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Abstract
For a connected graph G with n vertices and m edges, the degree Kirchhoffindex of G is defined as K f* (G) = 2m > 7~ (i),
where v1 > 72 > -+ > y,-1 > v, = 0 are the normalized Laplacian eigenvalues of G. In this paper, a lower bound on the

degree Kirchhoff index of bipartite graphs is established. Also, it is proved that the obtained bound is stronger than a lower
bound derived by Zhou and Trinajsti¢ in [J. Math. Chem. 46 (2009) 283—289].
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1. Introduction

Let G = (V(G),E(G)) be a simple connected graph with n vertices and m edges, where V (G) = {v1,vs,...,v,}. The
degree of a vertex v; € V (G) is denoted by d;, where i = 1,2,...,n. If v; and v; are two adjacent vertices of G, then it is
written as ¢ ~ j.

Denote by A (G) and D (G) = diag (dy,ds, . ..,d,) the adjacency and the diagonal degree matrix of G, respectively. The
Laplacian matrix of G is defined as L (G) = D (G) — A(G) (see [16]). Since G is assumed to be a connected graph, the
matrix D (G)_l/ ? exists. The normalized Laplacian matrix of G is the matrix defined [8] by

L£(G)=D(G) L@ D(G)"V2.

The eigenvalues v; > 72 > -+ > v,_1 > v, = 0 of L (G) represent the normalized Laplacian eigenvalues of G. Details on
the spectra of £ (G) can be found in [8].
Chen and Zhang [7] introduced the degree Kirchhoff index of a connected graph G as

Kf*(G) =Y did;ri;, 1)
1<J
where r;; is the effective resistance distance between the vertices v; and v; of G. In [7], it was also demonstrated that the
degree Kirchhoff index can be expressed in terms of normalized Laplacian eigenvalues as follows:

n—1

Kf*(G)=2m>_ ey 2)
=1 i
Both of the definitions of the graph invariant K f* (G) given by (1) and (2) are much studied in the chemical and math-
ematical literature. For survey and details, see [1,2,4,5,10-12,14,15,17,18,20,21].
In this paper, we present a lower bound on the degree Kirchhoff index of bipartite graphs. In addition, we show that
our lower bound improves the lower bound obtained by Zhou and Trinajstié [21].

2. Lemmas

In this section, we recall a few well-known properties of the normalized Laplacian eigenvalues of graphs.
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Lemma 2.1. [8] Let G be a connected graph with n > 2 vertices. Then, the following properties regarding the normalized
Laplacian eigenvalues are valid:

1. > v =n.

i=1

2. v1 < 2 with equality if and only if G is a bipartite graph.
3. Foreach1<i<mn,v €][0,2], v, =0and vy,-1 # 0.
Lemma 2.2. [9] Let G be a connected graph with n vertices and m edges. Then,
= 2mt(G)
2-1;[ Vi = m )
where t (G) is the total number of spanning trees of G.

Lemma 2.3. [13] Let G be a connected graph of order n. Then, v2 > 1 with equality if and only if G is a complete bipartite
graph.

3. A lower bound for the degree Kirchhoff index of bipartite graphs

We now give an improved lower bound on the degree Kirchhoff index of bipartite graphs.

Theorem 3.1. Let G be a connected bipartite graph with n > 2 vertices, m edges and t (G) spanning trees. Then, for any
real a, v > a>1

Kf*(G)22m(;+i+n—3—ln(EL;_(lc;)i)—Hna). 3)

Equality in (3) holds if and only if a =1land G =2 K, , (p+ g =n).
Proof. For z > 0, the following inequality can be found in the monograph [19]
r<l+4+zlnz,

where the equality holds if and only if z = 1. For = > 0, the above inequality can be considered as

1
—>1—-Ilnx
T

with equality if and only if x = 1. By Lemma 2.1, v, = 2and~v; > 0,7 =1,2,...,n — 1, since G is a connected bipartite
graph. Then, using these results and Lemma 2.2, we have

nfll 1 1 nfll
D o v ) D box
iz Vi moor 3
B 1+1 nfli
2 2 i*&ryl
1 1 n—1
> 4=+ 1—In~
2t ;( )
n—1
1 1
= -+—4+n-3-In
2T, g%
11 mt(G))
— —|——|—n—3—ln< - + Invs. (4)
2 72 Hi:ldi 2

Now, consider the function f (z) = % + Inz. It can be easily seen that this function is increasing in the interval 1 < z < 2.
Then for any real o, v2 > a > 1, we have that
1
f(e) > fla)= o +Ina.

Bearing this fact in mind and using (2) and (4), we obtain that

Kf*(G)>2m(;+;+n—3—ln(m)+1na>
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which is the required inequality (3). Now, assume that the equality holds in (3). Then
y=aandy3=---="v,_1 = 1.

Since G is bipartite, by Lemma 2.1, ZZ; ~v; = n — 2. Considering this with the above conditions, we get that v = o = 1,
which implies that G = K, ,.

Conversely, it is not difficult to show that the equality holds in (3) for the complete bipartite graph K, ,. Hence, the
proof is completed. O

By Theorem 3.1 and Lemma 2.3, we have the following corollary.

Corollary 3.1. Let G be a connected bipartite graph with n > 2 vertices, m edges and t (G) spanning trees. Then,

Kf*(G)>m(2n—3) — 2mln (M) (5)
i=1""

Equality in (5) holds if and only if G = K, , (p+ g = n).
Remark 3.1. For a connected bipartite graph G with n > 2 vertices and m edges, Zhou and Trinajsti¢ [21] obtained that
Kf(G)>m(2n—3) ©)

with equality if and only if G is a complete bipartite graph. Furthermore, for connected bipartite graphs, the following
inequality can be obtained from Theorem 3 of [3]:

H;L:l d;

From the above and (5), we conclude that

Kf(G)

v

m (2n — 3) — 2mIn (?IZ(C;))
> m(2n-3). -

This implies that the lower bound (5) improves the lower bound (6).

Recall that the general Randi¢ index of a graph G is one of the graph topological indices defined by R_(G) =3, y %dj

(see [6]). The following lower bound was found in Theorem 3.2 of [5]

2(R_1(G) -1
R 10 (< )
n—2
Remark 3.2. Notice that the lower bound (5) can be improved by taking o = 1 + % in Theorem 3.1.
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