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Abstract

For a connected graphGwithn vertices andm edges, the degree Kirchhoff index ofG is defined asKf∗ (G) = 2m
∑n−1

i=1 (γi)
−1,

where γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0 are the normalized Laplacian eigenvalues of G. In this paper, a lower bound on the
degree Kirchhoff index of bipartite graphs is established. Also, it is proved that the obtained bound is stronger than a lower
bound derived by Zhou and Trinajstić in [J. Math. Chem. 46 (2009) 283–289].
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1. Introduction

Let G = (V (G) , E (G)) be a simple connected graph with n vertices and m edges, where V (G) = {v1, v2, . . . , vn}. The
degree of a vertex vi ∈ V (G) is denoted by di, where i = 1, 2, . . . , n. If vi and vj are two adjacent vertices of G, then it is
written as i ∼ j.

Denote by A (G) and D (G) = diag (d1, d2, . . . , dn) the adjacency and the diagonal degree matrix of G, respectively. The
Laplacian matrix of G is defined as L (G) = D (G) − A (G) (see [16]). Since G is assumed to be a connected graph, the
matrix D (G)

−1/2 exists. The normalized Laplacian matrix of G is the matrix defined [8] by

L (G) = D (G)
−1/2

L (G)D (G)
−1/2

.

The eigenvalues γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0 of L (G) represent the normalized Laplacian eigenvalues of G. Details on
the spectra of L (G) can be found in [8].

Chen and Zhang [7] introduced the degree Kirchhoff index of a connected graph G as

Kf∗ (G) =
∑
i<j

didjrij , (1)

where rij is the effective resistance distance between the vertices vi and vj of G. In [7], it was also demonstrated that the
degree Kirchhoff index can be expressed in terms of normalized Laplacian eigenvalues as follows:

Kf∗ (G) = 2m

n−1∑
i=1

1

γi
. (2)

Both of the definitions of the graph invariant Kf∗ (G) given by (1) and (2) are much studied in the chemical and math-
ematical literature. For survey and details, see [1,2,4,5,10–12,14,15,17,18,20,21].

In this paper, we present a lower bound on the degree Kirchhoff index of bipartite graphs. In addition, we show that
our lower bound improves the lower bound obtained by Zhou and Trinajstić [21].

2. Lemmas

In this section, we recall a few well-known properties of the normalized Laplacian eigenvalues of graphs.
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Lemma 2.1. [8] Let G be a connected graph with n ≥ 2 vertices. Then, the following properties regarding the normalized
Laplacian eigenvalues are valid:

1.
n∑

i=1

γi = n.

2. γ1 ≤ 2 with equality if and only if G is a bipartite graph.

3. For each 1 ≤ i ≤ n, γi ∈ [0, 2], γn = 0 and γn−1 6= 0.

Lemma 2.2. [9] Let G be a connected graph with n vertices and m edges. Then,
n−1∏
i=1

γi =
2mt(G)∏n

i=1 di
,

where t (G) is the total number of spanning trees of G.

Lemma 2.3. [13] Let G be a connected graph of order n. Then, γ2 ≥ 1 with equality if and only if G is a complete bipartite
graph.

3. A lower bound for the degree Kirchhoff index of bipartite graphs

We now give an improved lower bound on the degree Kirchhoff index of bipartite graphs.

Theorem 3.1. Let G be a connected bipartite graph with n ≥ 2 vertices, m edges and t (G) spanning trees. Then, for any
real α, γ2 ≥ α ≥ 1

Kf∗ (G) ≥ 2m

(
1

2
+

1

α
+ n− 3− ln

(
mt (G)∏n

i=1 di

)
+ lnα

)
. (3)

Equality in (3) holds if and only if α = 1 and G ∼= Kp,q (p+ q = n).

Proof. For x > 0, the following inequality can be found in the monograph [19]

x ≤ 1 + x lnx,

where the equality holds if and only if x = 1. For x > 0, the above inequality can be considered as
1

x
≥ 1− lnx

with equality if and only if x = 1. By Lemma 2.1, γ1 = 2 and γi > 0, i = 1, 2, . . . , n − 1, since G is a connected bipartite
graph. Then, using these results and Lemma 2.2, we have

n−1∑
i=1

1

γi
=

1

γ1
+

1

γ2
+

n−1∑
i=3

1

γi

=
1

2
+

1

γ2
+

n−1∑
i=3

1

γi

≥ 1

2
+

1

γ2
+

n−1∑
i=3

(1− ln γi)

=
1

2
+

1

γ2
+ n− 3− ln

n−1∏
i=3

γi

=
1

2
+

1

γ2
+ n− 3− ln

(
mt (G)∏n

i=1 di

)
+ ln γ2. (4)

Now, consider the function f (x) = 1
x + lnx. It can be easily seen that this function is increasing in the interval 1 ≤ x ≤ 2.

Then for any real α, γ2 ≥ α ≥ 1, we have that

f (γ2) ≥ f (α) =
1

α
+ lnα.

Bearing this fact in mind and using (2) and (4), we obtain that

Kf∗ (G) ≥ 2m

(
1

2
+

1

α
+ n− 3− ln

(
mt (G)∏n

i=1 di

)
+ lnα

)
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which is the required inequality (3). Now, assume that the equality holds in (3). Then

γ2 = α and γ3 = · · · = γn−1 = 1.

Since G is bipartite, by Lemma 2.1,
∑n−1

i=2 γi = n − 2. Considering this with the above conditions, we get that γ2 = α = 1,
which implies that G ∼= Kp,q.

Conversely, it is not difficult to show that the equality holds in (3) for the complete bipartite graph Kp,q. Hence, the
proof is completed.

By Theorem 3.1 and Lemma 2.3, we have the following corollary.

Corollary 3.1. Let G be a connected bipartite graph with n ≥ 2 vertices, m edges and t (G) spanning trees. Then,

Kf∗ (G) ≥ m (2n− 3)− 2m ln

(
mt (G)∏n

i=1 di

)
. (5)

Equality in (5) holds if and only if G ∼= Kp,q (p+ q = n).

Remark 3.1. For a connected bipartite graph G with n ≥ 2 vertices and m edges, Zhou and Trinajstić [21] obtained that

Kf∗ (G) ≥ m (2n− 3) (6)

with equality if and only if G is a complete bipartite graph. Furthermore, for connected bipartite graphs, the following
inequality can be obtained from Theorem 3 of [3]:

0 <
mt (G)∏n

i=1 di
≤ 1.

From the above and (5), we conclude that

Kf∗ (G) ≥ m (2n− 3)− 2m ln

(
mt (G)∏n

i=1 di

)
≥ m (2n− 3) .

This implies that the lower bound (5) improves the lower bound (6).

Recall that the general Randić index of a graph G is one of the graph topological indices defined by R−1(G) =
∑

i∼j
1

didj

(see [6]). The following lower bound was found in Theorem 3.2 of [5]

γ2 ≥ 1 +

√
2 (R−1 (G)− 1)

n− 2
.

Remark 3.2. Notice that the lower bound (5) can be improved by taking α = 1 +
√

2(R−1(G)−1)
n−2 in Theorem 3.1.
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