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Abstract
For a ∈ R and a graph G, the general Randić index is defined as Ra(G) =

∑
uv∈E(G)[dG(u)dG(v)]

a, where E(G) is the edge
set of G, and dG(u) and dG(v) are degrees of the vertices u and v in G, respectively. For −0.64 ≤ a < 0, we give lower bounds
on the general Randić index for unicyclic graphs with given number of pendant vertices, and with given order and number
of pendant vertices. The extremal graphs are presented as well. Lower bounds on the classical Randić index are corollaries
of our bounds on the general Randić index.
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1. Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). The order of G is the number of vertices in
V (G). The degree dG(u) of a vertex u ∈ V (G) is the number of edges incident with a vertex u. A pendant vertex is a vertex
of degree one in G. A unicyclic graph is a connected graph with exactly one cycle. For p ≥ 3 and k ≥ 0, we denote by Cp,k

the unicyclic graph obtained from the cycle Cp by joining one vertex of Cp with k new vertices.
In 1998, Bollobás and Erdős [2] introduced the general Randić index

Ra(G) =
∑

uv∈E(G)

[dG(u)dG(v)]
a

of a graph G, where a is any real number. For a = − 1
2 , we obtain the classical Randić index

R− 1
2
(G) = R(G) =

∑
uv∈E(G)

[dG(u)dG(v)]
− 1

2 .

The general Randić index belongs to well-known general topological indices. The Ra index for unicyclic graphs with
prescribed order has been studied in several papers. Wu and Zhang [12] found the unicyclic graphs with the smallest Ra

index for a ≥ −1. For a < −1, unicyclic graphs with the smallest Ra index were given by Li, Wang and Zhang [9]. The
unicyclic graph having the largest Ra index was given by Chen [3] for −0.58 < a < 0. For a > 0, the same problem was
studied by Li, Shi and Xu [7]. A survey on Randić indices was given by Li and Shi [6].

Alfuraidan et al. [1] found the graph with given order and diameter having the smallest Ra index for −0.64 ≤ a < 0.
Sharp bounds on the Ra index for trees with given order and number of pendant vertices were given in [5], [8] and [10].
Related results for the general sum-connectivity index were presented for example in [4] and [11].

For−0.64 ≤ a < 0, we give lower bounds on the general Randić index for unicyclic graphs with given number of pendant
vertices, and with given order and number of pendant vertices.

2. Preliminary results

Lemma 2.1 was given in [1] and it is used in the proofs of Lemmas 2.2 and 2.3.

Lemma 2.1. For −1 ≤ a < 0 and x ≥ 1, (
1 +

1

x

)1−a

> 1 +
1− a

x
.
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Lemmas 2.2 and 2.3 are similar. It would be possible to present a more general result with Lemmas 2.2 and 2.3 being
special cases of that result, but it would be a bit more complicated to follow its proof. Therefore, we present two separate
lemmas.

Lemma 2.2. Let −1 ≤ a < 0 and s ≥ 2. For x ≥ 2, the function

f1(x) = (x− 1 + sa)xa − (x− 2 + sa)(x− 1)a

is strictly decreasing.

Proof. We obtain

f ′1(x) = xa + (x− 1 + sa)axa−1 − (x− 1)a − (x− 2 + sa)a(x− 1)a−1

= [x+ (x− 1 + sa)a]xa−1 − [x− 1 + (x− 2 + sa)a](x− 1)a−1.

Let us prove that for every x ≥ 2, we have f ′1(x) < 0.
Suppose to the contrary that for at least one value x1 ∈ [2,∞), we have f ′1(x1) ≥ 0. Thus

(x1 + ax1 − a+ saa)xa−1
1 ≥ (x1 + ax1 − 2a+ saa− 1)(x1 − 1)a−1.

We have
x1 + ax1 − 2a+ saa− 1 = (x1 − 1)(1 + a)− a(1− sa) > 0,

since 1 + a ≥ 0 and 1− sa > 0. Therefore, we get

1 +
1 + a

x1 + ax1 − 2a+ saa− 1
≥ (x1 − 1)a−1

xa−1
1

=

(
1 +

1

x1 − 1

)1−a

> 1 +
1− a

x1 − 1
,

where the strict inequality is obtained from Lemma 2.1. Thus

0 > (1− a)(x1 + ax1 − 2a+ saa− 1)− (1 + a)(x1 − 1)

= −a[(1 + a)(x1 + sa)− 2(sa + a)]

> −a[(1 + a)(x1 + sa)− 2(1 + a)]

= −a(1 + a)(x1 − 2 + sa).

Since x1 ≥ 2 and 0 < sa < 1, we obtain x1 + sa − 2 > 0. Then

−a(1 + a)(x1 − 2 + sa) ≥ 0,

which is a contradiction. Thus for x ≥ 2, we have f ′1(x) < 0. Hence f1(x) is strictly decreasing.

Rather than saying that the proof of Lemma 2.3 is similar to the proof of Lemma 2.2, we present a complete proof of
Lemma 2.3 as well.

Lemma 2.3. Let −1 ≤ a < 0, s1 ≥ 2 and s2 ≥ 2. For x ≥ 3, the function

f2(x) = (x− 2 + sa1 + sa2)x
a − (x− 3 + sa1 + sa2)(x− 1)a

is strictly decreasing.

Proof. We obtain

f ′2(x) = xa + (x− 2 + sa1 + sa2)ax
a−1 − (x− 1)a − (x− 3 + sa1 + sa2)a(x− 1)a−1

= [x+ (x− 2 + sa1 + sa2)a]x
a−1 − [x− 1 + (x− 3 + sa1 + sa2)a](x− 1)a−1.

Let us prove that for every x ≥ 3, we have f ′2(x) < 0.
Suppose to the contrary that for at least one value x1 ∈ [3,∞), we have f ′2(x1) ≥ 0. Thus

(x1 + ax1 − 2a+ sa1a+ sa2a)x
a−1
1 ≥ (x1 + ax1 − 3a+ sa1a+ sa2a− 1)(x1 − 1)a−1.

We have
x1 + ax1 − 3a+ sa1a+ sa2a− 1 = (x1 − 1)(1 + a)− a(2− sa1 − sa2) > 0,
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since 1 + a ≥ 0 and 2− sa1 − sa2 > 0. Therefore, we get

1 +
1 + a

x1 + ax1 − 3a+ sa1a+ sa2a− 1
≥ (x1 − 1)a−1

xa−1
1

=

(
1 +

1

x1 − 1

)1−a

> 1 +
1− a

x1 − 1
,

where the strict inequality is obtained from Lemma 2.1. Thus

0 > (1− a)(x1 + ax1 − 3a+ sa1a+ sa2a− 1)− (1 + a)(x1 − 1)

= −a[(1 + a)(x1 − 3 + sa1 + sa2) + 2(1− sa1) + 2(1− sa2)]

> −a(1 + a)(x1 − 3 + sa1 + sa2)

Since x1 ≥ 3, 0 < sa1 < 1 and 0 < sa2 < 1, we obtain x1 − 3 + sa1 + sa2 > 0. Then

−a(1 + a)(x1 − 3 + sa1 + sa2) ≥ 0,

which is a contradiction. Thus for x ≥ 3, we have f ′2(x) < 0. Hence f2(x) is strictly decreasing.

Lemmas 2.4 and 2.5 were presented in [1]. Lemmas 2.2, 2.3, 2.4 and 2.5 are used in the proof of Theorem 3.1.

Lemma 2.4. Let −1 ≤ a < 0 and c ≥ 2. For x ≥ 1, the function

f3(x) = (cx)a − [(c− 1)x]a

is strictly increasing.

Lemma 2.5 was presented in [1] for x ≥ 2. However, the proof given in [1] holds for any x > 0. Thus we state Lemma
2.5 for x > 0. This lemma is used in the proof of Theorem 3.1 to compare f4(k) and f4(k + 1) for k ≥ 1.

Lemma 2.5. Let −0.64 ≤ a < 0. For x ≥ 2, the function

f4(x) = (x− 1 + 2a+1)(x+ 1)a − (x− 1 + 2a)xa

is strictly decreasing.

3. Main result

We present a lower bound on the general Randić index for unicyclic graphs with n vertices and k pendant vertices. The
extremal graph is presented in Figure 1. Note that for every unicyclic graph, we have 0 ≤ k ≤ n− 3.

kCn−k

Figure 1: The graph Cn−k,k.

Theorem 3.1. Let −0.64 ≤ a < 0. For any unicyclic graph G with n vertices and k pendant vertices, we have

Ra(G) ≥ (n− k − 2)4a + (k + 2a+1)(k + 2)a

with equality if and only if G is Cn−k,k.

Proof. Clearly, k ≥ 0 and n ≥ k + 3 for every unicyclic graph with given n and k. For the graph Cn−k,k, we have

Ra(G) = (n− k − 2)4a + k(k + 2)a + 2[2(k + 2)]a

= (n− k − 2)4a + (k + 2a+1)(k + 2)a.

We prove the result by induction on n. The only unicyclic graph with k = 0 pendant vertices and n vertices is Cn = Cn,0.
For n = k+3, the only unicyclic graph with k pendant vertices and k+3 vertices is C3,k. So the result holds for those cases.

Let n ≥ k + 4 and k ≥ 1. Assume that the result holds for all unicyclic graphs with at most n − 1 vertices. Let G be a
unicyclic graph with n vertices and k pendant vertices. We denote the unique cycle in G by C. Let v be a pendant vertex
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furthest from C in G and let G′ = G− v. We denote the unique neighbor of v in G by w. Let dG(w) = p. We distinguish the
following cases.

Case 1: w ∈ V (C).

Then w is adjacent to two vertices w1, w2 ∈ V (C) and p − 2 pendant vertices in G, where 3 ≤ p ≤ k + 2. We have
dG(w1) = s1 ≥ 2 and dG(w2) = s2 ≥ 2. Then

Ra(G) = Ra(G
′) + (p− 2)pa − (p− 3)(p− 1)a + (s1p)

a − [s1(p− 1)]a + (s2p)
a − [s2(p− 1)]a

= Ra(G
′) + (p− 2 + sa1 + sa2)p

a − (p− 3 + sa1 + sa2)(p− 1)a.

Since p ≤ k + 2, by Lemma 2.3, we have

f2(p) = (p− 2 + sa1 + sa2)p
a − (p− 3 + sa1 + sa2)(p− 1)a

≥ (k + sa1 + sa2)(k + 2)a − (k − 1 + sa1 + sa2)(k + 1)a

= f2(k + 2),

with equality if and only if p = k + 2 (which means that w is adjacent to k pendant vertices in G). By Lemma 2.4, for
s1, s2 ≥ 2,

f3(s1) = (k + 2)asa1 − (k + 1)asa1 ≥ (k + 2)a2a − (k + 1)a2a = f3(2)

and
f3(s2) = (k + 2)asa2 − (k + 1)asa2 ≥ (k + 2)a2a − (k + 1)a2a = f3(2)

with equalities if and only if s1 = 2 and s2 = 2, respectively. Therefore

Ra(G) ≥ Ra(G
′) + (k + 2a+1)(k + 2)a − (k − 1 + 2a+1)(k + 1)a.

Note that G′ has n− 1 vertices and k − 1 pendant vertices. By the induction hypothesis,

Ra(G
′) ≥ (n− k − 2)4a + (k − 1 + 2a+1)(k + 1)a

with equality if and only if G′ is Cn−k,k−1. Therefore

Ra(G) ≥ (n− k − 2)4a + (k + 2a+1)(k + 2)a

with equality if and only if G is Cn−k,k.

Case 2: w 6∈ V (C).

In this case, we prove that Ra(G) > Ra(Cn−k,k). Since v is a pendant vertex furthest from C in G, there is exactly one
non-pendant vertex adjacent to w in G. We denote it by w′. We have dG(w

′) = s ≥ 2. The other p − 1 neighbors of w in G

are pendant vertices. Note that 2 ≤ p ≤ k + 1.

Case 2.1: p ≥ 3.

We have

Ra(G) = Ra(G
′) + (p− 1)pa − (p− 2)(p− 1)a + (sp)a − [s(p− 1)]a

= Ra(G
′) + (p− 1 + sa)pa − (p− 2 + sa)(p− 1)a.

Since p ≤ k + 1, by Lemma 2.2, we have

f1(p) = (p− 1 + sa)pa − (p− 2 + sa)(p− 1)a

≥ (k + sa)(k + 1)a − (k − 1 + sa)ka

= f1(k + 1).

with equality if and only if p = k+1 (which means that w is adjacent to k pendant vertices in G). By Lemma 2.4, for s ≥ 2,

f3(s) = (k + 1)asa − kasa ≥ (k + 1)a2a − ka2a = f3(2)

with equality if and only if s = 2. Therefore

Ra(G) ≥ Ra(G
′) + (k + 2a)(k + 1)a − (k − 1 + 2a)ka.
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Note that G′ has n− 1 vertices and k − 1 pendant vertices. By the induction hypothesis,

Ra(G
′) ≥ (n− k − 2)4a + (k − 1 + 2a+1)(k + 1)a.

Therefore

Ra(G) ≥ (n− k − 2)4a + (k − 1 + 2a+1)(k + 1)a + (k + 2a)(k + 1)a − (k − 1 + 2a)ka

> (n− k − 2)4a + (k + 2a+1)(k + 2)a

= Ra(Cn−k,k),

since by Lemma 2.5,

f4(k) = (k − 1 + 2a+1)(k + 1)a − (k − 1 + 2a)ka

> (k + 2a+1)(k + 2)a − (k + 2a)(k + 1)a

= f4(k + 1).

Case 2.2: p = 2.

Since G′ has n− 1 vertices and k pendant vertices, by the induction hypothesis, we get

Ra(G
′) ≥ (n− k − 3)4a + (k + 2a+1)(k + 2)a

with equality if and only if G′ is Cn−k−1,k. Using c = 2 in Lemma 2.4, for s ≥ 2, we obtain

f3(s) = (2s)a − sa ≥ 4a − 2a = f3(2)

with equality if and only if s = 2. Therefore

Ra(G) = Ra(G
′) + 2a + (2s)a − sa

≥ (n− k − 3)4a + (k + 2a+1)(k + 2)a + 2a + 4a − 2a

= (n− k − 2)4a + (k + 2a+1)(k + 2)a

with equality if and only if G′ is Cn−k−1,k and s = 2, which means that G contains an edge ww′ not in C with dG(w) =

dG(w
′) = 2. That is not possible, hence

Ra(G) > (n− k − 2)4a + (k + 2a+1)(k + 2)a.

The proof is complete.

4. Corollaries

In this section, we give three corollaries. First, we present a lower bound on the Ra index for unicyclic graphs only with
given number of pendant vertices. The extremal graph is presented in Figure 2.

k

Figure 2: The graph C3,k.

Corollary 4.1. Let −0.64 ≤ a < 0. For any unicyclic graph G with k pendant vertices, we have

Ra(G) ≥ (k + 2a+1)(k + 2)a + 22a

with equality if and only if G is C3,k.
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Proof. By Theorem 3.1, for any unicyclic graph G with n vertices and k pendant vertices, where 0 ≤ k ≤ n− 3, we have

Ra(G) ≥ (n− k − 2)4a + (k + 2a+1)(k + 2)a

with equality if and only if G is Cn−k,k. The function

f(n) = (n− k − 2)4a + (k + 2a+1)(k + 2)a

is strictly increasing, since f ′(n) = 4a > 0. Thus, for n ≥ k+3, we have f(n) ≥ f(k+3) with equality if and only if n = k+3.
Therefore, for any unicyclic graph G with k pendant vertices,

Ra(G) ≥ f(k + 3) = (k + 2a+1)(k + 2)a + 22a

with equality if and only if G is C3,k.

We use a = − 1
2 in Theorem 3.1 and Corollary 4.1 to obtain lower bounds on the classical Randić index.

Corollary 4.2. For any unicyclic graph G with n vertices and k pendant vertices, we have

R(G) ≥ n− k

2
+

k +
√
2√

k + 2
− 1

with equality if and only if G is Cn−k,k.

Corollary 4.3. For any unicyclic graph G with k pendant vertices, we have

R(G) ≥ k +
√
2√

k + 2
+

1

2

with equality if and only if G is C3,k.
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(2006) 391–408.
[10] H. Liu, M. Lu, F. Tian, Trees of extremal connectivity index, Discrete Appl. Math. 154 (2006) 106–119.
[11] I. Tomescu, M. Arshad, On the general sum-connectivity index of connected unicyclic graphs with k pendant vertices, Discrete Appl. Math. 181

(2015) 306–309.
[12] B. Wu, L. Zhang, Unicyclic graphs with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 455–464.
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