

Research Article

A note on rainbow mean indexes of paths

Gary Chartrand¹, James Hallas¹, Ebrahim Salehi², Ping Zhang^{1,*}

 $^{1}Department$ of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5248, USA

(Received: 28 September 2021. Accepted: 25 October 2021. Published online: 29 October 2021.)

© 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For an edge coloring c of a connected graph G of order 3 or more with positive integers, the chromatic mean of a vertex v of G is defined as that vertex color which is the average of the colors of the edges incident with v. Only those edge colorings c for which the chromatic mean of every vertex is a positive integer are considered. If distinct vertices have distinct chromatic means, then c is called a rainbow mean coloring of G. The maximum vertex color in a rainbow mean coloring c of G is the rainbow mean index of c, while the rainbow mean index of G is the minimum rainbow mean index among all rainbow mean colorings of G. In this note, we prove that every path P_n of order $n \geq 3$ has rainbow mean index n except P_4 which has rainbow mean index n.

Keywords: chromatic mean; rainbow mean colorings; rainbow mean index; path.

2020 Mathematics Subject Classification: 05C07, 05C15, 05C78.

1. Introduction

An edge coloring c of a connected graph G of order 3 or more with positive integers is called a *mean coloring* of G if the *chromatic mean* cm(v) of each vertex v of G, defined by

$$\operatorname{cm}(v) = \frac{\sum_{e \in E_v} c(e)}{\operatorname{deg} v}$$
, where E_v is the set of edges incident with v ,

is an integer. If distinct vertices have distinct chromatic means, then the edge coloring c is called a *rainbow mean coloring* of G. This concept was introduced and studied in [2] and more information on this topic has been presented in [1,3]. It was shown in [2] that every connected graph of order 3 or more has a rainbow mean coloring.

For a rainbow mean coloring c of a connected graph G of order 3 or more, the maximum vertex color is the *rainbow* chromatic mean index (or simply, the *rainbow* mean index) rm(c) of c. That is,

$$rm(c) = \max\{cm(v): v \in V(G)\}.$$

The rainbow chromatic mean index (or the rainbow mean index) rm(G) of the graph G itself is defined as

$$rm(G) = min\{rm(c) : c \text{ is a rainbow mean coloring of } G\}.$$

Consequently, if *G* is a connected graph of order $n \ge 3$, then $rm(G) \ge n$.

It was stated in [2] that every path P_n of order $n \geq 3$ has rainbow mean index n except for P_4 which has rainbow mean index n. Because of the page limit of the journal, the proof of this fact was not included in [2]. The proof is given here because one of the authors recently received a note for review in which the main result of the present note was erroneously disproved. Therefore, we write this note to provide a proof of this fact.

2. Main result

First, we present the rainbow mean index of P_4 , which appears in [2]. We include a proof of this result here for completeness.

Proposition 2.1. $rm(P_4) = 5$.

Proof. The edge coloring in Figure 1 shows that $rm(P_4) \leq 5$.

 $^{^2}D$ epartment of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada 89154-4020, USA

^{*}Corresponding author (ping.zhang@wmich.edu).

$$P_4: (1) 1 (2) 3 (4) 5 (5)$$

Figure 1: A rainbow mean coloring of P_4 .

Next, we show that $\operatorname{rm}(P_4) \geq 5$. Assume, to the contrary, that there is a rainbow mean coloring c of P_4 such that $\operatorname{rm}(c) = 4$. Let $P_4 = (v_1, v_2, v_3, v_4)$. Since $\{\operatorname{cm}(v_i) : 1 \leq i \leq 4\} = [4]$, no two edges can be colored the same. Consequently, since only one vertex is colored 1, this implies that $\operatorname{cm}(v_1) = 1$ or $\operatorname{cm}(v_4) = 1$. We may assume that $\operatorname{cm}(v_1) = 1$ and so $c(v_1v_2) = 1$. Hence, the edges of P_4 are colored with distinct odd integers. If some edge of P_4 is colored 7 or more, then some vertex of P_4 is colored 5 or more, which is impossible. Consequently, $\{c(v_iv_{i+1}) : i = 1, 2, 3\} = \{1, 3, 5\}$ and so $\{c(v_2v_3), c(v_3v_4)\} = \{3, 5\}$. In either case, it follows that $\{\operatorname{cm}(v_i) : 1 \leq i \leq 4\} \neq [4]$, which is a contradiction. Therefore, $\operatorname{rm}(P_4) \geq 5$ and so $\operatorname{rm}(P_4) = 5$.

By Proposition 2.1, if n=4, then $rm(P_n)=n+1$. Next, we show that P_4 is the only exception for all paths P_n of order $n\geq 3$.

Theorem 2.1. For each integer $n \ge 3$ and $n \ne 4$, $rm(P_n) = n$.

Proof. Since $\operatorname{rm}(P_n) \geq n$ for all integers $n \geq 3$, it remains to show that there is a rainbow mean coloring c of P_n such that $\operatorname{rm}(c) = n$. Let $P_n = (v_1, v_2, \ldots, v_n)$ and let $e_i = v_i v_{i+1}$ for $1 \leq i \leq n-1$. First, suppose that $n \geq 3$ is odd. Define the edge coloring $c: E(P_n) \to [n]$ of P_n by c(e) = i if e is incident with v_i where $1 \leq i \leq n$ and i is odd. Figure 2 shows such an edge coloring of P_n for n = 3, 5, 7. Since $\operatorname{cm}(v_i) = i$ for $1 \leq i \leq n$, it follows that c is a rainbow mean coloring of P_n with $\operatorname{rm}(c) = n$. Therefore, $\operatorname{rm}(P_n) = n$ for each odd integer $n \geq 3$.

Figure 2: Rainbow mean colorings of P_3 , P_5 , and P_7 .

We may therefore assume that $n \ge 6$ is even. Since $n \ge 6$ is even, it follows that either $n \equiv 2 \pmod 4$ or $n \equiv 0 \pmod 4$. We proceed by induction to prove the following statements.

- If $n \equiv 2 \pmod{4}$, then there exists a rainbow mean coloring c_n of P_n such that $c_n(e_{n-1}) = 3$ and $\operatorname{rm}(c_n) = n$.
- If $n \equiv 0 \pmod{4}$ and $n \geq 8$, then there exists a rainbow mean coloring c_n of P_n such that $c_n(e_{n-1}) = 5$ and $\operatorname{rm}(c_n) = n$.

The edge colorings of P_6 and P_8 in Figure 3 show that the statements are true for n=6,8. Suppose that the statement is true for an arbitrary even integer $n\geq 6$. Next, we show that the statement is true for n+4 by considering two cases, according to whether $n\equiv 2\pmod 4$ or $n\equiv 0\pmod 4$. We use $\operatorname{cm}_t(v)$ to denote the chromatic mean of a vertex v with respect to an edge coloring c_t of the path P_t of order t.

Figure 3: Rainbow mean colorings of P_6 and P_8 .

Case 1. $n \equiv 2 \pmod{4}$. By the induction hypothesis, there is a rainbow mean coloring c_n of P_n such that $c_n(e_{n-1}) = \operatorname{cm}_n(v_n) = 3$ and $\{\operatorname{cm}_n(v_i) : 1 \le i \le n\} = [n]$. We now extend c_n to an edge coloring c_{n+4} of P_{n+4} by defining $c_{n+4}(e_n) = 2n+1$, $c_{n+4}(e_{n+1}) = 1$, $c_{n+4}(e_{n+2}) = 2n+5$, and $c_{n+4}(e_{n+3}) = 3$. Then $\operatorname{cm}_{n+4}(v_i) = \operatorname{cm}_n(v_i)$ for $1 \le i \le n-1$ and $\operatorname{cm}_{n+4}(v_n) = n+2$, $\operatorname{cm}_{n+4}(v_{n+1}) = n+1$, $\operatorname{cm}_{n+4}(v_{n+2}) = n+3$, $\operatorname{cm}_{n+4}(v_{n+3}) = n+4$, and $\operatorname{cm}_{n+4}(v_{n+4}) = 3$. It follows that

$$\{cm_{n+4}(v_i): 1 \le i \le n+4\} = [n+4].$$

Figure 4 illustrates the construction of such an edge coloring for n=6, where a rainbow mean coloring c_{10} of P_{10} is constructed from the given rainbow mean coloring c_6 of P_6 .

Figure 4: The construction of the rainbow mean coloring c_{10} of P_{10} in Case 1 in the proof of Theorem 2.1.

Case 2. $n \equiv 0 \pmod 4$ and $n \ge 8$. By the induction hypothesis, there is a rainbow mean coloring c_n of P_n such that $c_n(e_{n-1}) = \operatorname{cm}_n(v_n) = 5$ and $\{\operatorname{cm}_n(v_i) : 1 \le i \le n\} = [n]$. We now extend c_n to an edge coloring c_{n+4} of P_{n+4} by defining $c_{n+4}(e_n) = 2n - 3$, $c_{n+4}(e_{n+1}) = 7$, $c_{n+4}(e_{n+2}) = 2n + 1$, and $c_{n+4}(e_{n+3}) = 5$. Then $\operatorname{cm}_{n+4}(v_i) = \operatorname{cm}_n(v_i)$ for $1 \le i \le n - 1$ and $\operatorname{cm}_{n+4}(v_n) = n + 1$, $\operatorname{cm}_{n+4}(v_{n+1}) = n + 2$, $\operatorname{cm}_{n+4}(v_{n+2}) = n + 4$, $\operatorname{cm}_{n+4}(v_{n+3}) = n + 3$, and $\operatorname{cm}_{n+4}(v_{n+4}) = 5$. Thus, $\{\operatorname{cm}_{n+4}(v_i) : 1 \le i \le n + 4\} = [n + 4]$. Figure 5 illustrates the construction of such an edge coloring for n = 8, where a rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} of c_{12} is constructed from the given rainbow mean coloring c_{12} is constructed from the given rainbow mean coloring c_{12} is constructed from the given rainbow mean coloring c_{12} is constructed from the given rainbow mean coloring c_{12} is constructed from the given rainbow mean coloring c_{12} is c_{12} in c_{12} in c_{12} in c_{12} in c_{12} in c_{12} in c_{12} in c

Figure 5: The construction of a rainbow mean coloring c_{12} of P_{12} in Case 2 in the proof of Theorem 2.1.

By Proposition 2.1 and Theorem 2.1, we have the following result.

Corollary 2.1. For each integer $n \geq 3$,

$$rm(P_n) = \begin{cases} n+1 & if \ n=4 \\ n & if \ n \neq 4. \end{cases}$$

References

- [1] A. Ali, G. Chartrand, P. Zhang, Irregularity in Graphs, Springer, New York, 2021.
- [2] G. Chartrand, J. Hallas, E. Salehi, P. Zhang, Rainbow mean colorings of graphs, Discrete Math. Lett. 2 (2019) 18–25.
- [3] J. Hallas, E. Salehi, P. Zhang, Rainbow mean colorings of bipartite graphs, Bull. Inst. Combin. Appl. 88 (2020) 78-97.