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Abstract

The energy of a graph (ε) is the sum of absolute values of its eigenvalues, thus it is a graph-spectrum-based quantity. The
Sombor index (SO) is a recently conceived vertex-degree-based topological index. We establish various relations between ε
and SO, among which are lower and upper bounds. These relations improve and extend earlier results communicated in
the paper [A. Ülker, A. Gürsoy, N. K. Gürsoy, MATCH Commun. Math. Comput. Chem. 87 (2022) 51–58].
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1. Introduction

In this paper we are concerned with simple graphs, assumed to be connected. Let G be such a graph, with n vertices, m
edges, vertex set V (G), and edge set E(G). The edge connecting the vertices u and v will be denoted by uv. The degree
(= number of first neighbors) of the vertex u ∈ V (G) is denoted by du. In addition, minu∈V (H) du = δ and maxu∈V (H) du = ∆.

Let A(G) be the (0, 1)-adjacency matrix of the graph G, and let λ1, λ2, . . . , λn be its eigenvalues, forming the spectrum
of G [3]. The energy of the graph G is defined as

ε(G) =

n∑
i=1

|λi| .

This spectrum-based graph invariant has been extensively studied, both in mathematics [6–8] and in theoretical chemistry
[5].

There are nowadays some 50 different bond incident degree (BID) graph invariants of the form

BID(G) =
∑

uv∈E(G)

F (du, dv)

where F is a suitably chosen function with the property F (x, y) = F (y, x). Among them, a very recently introduced such
invariant is the Sombor index, for which F (x, y) =

√
x2 + y2. Thus, the Sombor index is defined as [4],

SO(G) =
∑

uv∈E(G)

√
d2u + d2v .

At the first glance, there hardly could be expected that the spectrum-based graph energy ε and the vertex-degree-based
indices BID(G) are anyhow related. Yet, the first such relation was discovered by Arizmendi and Arizmendi [1], who
showed that ε(G) ≤ 2R(G), where R(G) is the Randić index, F (x, y) = 1/

√
x y. This was followed by Yan et al. [11], who

proved that ε(G) ≥ (2/∆)R(G). These results motivated three of the present authors to seek for analogous connections
between ε and SO [10]. They obtained lower and upper bounds between ε and SO (for details see below). In the present
paper we improve and extend these bounds, and offer a few more relations of this kind.
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2. Energy of a vertex and its properties

In what follows we will much exploit the concept of energy of a vertex, invented by Arizmendi et al. in 2018 [2]. In this
section we repeat the basic facts of their theory.

Let the vertices of the graph G be labeled by v1, v2, . . . , vn. Then the energy of the vertex vi is defined as [2]

ε(xi) =
[[
A(G)A(G)T

]1/2]
ii

where A(G)T is the transpose of A(G). It can be shown that [2]
n∑

i=1

ε(vi) = ε(G) .

Theorem 2.1. [2] Let G be any graph and v ∈ V (G). Then ε(v) ≤
√
dv. Equality holds if and only if v is the central vertex

of K1,n−1.

Proposition 2.1. Let v be the central vertex of the star K1,n−1. Then SO(K1,n−1) = ε(v)2
√
ε(v)4 + 1 > ε(v)4.

Proof. K1,n−1 has m = n − 1 edges, whereas SO(K1,n−1) = m
√
m2 + 1. The degree of the central vertex is equal to m,

which by Theorem 2.1 is equal to ε(v)2.

Theorem 2.2. [2] Let G be a graph with m ≥ 1 and maximum vertex degree ∆. Then for any v ∈ V (G), ε(v) ≥ dv/∆.
Equality holds if and only if G ∼= Ka,a for a ≥ 1.

3. First inequality between graph energy and Sombor index

In [10], the following result was obtained:

Proposition 3.1. [10] Let G be a connected graph with minimum vertex degree δ ≥ 2. Then ε(G) ≤ SO(G).

We now strengthen this result as follows:

Theorem 3.1. Let G be a connected graph with n vertices. If n = 2, then ε(G) > SO(G). If n ≥ 3, then ε(G) < SO(G).

Proof. If n = 2, then G ∼= K2. It is easy to compute that ε(K2) = 2 and SO(K2) =
√

2.
Suppose now that n ≥ 3. Then the graph G cannot have an edge uv such that du = dv = 1. Then the minimal value of

the term
√
d2u + d2v is

√
5, when du = 1 , dv = 2. Therefore,

SO(G) ≥
√

5m. (1)

Equality in (1) holds if and only if G ∼= K1,2.
The McClelland inequality is ε(G) ≤

√
2mn [8,9]. For connected graphs, equality holds if and only if G ∼= K2.

Consider first the case that G is a tree. Then, n = m + 1, and
√

2mn =
√

2m(m+ 1). It is now easy to show that√
2m(m+ 1) <

√
5m holds for all m ≥ 1.

If G is a connected cycle-containing graph, then n ≥ m, and
√

2mn ≤
√

2m2 =
√

2m <
√

5m.

Thus, in all cases, √
2mn <

√
5m. (2)

Bearing in mind the inequalities (1) and (2), we have

ε(G) ≤
√

2mn <
√

5m ≤ SO(G) .

We now improve Theorem 3.1, i.e., the inequality ε(G)2 < SO(G)2.
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Theorem 3.2. Let G be a connected graph with n ≥ 3 vertices. If δ ≥ 2, then

ε(G) <

√√
2

δ
SO(G) + n(n− 1)∆ i.e. ε(G)2 <

√
2

δ
SO(G) + n(n− 1)∆ .

If δ = 1, then

ε(G) ≤

√
2√
5
SO(G) + n(n− 1)∆ i.e. ε(G)2 ≤ 2√

5
SO(G) + n(n− 1)∆ .

Proof. Directly from the definition of Sombor index, he have
√

2 δm ≤ SO(G) ≤
√

2 ∆m.

If δ = 1, since du = dv cannot happen, the left–hand inequality can be improved by du = 1 , dv = 2 as
√

5m ≤ SO(G)

Thus,

m ≤


SO(G)√

2 δ
if δ ≥ 2

SO(G)√
5

if δ = 1 .

(3)

Bearing in mind Theorem 2.1,

ε(G) =
∑

v∈V (G)

ε(v) <
∑

v∈V (G)

√
dv =

√√√√√ ∑
v∈V (G)

√
dv

2

=

√√√√ ∑
v∈V (G)

dv + 2
∑

{u,v}⊆V (G)

u6=v

√
du dv =

√√√√2m+ 2
∑

{u,v}⊆V (G)

u 6=v

√
du dv ≤

√
2m+ 2

(
n

2

)
∆

resulting in
ε(G) <

√
2m+ n(n− 1)∆ . (4)

Theorem 3.2 follows now by substituting (3) back into (4).

4. Second inequality between graph energy and Sombor index

In [10], the following result was obtained:

Proposition 4.1. [10] Let G be a connected graph with maximum vertex degree ∆. Then ∆3 ε(G) ≥ SO(G).

We now establish a stronger upper bound for the Sombor index.

Theorem 4.1. Let G be a connected graph with maximum vertex degree ∆. Then

∆2

√
2
ε(G) ≥ SO(G) .

Equality holds if and only if G ∼= Ka,a for a ≥ 1.

Proof. By Theorem 2.2 we get
ε(G) =

∑
v∈V (G)

ε(v) ≥ 1

∆

∑
v∈V (G)

dv

and thus
ε(G) ≥ 2m

∆
(5)

with equality if and only if G ∼= Ka,a.
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The term
√
d2u + d2v is maximal if du = dv = ∆, equal to

√
2 ∆. Then from the definition of Sombor index, it follows that

SO is maximal if all vertex degrees are equal to ∆, i.e., if G is a regular graph. Thus

SO(G) ≤
√

2 ∆m i.e., m ≥ SO(G)√
2 ∆

(6)

with equality if and only if G is a regular graph.
Substituting (6) back into (5), we get

ε(G) ≥ 2

∆

(
SO(G)√

2 ∆

)
which directly leads to Theorem 4.1.
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