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3Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, Acapulco Gro. 39650, Mexico

(Received: 9 September 2021. Accepted: 20 September 2021. Published online: 27 September 2021.)

© 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

We introduce a degree–based variable topological index inspired on the Stolarsky mean (known as the generalization of
the logarithmic mean). We name this new index as the Stolarsky–Puebla index: SPα(G) =

∑
uv∈E(G) du, if du = dv, and

SPα(G) =
∑
uv∈E(G) [(d

α
u − dαv ) / (α(du − dv)]1/(α−1), otherwise. Here, uv denotes the edge of the network G connecting the

vertices u and v, du is the degree of the vertex u, and α ∈ R\{0, 1}. We also consider the limiting cases SPα→0(G) and
SPα→1(G) that we name as the logarithmic–mean index and the identric–mean index, respectively. Indeed, for given values
of α, the Stolarsky–Puebla index reproduces well-known topological indices such as the reciprocal Randic index, the first
Zagreb index, and several mean Sombor indices. Moreover, we apply these indices to random networks and demonstrate
that 〈SPα(G)〉, normalized to the order of the network, scale with the corresponding average degree 〈d〉. Some mathematical
properties of the Stolarsky–Puebla index are also discussed.
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1. Introduction

For two positive real numbers x, y, the Stolarsky mean Sα(x, y) is defined as [22]

Sα(x, y) = lim
(ξ,η)→(x,y)

(
ξα − ηα

α(ξ − η)

)1/(α−1)

=


x if x = y,(
xα − yα

α(x− y)

)1/(α−1)

otherwise,
(1)

here, α ∈ R\{0, 1}. In fact, Sα(x, y) is known as the generalization of the logarithmic mean [16]

LogMean(x, y) =


x if x = y,

x− y
lnx− ln y

otherwise.
(2)

For given values of α, Sα(x, y) reproduces known means including the logarithmic mean, when α → 0, and some cases of
the power mean [5,23]

PMα(x, y) =

(
xα + yα

2

)1/α

. (3)

As examples, in Table 1 we show some expressions for Sα(x, y) for selected values of α with their corresponding names,
when available.

Also, there is a well-known inequality relating the Stolarsky mean and the power mean, namely [6,16,19]:

S−1(x, y) = PMα→0(x, y) ≤ Sα→0(x, y) ≤ PM1/3(x, y) ≤ S2(x, y) = PM1(x, y) (4)

or more explicitely
√
xy ≤ LogMean(x, y) ≤

(
x1/3 + y1/3

2

)3

≤ x+ y

2
,

where the equality is attained when x = y.
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Table 1: Expressions for the Stolarsky mean Sα(x, y) for selected values of α.
α Sα(x, y) name (when available)

−∞ Sα→−∞(x, y) = min(x, y) minimum value, PMα→−∞(x, y)

−4 S−4(x, y) =

(
x3 + x2y + xy2 + y3

4x4y4

)−1/5
−3 S−3(x, y) =

(
x2 + xy + y2

3x3y3

)−1/4
−2 S−2(x, y) =

(
x+ y

2x2y2

)−1/3
−1 S−1(x, y) =

√
xy geometric mean, PMα→0(x, y)

0 Sα→0(x, y) =

 x if x = y
x− y

lnx− ln y
otherwise LogMean(x, y)

1/2 S1/2(x, y) =

(√
x+
√
y

2

)2

PM1/2(x, y)

1 Sα→1(x, y) =

 x if x = y
x− y

x lnx− y ln y
otherwise identric mean

2 S2(x, y) =
x+ y

2
arithmetic mean, PM1(x, y)

3 S3(x, y) =

(
x2 + xy + y2

3

)1/2

4 S4(x, y) =

(
x3 + x2y + xy2 + y3

4

)1/3

∞ Sα→∞(x, y) = max(x, y) maximum value, PMα→∞(x, y)

2. Stolarsky–Puebla index

A large number of graph invariants of the form

TI(G) =
∑

uv∈E(G)

F (du, dv) (5)

are currently being studied in mathematical chemistry; where uv denotes the edge of the graph G connecting the vertices
u and v, du is the degree of the vertex u, and F (x, y) is an appropriate chosen function, see e.g. [12].

Inspired by the Stolarsky mean and given a simple graph G = (V (G), E(G)), here we choose the function F (x, y) in (5)
as the Stolarsky mean Sα(x, y) and define the degree–based variable topological index

SPα(G) =
∑

uv∈E(G)

Sα(du, dv) =
∑

uv∈E(G)


du if du = dv,(

dαu − dαv
α(du − dv)

)1/(α−1)

otherwise,
(6)

where uv denotes the edge of the graph G connecting the vertices u and v, du is the degree of the vertex u, and α ∈ R\{0, 1}.
We name SPα(G) as the Stolarsky–Puebla index.

Note that for given values of α, SPα(G) is related to widely studied topological indices: SP−1(G) = R−1(G), where
R−1(G) is the reciprocal Randic index [13], SP1/2(G) = 2−2KA1

1/2,2(G), where KA1
α,β(G) is the first (α, β)−KA index [15],

and SP2(G) = M1(G)/2, where M1(G) is the first Zagreb index [14]. Also, for selected values of α, SPα(G) reproduces
several mean Sombor indices

mSOα(G) =
∑

uv∈E(G)

(
dαu + dαv

2

)1/α

; (7)

recently introduced in [2]. In Table 2, we report some expressions for SPα(G) for selected values of α that we identify with
known topological indices, when applicable.

11
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Table 2: Expressions for the Stolarsky–Puebla index SPα(G) for selected values of α.
α SPα(G) index equivalence

−∞ SPα→−∞(G) =
∑

uv∈E(G)

min(du, dv) mSOα→−∞(G)

−4 SP−4(G) =
∑

uv∈E(G)

(
d3u + d2udv + dud

2
v + d3v

4d4ud
4
v

)−1/5
−3 SP−3(G) =

∑
uv∈E(G)

(
d2u + dudv + d2v

3d3ud
3
v

)−1/4
−2 SP−2(G) =

∑
uv∈E(G)

(
du + dv
2d2ud

2
v

)−1/3
−1 SP−1(G) =

∑
uv∈E(G)

√
dudv R−1(G) = mSOα→0(G)

0 SPα→0(G) =
∑

uv∈E(G)


du if du = dv

du − dv
ln du − ln dv

otherwise
logarithmic–mean index, see (18)

1/2 SP1/2(G) =
∑

uv∈E(G)

(√
du +

√
dv

2

)2

2−2KA1
1/2,2(G) = mSO1/2(G)

1 SPα→1(G) =
∑

uv∈E(G)


du if du = dv

du − dv
du ln du − dv ln dv

otherwise
identric–mean index, see (19)

2 SP2(G) =
∑

uv∈E(G)

du + dv
2

2−1M1(G) = mSO1(G)

3 SP3(G) =
∑

uv∈E(G)

(
d2u + dudv + d2v

3

)1/2

4 SP4(G) =
∑

uv∈E(G)

(
d3u + d2udv + dud

2
v + d3v

4

)1/3

∞ SPα→∞(G) =
∑

uv∈E(G)

max(du, dv) mSOα→∞(G)

3. Computational study of SPα(G) on random networks

As a first test of the Stolarsky–Puebla index, here we apply it on two models of random networks: Erdös-Rényi (ER)
networks and random geometric (RG) graphs. ER networks [8–10, 21] GER(n, p) are formed by n vertices connected inde-
pendently with probability p ∈ [0, 1]. While RG graphs [7, 20] GRG(n, r) consist of n vertices uniformly and independently
distributed on the unit square, where two vertices are connected by an edge if their Euclidean distance is less or equal
than the connection radius r ∈ [0,

√
2].

We stress that the computational study of the Stolarsky–Puebla index we perform here is justified by the random nature
of the network models we want to explore. Since a given parameter set [(n, p) or (n, r)] represents an infinite-size ensemble
of random [ER or RG] networks, the computation of SPα(G) on a single network is irrelevant. In contrast, the computation
of the average value of SPα(G) on a large ensemble of random networks, all characterized by the same parameter set, may
provide useful average information about the full ensemble. This statistical approach, well known in random matrix theory
studies, has been recently applied to random networks by means of topological indices, see e.g. [1,17,18]. Moreover, it has
been shown that average topological indices may serve as complexity measures equivalent to standard random matrix
theory measures [3,4].

3.1. SPα(G) on Erdös-Rényi random networks
In what follows, we present the average values of selected Stolarsky–Puebla indices. All averages are computed over
ensembles of 107/n ER networks characterized by the parameter pair (n, p).

In Figure 1, we present the average Stolarsky–Puebla index 〈SPα(GER)〉 for α → −∞, α → 0, α → 1, and α → ∞ as a
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Figure 1: Average value of the Stolarsky–Puebla index 〈SPα(GER)〉 as a function of the probability p of Erdös-Rényi networks
of size n. Here (a) α→ −∞, (b) α→ 0, (c) α→ 1, and (d) α→∞. Dashed lines correspond to (9).

function of the probability p of ER networks of sizes n = {125, 250, 500, 1000}. From this figure we observe that the curves
of 〈SPα(GER)〉 are monotonically increasing functions of p.

We note that in the dense limit, i.e. when np� 1, we can approximate du ≈ dv ≈ 〈d〉 in (6), with

〈d〉 = (n− 1)p. (8)

Thus, when np� 1, we can approximate SPα(GER) as

SPα(GER) ≈
∑

uv∈E(G)

du ≈
∑

uv∈E(G)

〈d〉 ≈ 1

2
n [(n− 1)p]

2
, (9)

where we have used |E(GER)| = n(n − 1)p/2. In Figure 1, we show that (9) (dashed lines) indeed describes well the data
(thick full curves) for large enough p; except for the case 〈SPα→1(GER)〉, see Figure 1(c). We also verified that (9) describes
well the data for other values of α, however we did not include them in Figure 1 to avoid figure saturation. We also observed
that the smaller the value of α the wider the range of p where the coincidence between (9) and the computational data
is observed; compare for example Figs. 1(a) and 1(d), where it is clear that the correspondence of the computational data
with (9) is much better in the case of α→ −∞ than for α→∞. In addition, it is relevant to note that (9) does not depend
on α.

We also notice that in Figure 1 we present average Stolarsky–Puebla indices as a function of the probability p of ER
networks of four different sizes n. It is quite clear from these figures that the curves, characterized by the different network
sizes, are very similar but displaced on both axes. This behavior suggests that the average Stolarsky–Puebla indices can
be scaled, as will be shown below.

From (9) we observe that 〈SPα(GER)〉 ∝ nf [(n− 1)p)] or

〈SPα(GER)〉 ∝ nf(〈d〉). (10)

Therefore, in Figure 2 we plot again the average Stolarsky–Puebla indices reported in Figure 1, but now normalized to n,
as a function of 〈d〉 showing that all indices are now properly scaled; i.e. the curves painted in different colors for different
network sizes fall on top of each other. Moreover, we can rewrite (10) as

〈SPα(GER)〉
n

≈ 1

2
〈d〉2 . (11)

In Figure 2, we show that (11) (orange-dashed lines) indeed describe well the computational data (thick full curves) for
〈d〉 ≥ 10; except for 〈SPα→1(GER)〉, see Figure 2(c).

It is relevant to stress that even when (10) was expected to be valid in the dense limit (i.e. for 〈d〉 � 1), it is indeed valid
for any 〈d〉 as clearly seen in Figure 2.
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Figure 2: Average value of the Stolarsky–Puebla index 〈SPα(GER)〉, normalized to the network size n, as a function of
the average degree 〈d〉 of Erdös-Rényi networks. Same curves as in Figure 1. Orange dashed lines are (11). The vertical
magenta dashed lines indicate 〈d〉 = 10.

3.2. SPα(G) on random geometric graphs
As in the previous Subsection, here we present the average values of selected Stolarsky–Puebla indices. Again, all averages
are computed over ensembles of 107/n random graphs, each ensemble characterized by a fixed parameter pair (n, r).

In Figure 3 we present the average Stolarsky–Puebla index 〈SPα(GER)〉 for α → −∞, α → 0, α → 1, and α → ∞ as a
function of the connection radius r of RG graphs of sizes n = {125, 250, 500, 1000}. For comparison purposes, Figure 3 is
equivalent to Figure 1. In fact, all the observations made in the previous Subsection for ER networks are also valid for RG
graphs by just replacing GER → GRG and p→ g(r), with [11]

g(r) =


r2
[
π − 8

3r +
1
2r

2
]

0 ≤ r ≤ 1 ,

1
3 − 2r2 [1− arcsin(1/r) + arccos(1/r)] + 4

3 (2r
2 + 1)

√
r2 − 1− 1

2r
4 1 ≤ r ≤

√
2 .

(12)

As well as for ER networks, here, in the dense limit, when nr � 1, we can approximate du ≈ dv ≈ 〈d〉 with

〈d〉 = (n− 1)g(r). (13)

Therefore, in the dense limit, SPα(GRG) is well approximated by:

SPα(GRG) ≈
1

2
n [(n− 1)g(r)]

2
. (14)

In Figure 3, we show that (14) (dashed lines) indeed describes well the data (thick full curves) for large enough r; except
for the case 〈SPα→1(GRG)〉, see Figure 3(c).

It is quite remarkable to note that by substituting the average degree of (13) into (14) we get exactly the same expression
of (11):

〈SPα(GRG)〉
n

≈ 1

2
〈d〉2 . (15)

So, in Figure 4 we plot again the average Stolarsky–Puebla indices reported in Figure 3 for RG graphs, but now normalized
to n, as a function of 〈d〉 showing that all curves are now properly scaled. Also, in Figure 4, we show that (15) (orange-
dashed lines) indeed describes well the computational data (thick full curves) for 〈d〉 ≥ 10. We note that as well as for ER
networks, here for RG graphs we do not observe the scaling of 〈SPα→1(GRG)〉.

4. Discussion and conclusions

We have introduced a degree–based variable topological index inspired on the Stolarsky mean, known as the generalization
of the logarithmic mean. We named this new index as the Stolarsky–Puebla index SPα(G), see (6). For given values of α,
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Figure 3: Average value of the Stolarsky–Puebla index 〈SPα(GRG)〉 as a function of the connection radius r of random
geometric graphs of size n. Here (a) α→ −∞, (b) α→ 0, (c) α→ 1, and (d) α→∞. Dashed lines correspond to (14).
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Figure 4: Average value of the Stolarsky–Puebla index 〈SPα(GGR)〉, normalized to the network size n, as a function of the
average degree 〈d〉 of random geometric graphs. Same curves as in Figure 3. Orange dashed lines are (15). The vertical
magenta dashed lines indicate 〈d〉 = 10.

the Stolarsky–Puebla index is related to well-known topological indices, in particular it reproduces several mean Sombor
indices mSOα(G), see (7).

We want to add that the inequality of (4) can be straightforwardly used to state inequalities for the indices SPα(G) and
mSOα(G), as well as for related indices:

SP−1(G) = mSOα→0(G) ≤ SPα→0(G) ≤ mSO1/3(G) ≤ SP2(G) = mSO1(G) (16)

or
R−1(G) ≤ LogMean(G) ≤ mSO1/3(G) ≤ 2−1M1(G) , (17)
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which sets bounds for the logarithmic–mean topological index

LogMean(G) =


du if du = dv,

du − dv
ln du − ln dv

otherwise,
(18)

with respect to the reciprocal Randic index, the mean Sombor index with α = 1/3, and the first Zagreb index.
Since there are not many degree–based topological indices including logarithmic functions (as well-known exceptions

we can mention the logarithms of the three multiplicative Zagreb indices [12] and the Adriatic indices [24,25]) we want to
highlight the release of the logarithmic–mean topological index LogMean(G) of (18) as well as the identric–mean index

idLogMean(G) =


du if du = dv,

du − dv
du ln du − dv ln dv

otherwise,
(19)

corresponding to SPα→0(G) and SPα→1(G), respectively.
We have also applied the Stolarsky–Puebla index SPα(G) to Erdös-Rényi (ER) networks and random geometric (RG)

graphs and within a statistical random matrix theory approach we demonstrated that 〈SPα(G)〉, normalized to the order
of the network, scales with the corresponding average degree 〈d〉. However, it is fair to recognize that, for both random
network models, 〈SPα→1(G)〉 = 〈idLogMean(G)〉 did not scale; so we believe that the identric–mean index deserves further
investigation.

In addition, from (16) we are able to write an equivalent inequality but for the corresponding average values:

〈SP−1(G)〉 ≤ 〈LogMean(G)〉 ≤
〈
mSO1/3(G)

〉
≤ 〈SP2(G)〉 . (20)

Indeed, we verified that (20) is satisfied for the both ER random networks and RG graphs (not shown here). Moreover, we
computationally found that

〈idLogMean(G)〉 ≤ 〈SPα 6=1(G)〉 , (21)

for the two random network models we study here (not explicitelly shown here but partially observed in Figs. 1 and 3). The
equalities in (20) and (21) are attained when p = 1 and r =

√
2, for ER random networks and RG graphs, respectively.

Finally, we want to recall that through a quantitative structure property relationship (QSPR) analysis it was shown [2]
that mSOα→±∞(G) are good predictors of the standard enthalpy of vaporization, the enthalpy of vaporization, and the
heat of vaporization at 25◦C of octane isomers. Furthermore, since SPα→±∞(G) = mSOα→±∞(G), we can conclude that
SPα→±∞(G) correlate well with the aforementioned physicochemical properties of octane isomers.

In future works we plan to explore mathematical and computational properties of SPα(G), as well as finding optimal
bounds and new relationships with known topological indices.
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