 3e

√
10
)

<
1

3

(
2e3 + e3

√
2
)
n +

1

3

(
2e3 − 5e3

√
2
)
,

as desired.
In the rest of the proof, assume that max{m3,3,m2,2,m2,3} = 0, max{m3,4,m2,4} ≤ 1, and n2 + n3 ≤ 1. Then, we note that
(n2, n3) ∈ {(0, 0), (1, 0), (0, 1)}. From Equations (2) and (3), it follows that n2 + 2n3 ≡ n− 2 (mod 3), which gives

(n2, n3) =


(1, 0) if n ≡ 0 (mod 3),

(0, 1) if n ≡ 1 (mod 3),

(0, 0) if n ≡ 2 (mod 3),

this together with the system of equations (4) implies that

(m1,2,m1,3,m2,4,m3,4) =


(1, 0, 1, 0) if n ≡ 0 (mod 3),

(0, 2, 0, 1) if n ≡ 1 (mod 3),

(0, 0, 0, 0) if n ≡ 2 (mod 3).

Now, from Equation (5) the required result follows.
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3. Concluding remarks

Recently, Liu [7] reported some extremal results for the multiplicative Sombor index. For a graph G, its multiplicative
Sombor index and multiplicative reduced Sombor index are defined as

ΠSO(G) =
∏

uv∈E(G)

√
d2u + d2v and ΠSOred

(G) =
∏

uv∈E(G)

√
(du − 1)2 + (dv − 1)2.

As expected, among all chemical trees of a fixed order n ≥ 11, the trees attaining the maximum (reduced) Sombor index
(see [3]) are same as the ones possessing the maximum multiplicative (reduced) Sombor index.

Theorem 3.1. Among all chemical trees of a fixed order n, the members of the class Tn are the only trees possessing the
maximum value of the multiplicative (reduced) Sombor index for every n ≥ 11.

Analogous to the definition of the exponential reduced Sombor index, the exponential Sombor index can be defined as

eSO(G) =
∑

uv∈E(G)

e
√

(du)2+(dv)2 .

Denote by T?
n the class of chemical trees of order n such that n2 + n3 ≤ 1 and m3,4 + m2,4 ≤ 1. As expected, among all

chemical trees of a fixed order n ≥ 7, the trees attaining the maximum exponential reduced Sombor index (see Theorem
1.1) are same as the ones possessing the maximum exponential Sombor index.

Theorem 3.2. For every n ≥ 7, the trees of the class T?
n uniquely attain the maximum value of the exponential Sombor index

among all chemical trees of a fixed order n.

Because the proofs of Theorems 1.1, 3.1, and 3.2 are very similar to one another, we omit the proofs of Theorems 3.1
and 3.2.
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