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Abstract
In this paper, we enumerate four new families of compositions whose members satisfy certain conditions on the sizes
of the big (i.e., > 1) parts and/or lengths of the 1-strings. In particular, we consider various classes of compositions
whose members do not contain two consecutive big parts. We make use of combinatorial arguments, mainly direct
enumeration and bijections, in determining the cardinalities of these classes. As a consequence of our results, new
combinatorial interpretations in terms of restricted compositions are obtained for some well-known sequences, including
the Padovan, Narayana and m-step Fibonacci sequences.
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1. Introduction

A composition of a positive integer n is a representation of n as a sequence of positive integers, called parts, which sum to
n. For example, the compositions of n = 4 are given by

(4), (1, 3), (2, 2), (3, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 1).

Denote the set of all compositions of n by Z(n) and let z(n) = |Z(n)|. Considering whether the last part within a member
of Z(n+ 1) for n ≥ 1 is 1 or greater than 1 leads to the recurrence relation:

z(n+ 1) = 2z(n), z(1) = 1, (1)

which is equivalent to the well-known formula z(n) = 2n−1. By convention, Z(0) denotes the set consisting of the empty
composition with no parts, with z(0) = 1. We refer the reader to the classic text by MacMahon [9] and to the more recent
one by Heubach and Mansour [6] for an introduction to the study of compositions and related structures.

The problem of enumerating compositions based on various restrictions of the part sizes has been an object of ongoing
research in combinatorics. See, e.g., [1–5,7,8,11] and references contained therein. A notable result (see Sills [11]) states
that the number of compositions of n with all parts odd is the same as the number of compositions of n + 1 with no 1’s
in analogy to Euler’s celebrated theorem on partitions with odd parts. Combinatorial proofs have been given for this
equivalence and extensions to an arbitrary modulus m [10] have been found. Related results were shown for the number
of compositions containing no part of size k for any k [3] or whose parts belong to a particular set [5]. Here, we consider
subsets of Z(n) in which the part restrictions applying to the first and last parts differ from those applying to all other
parts. These restrictions will vary according to an arbitrary positive integer parameter m and yield elegant results for
small m.

In what follows, it will be convenient to write compositions, symbolically, by representing a maximal string of 1’s of
length x by 1x, where two adjacent big parts (i.e., parts > 1) are assumed to be separated by 10. A general composition
then has one of the following two forms:

π = (1a1 , b1, 1
a2 , b2, . . . ), a1 ≥ 1, ai ≥ 0, i > 1, bi ≥ 2 ∀ i; (2)

π = (b1, 1
a1 , b2, 1

a2 , . . . ), ai ≥ 0, bi ≥ 2, (3)

where it is understood in each case that π either ends in 1ar or br for some r ≥ 1 with ar ≥ 1 and br ≥ 2. Throughout, we
will write π ` n to indicate that π is a composition of n. By an interior part of π ` n, we will mean one that is neither the
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first nor the last part of π. A part that is not interior will be referred to as a boundary part. In the one-part composition
(n) ` n, the n is a boundary, but not an interior, part.

In this paper, we enumerate four families of compositions of n based on various bounds for the exponents ai and parts
bi in (2) and (3). In particular, we count classes of π ` n in which the ai and bi are either bounded from below, from above
or both, along with another class in which all big parts must be greater than some fixed number. Further, the bounds on
the bi will be dictated in three of the families based on whether a big part is an interior or a boundary part. Our proofs
are combinatorial in nature and make use of various bijections defined on certain subsets of the compositions in question.
As special cases of our results, we obtain new combinatorial interpretations in terms of restricted compositions for several
well-known counting sequences, among them the Padovan and Narayana numbers and A005251 in OEIS [12], in addition
to various m-step Fibonacci sequences.

2. Enumeration of some restricted classes of compositions

The class G(n,m)

Given m ≥ 1, let G(n,m) denote the subset of Z(n) consisting of those compositions in which there are no two adjacent big
parts and all big parts are at least m + 1 and let g(n,m) = |G(n,m)|. For example, we have g(6, 2) = 11, the enumerated
compositions being

(6), (1, 5), (5, 1), (12, 4), (1, 4, 1), (4, 12), (13, 3), (12, 3, 1), (1, 3, 12), (3, 13), (16).

Let an = g(n,m) for a fixed m. The an are given recursively in the following theorem.

Theorem 2.1. We have

an = an−1 + an−m−1 +

m+1∑
i=2

an−m−i−1, n ≥ 2m+ 2, (4)

with a0 = · · · = am = 1 and am+i =
(
i+1
2

)
+ 1 for 1 ≤ i ≤ m+ 1.

Proof. As for the initial values, note first that An = G(n,m) is a singleton set if 0 ≤ n ≤ m. If n = m + i where i ∈
[m + 1] = {1, 2, . . . ,m + 1}, then the members of An − {(1n)} must contain exactly one big part b, namely, b = m + j for
some j ∈ [i]. Then there are i − j + 1 compositions consisting of i − j 1’s and a single part b and summing over all j gives∑i

j=1(i− j + 1) =
(
i+1
2

)
members of An − {1n}.

To show (4), we enumerate members π ∈ An by considering the first letter of π. If π starts with 1, then there are clearly
an−1 possibilities. If the first two parts of π are m + i, 1 where i ∈ [2,m + 1], then there are an−m−i−1 such members of
An. Note that the members of An that have not been enumerated to this point are of the form π = (m + 1)1π′ or π = bπ′,
where b ≥ 2m+2. Let A∗n denote this subset of An and to complete the proof of (4), we define a bijection f between An−m−1

and A∗n. To do so, suppose λ = `λ′ ∈ An−m−1, where ` ≥ 1. If ` = 1, then let f(λ) = (m + 1)1λ′. If ` ≥ m + 1, then let
f(λ) = (`+m+ 1)λ′. Note that ` ≥ m+ 1 in the latter case implies λ′ starts with a 1 if nonempty. One may verify that f is
a bijection, which completes the proof of (4).

Let G(n) = G(n, 1) and g(n) = g(n, 1). Note that G(n) is the set of all compositions of n in which no two big parts are
adjacent. We have the following recurrence formula for g(n).

Corollary 2.1. The sequence g(n) satisfies

g(n) = g(n− 1) + g(n− 2) + g(n− 4), n ≥ 4,

with g(0) = g(1) = 1, g(2) = 2 and g(3) = 4. Moreover, g(n) is also the number of compositions of n+ 1 without 2’s.

Proof. The first statement follows from the m = 1 case of Theorem 2.1. For the second, let G2(n) denote the set of composi-
tions of n without 2’s and we define a bijection f between G(n) and G2(n+1) as follows. Given π = π1 · · ·πm ∈ G(n), where
each πi represents a part, we append 1 to obtain π′, i.e., let πm+1 = 1. Note that each big part b of π′ is followed by one or
more 1’s. Consider replacing b, 1 in π′ for each b with the single part b+ 1 to obtain f(π) ∈ G2(n+ 1). One may verify that
f is a bijection.

To illustrate the bijection from the preceding proof, let n = 5 and (12, 3), (2, 1, 2) ∈ G(5). Then we have

(12, 3)→ (12, 3, 1)→ (12, 4) ∈ G2(6) and (2, 1, 2)→ (2, 1, 2, 1)→ (3, 3) ∈ G2(6).

Note that g(n) = A005251(n+ 2) for n ≥ 0, where A005251 denotes the respective entry in [12].
We now consider further some special subsets of G(n).
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The class R(n,m)

Given m ≥ 1, let R(n,m) denote the set of compositions π ` n which, in their symbolic form (2) or (3), satisfy

(i) every string 1x satisfies x ≥ m,

(ii) each boundary part b > 1 satisfies b ≥ m+ 1,

(iii) each interior part b > 1 satisfies b ≥ m+ 2.

Let r(n,m) denote the cardinality of R(n,m).

Example 2.1.

r(6, 1) = 16 : (6), (1, 5), (5, 1), (12, 4), (1, 4, 1), (2, 1, 3), (3, 1, 2), (4, 12), (13, 3), (12, 3, 1), (1, 3, 12), (2, 12, 2), (3, 13), (14, 2), (2, 14), (16).

Note that R(n, 1) consists of compositions in G(n) without interior 2’s.

r(6, 2) = 6 : (6), (12, 4), (4, 12), (13, 3), (3, 13), (16)

r(6, 3) = r(6, 4) = r(6, 5) = 2 : (6), (16)

r(6, 6) = 1 : (16).

Let bn = r(n,m) for a fixed m. The bn satisfy the recursion given in the next theorem.

Theorem 2.2. We have
bn = bn−1 + bn−m−1, n ≥ 2m+ 2, (5)

with initial values b0 = 1, bn = 0 for 1 ≤ n < m, bm = 1, bn = 2 for m+ 1 ≤ n ≤ 2m and b2m+1 = 4.

Proof. We enumerate members of Bn = R(n,m) where n ≥ 2m + 2 as follows. First consider λ ∈ Bn having one of the
following forms: (i) λ = 1`λ′, where ` ≥ m + 1 and λ′ starts with a big part if nonempty, or (ii) λ = bλ′, where b ≥ m + 2

and λ′ starts with 1 if nonempty. We define a bijection f between the subset of Bn comprising those members satisfying (i)
or (ii) and Bn−1 by setting f(λ) = 1`−1λ′ if (i) holds or setting f(λ) = (b − 1)λ′ if (ii). On the other hand, suppose λ ∈ Bn
is expressible either as (a) λ = 1mbλ′, where b ≥ m + 2, or (b) λ = (m + 1)λ′. Note that n ≥ 2m + 2 implies b ≥ m + 2 is
indeed required in part (a). We then define a bijection g between members of Bn satisfying (a) or (b) and Bn−m−1 by letting
g(λ) = (b− 1)λ′ if (a) applies or letting g(λ) = λ′ if (b). Since all members of Bn are of the form (i), (ii), (a) or (b) above, the
proof of (5) is complete. The initial values for n < 2m+ 2 may be verified directly using the definitions.

Remark 2.1. Note that r(n,m) satisfies the same recurrence (with m replaced by m− 1) as the three classes of compositions
considered in [10, Theorem 1.2], though the initial values are different.

The case m = 2 of Theorem 2.2 gives the Narayana’s cows sequence [12, A000930].

Corollary 2.2. The numbers r(n) := r(n, 2) satisfy the recurrence

r(n) = r(n− 1) + r(n− 3), n ≥ 6,

with r(0) = 1, r(1) = 0, r(2) = 1, r(3) = r(4) = 2 and r(5) = 4. Thus, we have r(n) = 2 · A000930(n− 2) for n ≥ 3. Moreover,
r(n+ 3) is twice the number of compositions of n into parts 1 and 2 with no adjacent 2’s.

Proof. The first two statements follow from the m = 2 case of Theorem 2.2 and a comparison with the OEIS entry. The
third statement may be shown by comparing recurrences and initial values, but we find the following bijective proof more
instructive. Let R(n) = R(n, 2) and let R′(n) denote the subset of R(n) consisting of those members that start with 1. We
first define a bijection α between R′(n) and R(n)−R′(n) for n ≥ 3.
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Note π ∈ R′(n) implies either

(i) π = 1u1v1 · · · 1umvm, where m ≥ 1 and ui ≥ 2 for all i, with v1, . . . , vm−1 ≥ 4, vm ≥ 3,

or

(ii) π = 1u1v1 · · · 1um−1vm−11
um , with the same restrictions on the ui and vi.

If (i) holds, then let
α(π) = (u1 + 1)1v1−2δ2 · · · δm−1(um + 2)1vm−1,

if m ≥ 2 where δi = (ui + 2)1vi−2 for 2 ≤ i ≤ m− 1, with α(1u1v1) = (u1 + 1)1v1−1. If (ii), then let

α(π) = (u1 + 1)1v1−2δ2 · · · δm−1(um + 1), m ≥ 2,

with α(1n) = n. One may verify that α yields the desired bijection.
Now let K(n) denote the compositions of n with parts in {1, 2} with no 2’s adjacent. In light of α, to prove the third

statement, it is enough to define a bijection β between R′(n + 3) and K(n) for n ≥ 0. We again consider the cases (i) and
(ii) for π ∈ R′(n+ 3). If (i) holds, then let

β(π) = 1u1−2γ1 · · · γm−121vm−3,

where γi = 21vi−321ui+1−1 for 1 ≤ i ≤ m− 1. For (ii), let

β(π) = 1u1−2γ1 · · · γm−221vm−1−321um−2, m ≥ 2,

with β(1n+3) = 1n. Note that β(π) has an odd or even number of 2’s depending on whether π is of form (i) or (ii), from which
it is possible to construct β−1.

The class S(n,m)

In this subsection, we consider the class of compositions obtained by reversing the inequalities in the restrictions for
membership in R(n,m). Consider the set S(n,m) of compositions π ` n which, in symbolic form, satisfy

(i) every string 1x satisfies 0 ≤ x ≤ m,

(ii) each boundary part b > 1 satisfies b ≤ m+ 1,

(iii) each interior part b > 1 satisfies b ≤ m+ 2.

By convention, we have S(n,m) = Z(n) if m ≥ n. Let s(n,m) = |S(n,m)|.

Example 2.2.

s(6, 1) = 6 : (1, 3, 2), (2, 2, 2), (2, 3, 1), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 2, 1)

s(6, 2) = 18 : (3, 3), (1, 2, 3), (1, 3, 2), (1, 4, 1), (2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1), (12, 2, 2), (12, 3, 1), (1, 2, 1, 2), (1, 2, 2, 1),

(1, 3, 12), (2, 12, 2), (2, 1, 2, 1), (2, 2, 12), (12, 2, 12)

s(6, 3) = 26 : Z(6) \ {(6), (1, 5), (5, 1), (14, 2), (2, 14), (16)}

s(6, 4) = 30 : Z(6) \ {(6), (16)}

s(6, 5) = 31 : Z(6) \ {(16)}.

Let cn = s(n,m), where m ≥ 1 is fixed. Then the cn satisfy the linear recurrence given in the following theorem.

Theorem 2.3. We have
cn = cn−1 + cn−2 + · · ·+ cn−m−1, n ≥ 2m+ 3, (6)

with
cn = cn−1 + cn−2 + · · ·+ cn−m−1 − 1, m+ 3 ≤ n ≤ 2m+ 2, (7)

where c0 = 1, cn = 2n−1 for 1 ≤ n ≤ m, cm+1 = 2m − 1 and cm+2 = 2m+1 − 2.
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Proof. We first show (6), where we may assume m ≥ 2 since the case m = 1 will be seen to follow in a similar manner. Let
Cn = S(n,m). We now enumerate members of Cn as follows where n ≥ 2m+ 3. First suppose λ ∈ Cn is of the form λ = iλ′,
where 2 ≤ i ≤ m+ 1 and λ′ does not start with m+ 2. Upon deleting i, it is seen that there are

∑m+1
i=2 cn−i possibilities for

such λ. So assume λ does not have the form specified above and let C∗n denote the subset of Cn consisting of such λ. Note
that members of C∗n either start with 1 or are of the form α = i(m+ 2)α′ where i > 1.

To complete the proof of (6), it then suffices to define a bijection f between Cn−1 and C∗n as follows. Let ρ ∈ Cn−1. If ρ
does not start with 1, then let f(ρ) = 1ρ, which yields (uniquely) all members of C∗n starting with 1 and whose second part
belongs to [2,m + 1]. So assume ρ = 1`jρ′, where 1 ≤ ` ≤ m and 2 ≤ j ≤ m + 2. Note that n ≥ 2m + 3 implies ρ′ 6= ∅ for
all possible ` and j, upon considering separately the case when j = m + 2. To define f for such ρ, we consider cases on `

and j. If 2 ≤ ` ≤ m and 2 ≤ j ≤ m+ 1, then replace j with j + 1 within ρ to obtain f(ρ) in this case, which is seen to yield
all members of C∗n starting with two or more 1’s and whose first big part is not 2. Note that ρ′ 6= ∅ implies f(ρ) does not
end in m + 2 in the case when j = m + 1. If 1 ≤ ` ≤ m and j = m + 2, then replace the string 1` in ρ with the single part
` + 1 to obtain f(ρ), which gives members of C∗n whose first part is not 1. If ` = 1 and 2 ≤ j ≤ m, then replace the initial
section 1j of ρ with 1j2 to obtain f(ρ), whereas if ` = 1 and j = m+ 1, then replace 1(m+ 1) with 1(m+ 2) to obtain f(ρ).
Note that the last two cases yield all members of C∗n that start with a string of two or more 1’s followed by 2 or that start
1,m+2. Checking separately each of the cases described above, one may verify that f is reversible in each case and hence
yields the desired bijection between Cn−1 and C∗n.

Concerning the initial values, clearly we have cn = 2n−1 for 1 ≤ n ≤ m since there are no restrictions on any of the
run lengths or part sizes in this case. Further, we have cm+1 = 2m − 1 and cm+2 = 2m+1 − 2 since the composition
consisting of all 1’s must be excluded in both cases with the single-part composition also being excluded in the latter case.
If m + 3 ≤ n ≤ 2m + 2, then recurrence (7) is seen to hold, as the bijection f above cannot be defined when ` = n −m − 2

and j = m+ 1 since the resulting composition would end in m+ 2 in that case, which completes the proof.

Taking m = 1 in Theorems 2.2 and 2.3 yields the following result.

Corollary 2.3. The following sets of compositions are equinumerous for n ≥ 2:

(i) R(n, 1),

(ii) S(n+ 2, 1).

The common count is 2Fn.

Note that a bijective proof similar to that given above for the final statement in Corollary 2.2 above may be given to
show |R(n, 1)| = 2Fn, though we were unable to find a direct bijective proof establishing the cardinality of S(n+ 2, 1).

The class T (n,m1,m2)

Here, we consider a class of compositions where there are both upper and lower bounds on the lengths of the 1-strings and
the sizes of big parts. Given positive integers m1 < m2, let T (n,m1,m2) denote the set of compositions π ` n which, in
symbolic form, satisfy

(i) every string 1x satisfies m1 ≤ x ≤ m2,

(ii) each boundary part b > 1 satisfies m1 + 1 ≤ b ≤ m2 + 1,

(iii) each interior part b > 1 satisfies m1 + 2 ≤ b ≤ m2 + 2.

Let t(n,m1,m2) = |T (n,m1,m2)|.

Example 2.3.

(i) t(9, 1, 2) = 14 : (1, 4, 1, 3), (3, 1, 4, 1), (12, 3, 1, 3), (12, 4, 1, 2), (1, 3, 12, 3), (1, 3, 1, 3, 1), (1, 4, 12, 2), (2, 12, 4, 1), (2, 1, 3, 1, 2),

(2, 1, 4, 12), (3, 12, 3, 1), (3, 1, 3, 12), (12, 3, 12, 2), (2, 12, 3, 12).

(ii) t(9, 2, 3) = 6 : (3, 12, 4), (4, 12, 3), (12, 5, 12), (3, 13, 3), (13, 4, 12), (12, 4, 13).

(iii) t(9, 2, 4) = 8 : (3, 12, 4), (4, 12, 3), (14, 5), (12, 5, 12), (3, 13, 3), (5, 14), (13, 4, 12), (12, 4, 13).

Let dn = t(n,m1,m2) for fixed m2 > m1 ≥ 1. The dn are given recursively in the next theorem, where χ(P ) = 1 or 0

depending upon the truth or falsity of the statement P .
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Theorem 2.4. We have

dn = dn−m1−1 + dn−m1−2 + · · ·+ dn−m2−1 − χ(m1 +m2 + 2 ≤ n ≤ 2m2 + 2), n ≥ m1 +m2 + 2, (8)

with d0 = 1 = dm1 , dn = 0 if 1 ≤ n ≤ m1 − 1 and

dn = 2− δn,m2+1 − 2χ(m2 + 2 ≤ n ≤ m1 +m2 + 1) + 2

b n+1
m1+1 c∑
j=2

(
n− jm1

j − 1

)
, (9)

for m1 + 1 ≤ n ≤ m1 +m2 + 1.

Proof. First suppose n ≥ 2m2 + 3. Let Dn = T (n,m1,m2) and D(i)
n for i ∈ [m2 −m1 + 1] denote the subset of Dn consisting

of those π that are expressible either as (i) π = (m1 + i)π′ or (ii) π = 1m1+i−1π′. Note that Dn is a disjoint union of the
D(i)

n . For each i, we define a bijection fi between Dn−m1−i and D(i)
n as follows. If λ ∈ Dn−m1−i starts with a 1, then let

fi(λ) = (m1 + i)λ. If λ ∈ Dn−m1−i is of the form λ = bλ′ where m1 + 1 ≤ b ≤ m2 + 1, then let fi(λ) = 1m1+i−1(b+ 1)λ′. Note
that n ≥ 2m2+3 implies λ′ is always nonempty regardless of the values of b and i, and hence b+1 is an interior part of fi(λ)
in all cases, in particular when b = m2 + 1 where it is required. Therefore, one may verify for each i that fi is reversible
and hence a bijection. Combining all of the fi then yields a bijection f between Dn and ∪m2−m1+1

i=1 Dn−m1−i, which implies
(8) when n ≥ 2m2 + 3.

Now supposem1+m2+2 ≤ n ≤ 2m2+2. Then fi(λ) is not defined when λ = bλ′ with b = m2+1 and i = n−m1−m2−1,
for in this case λ′ would be empty and hence b+ 1 would not be an interior part of fi(λ). In all other cases, the mapping f
is defined, which implies we must subtract 1 in (8) as indicated.

To prove (9), suppose π ∈ Dn, where m1 + 1 ≤ n ≤ m1 +m2 + 1 and π 6= 1n, n. Let s(π) denote the sum of the number
of nonempty 1-runs and the number of big parts in π. Note that π 6= 1n, n implies s(π) ≥ 2. We now count members of
Dn according to the value of s(π). To do so, it is convenient to consider first a composition α of minimal length for which
s(α) = j. If j is even, then we have

α = 1m1(m1 + 2) · · · 1m1(m1 + 2)1m1(m1 + 1) or α = (m1 + 1)1m1(m1 + 2)1m1 · · · (m1 + 2)1m1 ,

where in either case it is understood that there are j
2 runs 1m1 . Note that the length of α is given by jm1 + j − 1 in each

case. Similarly, if j ≥ 3 is odd, then there are either j+1
2 or j−1

2 runs 1m1 implying

α = 1m1(m1 + 2) · · · 1m1(m1 + 2)1m1 or α = (m1 + 1)1m1(m1 + 2) · · · 1m1(m1 + 2)1m1(m1 + 1),

both of which again have length jm1 + j − 1.
Now imagine creating from α members π ∈ Dn for which s(π) = j by increasing the lengths of the 1-runs of α by non-

negative amounts and/or increasing the size of the big parts of α. Note that the sum of all of the increases of the run lengths
and big part sizes of αmust be n−jm1−j+1 in order to obtain a member ofDn. Moreover, there is no further restriction on
the amount a particular run length or big part can be increased since n ≤ m1 +m2 +1. Thus, the number of π ∈ Dn where
s(π) = j that can be obtained from a given α is the same as the number of non-negative integer solutions to the equation
x1 +x2 + · · ·+xj = n− jm1− j+1, which is given by

(
n−jm1

j−1
)
. Doubling this formula to account for the two possible α then

gives the total number of π for which s(π) = j. Considering all possible j ≥ 2 then yields all members of Dn − {1n, n}. To
complete the enumeration of Dn, we then must add 2 to account for the compositions 1n and n if m1 + 1 ≤ n ≤ m2 and add
1 to account for the composition n if n = m2 + 1. If m2 + 2 ≤ n ≤ m1 +m2 + 1, then neither of these compositions would
be allowed. Combining these observations then accounts for the quantity 2− δn,m2+1 − 2χ(m2 + 2 ≤ n ≤ m1 +m2 + 1) and
completes the proof of (9). Finally, the values of dn for 0 ≤ n ≤ m1 are apparent from the definitions.

Remark 2.2. Note that the generating function of the quantity pn = 2 + 2
∑b n+1

m+1 c
j=2

(
n−jm
j−1

)
if n ≥ m + 1, with p0 = 1 = pm

and p1 = · · · = pm−1 = 0, is given by ∑
n≥0

pnx
n =

1− x+ xm + x2m+1

1− x− xm+1
.

If m2 ≤ 2m1 + 1, then the values of dn for m1 + 1 ≤ n ≤ m1 +m2 + 1 are readily found using the explicit formula (9). On the
other hand, if m2 ≥ 2m1 + 2, then it is easier to observe that dn = pn for 2m1 + 2 ≤ n ≤ m2, where pn is given recursively by

pn = pn−1 + pn−m1−1, n ≥ 2m1 + 2, (10)

which follows from the generating function formula found above for pn (with m1 in place of m). Further, it is seen from (9)
and (10) that dn = pn − 2 for m2 + 2 ≤ n ≤ m1 +m2 + 1, with dn = pn − 1 if n = m2 + 1. Note that the initial values for (10)
are pm1+1 = · · · = p2m1 = 2 and p2m1+1 = 4.
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Taking m1 = 1,m2 = 2 in Theorem 2.4 yields the following result for t(n) = t(n, 1, 2).

Corollary 2.4. We have
t(n) = 2Pn+4, n ≥ 4,

with initial values t(0) = t(1) = 1, t(2) = 2 and t(3) = 3, where Pn is the Padovan number sequence defined by

Pn = Pn−2 + Pn−3 for n ≥ 3, with P0 = 1, P1 = P2 = 0.
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