Research Article

Upper domatic number of regular graphs

Libin Chacko Samuel*, Mayamma Joseph
Department of Mathematics, CHRIST (Deemed to be University), Bangalore, Karnataka, India

(Received: 29 May 2021. Received in revised form: 21 August 2021. Accepted: 22 September 2021. Published online: 29 September 2021.)
© 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

A partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of the vertex set $V(G)$ of a graph $G=(V, E)$ is an upper domatic partition if V_{i} dominates V_{j} or V_{j} dominates V_{i} or both for all $V_{i}, V_{j} \in \pi$. The maximum order of an upper domatic partition of G is called the upper domatic number $D(G)$ of G. In this article, we determine the upper domatic number of 4-regular graphs. We also find the upper domatic number of 5 -regular graphs with girth at least five and determine the upper domatic number of the complements of cycles.

Keywords: domatic number; r-regular graphs; upper domatic number.
2020 Mathematics Subject Classification: 05C69.

1. Introduction

Graph colouring and domination are two well-studied concepts in graph theory. Connecting these two concepts, Cockayne and Hedetniemi initiated the study of the domatic number in 1977 [1]. The domatic number, denoted by $d(G)$, is the maximum number of sets in a partition of the vertex set into mutually disjoint dominating sets. For two disjoint sets A and B of vertices, set A dominates set B, denoted by $A \rightarrow B$, if each vertex in B is adjacent to at least one vertex in A, else we write $A \nrightarrow B$. A subset S of $V(G)$ is a dominating set of G if S dominates $V(G) \backslash S$. Exploring the relation between sets in a vertex partition, Haynes et al. [3] introduced the concept of upper domatic number $D(G)$, which is the maximum cardinality of a vertex partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of a graph G such that for each pair of sets $V_{i}, V_{j} \in \pi, V_{i} \rightarrow V_{j}$ or $V_{j} \rightarrow V_{i}$ or both. An upper domatic partition of G with cardinality $D(G)$ is referred to as a D-partition of G.

Throughout this paper, we consider only finite, simple and undirected graphs $G=(V, E)$ of order $n=|V|$ and size $m=|E|$. For the notations and terminologies not defined here, we refer the reader to [2,4,6]. The degree of a vertex $v \in V$, denoted by $\operatorname{deg}(v)$, is the number of vertices adjacent to v. The maximum (minimum) degree of a vertex in a graph G is denoted by $\Delta(G)(\delta(G))$. The set of vertices at distance equal to k from the vertex u is represented by $N^{k}(u)$. Paths, cycles and complete graphs of order n are denoted by P_{n}, C_{n} and K_{n}, respectively. A maximal complete subgraph of a graph is called clique. The maximum order of a clique of G is called the clique number $\omega(G)$.

Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a vertex partition of a graph G. A set $V_{i} \in \pi$ is a source set if V_{i} is a dominating set of G and a sink set if $V_{j} \rightarrow V_{i}$, for all $1 \leq j \leq k$. For a subset S of $V(G), G[S]$ represents the subgraph of G induced by S. An r-regular graph is a graph with every vertex having degree r.

In this article, we study the upper domatic number of r-regular graphs and settle the problem in the special case when $r=4$. The upper domatic number of 5 -regular graphs with girth at least five also is determined. Further we find the upper domatic number of complements of cycles.

2. Main results

For small values of r, the upper domatic number of an r-regular graph is determined in [3].
Theorem 2.1. [3] For any r-regular graph G where $r \in\{0,1,2,3\}, D(G)=r+1$.
Haynes et al. also gave an upper bound for the upper domatic number of any graph in terms of its maximum degree.
Theorem 2.2. [3] For a graph G with maximum degree $\Delta(G), D(G) \leq \Delta(G)+1$.

[^0]Another upper bound for the upper domatic number in terms of the order and clique number of the graph is presented in [5].

Theorem 2.3. [5] For any graph G with clique number $\omega(G), D(G) \leq \frac{n+\omega(G)}{2}$.
We next present the following sufficiency condition for a 4-regular graph to have an upper domatic number of five.
Theorem 2.4. For any 4-regular graph $G, D(G)=5$ if G contains a cubic graph as an induced subgraph.
Proof. Consider a 4-regular graph G having a 3-regular induced subgraph, say H. By Theorem 2.1, $D(H)=4$. Moreover, H being a 3-regular graph, every vertex in $V(H)$ is adjacent to exactly one vertex in $V(G) \backslash V(H)$, implying that $V(G) \backslash V(H) \rightarrow$ $V(H)$. Hence, an upper domatic partition of order five can be obtained by adding the set $V(G) \backslash V(H)$ to a D-partition of H. Therefore, by Theorem 2.2, $D(G)=5$.

Corollary 2.1. If a graph G contains a cubic induced subgraph and $\delta(G) \geq 4$, then $D(G) \geq 5$.
Corollary 2.2. For any 4-regular graph $G, D(G)=5$ if G contains K_{4}.
The result in Corollary 2.2 can be generalised for any r-regular graph containing K_{r}.
Theorem 2.5. For any r-regular graph $G, D(G)=r+1$ if G contains K_{r}.
It is evident from the literature that for a 4-regular graph $G, 4 \leq D(G) \leq 5$. Next, we characterise 4-regular graphs having $D(G)=4$. Recall that the complete multipartite graph with k vertices each in t partite sets is denoted by $G_{t, k}$ in [3], for example the complete tripartite graph $G_{3,2}$ with three independent partite sets $\left\{u_{1}, u_{4}\right\},\left\{u_{2}, u_{5}\right\}$ and $\left\{u_{3}, u_{6}\right\}$ in Figure 1 .

Figure 1: The graph $G_{3,2}$.

Theorem 2.6. For a 4-regular connected graph $G, D(G)=4$ if and only if $G=G_{3,2}$.
Proof. Consider the 4-regular graph $G_{3,2}$ with vertex labelling as shown in Figure 1. The partition $\pi=\left\{\left\{u_{4}, u_{5}, u_{6}\right\},\left\{u_{1}\right\}\right.$, $\left.\left\{u_{2}\right\},\left\{u_{3}\right\}\right\}$ is an upper domatic partition, implying that $D\left(G_{3,2}\right) \geq 4$. If $D\left(G_{3,2}\right)>4$, then any D-partition of $G_{3,2}$ contains at least four singleton sets, which is impossible as $\omega\left(G_{3,2}\right)=3$. Hence, $D\left(G_{3,2}\right)=4$.

Now assume that G is a connected 4-regular graph with $D(G)=4$. Assume that the graph G is different from $G_{3,2}$. We will prove that $D(G) \geq 5$. Consider a vertex, say $u_{1} \in V(G)$. Since G is 4-regular, there are 11 possible induced subgraphs $G\left[N\left[u_{1}\right]\right]$, as shown in Figure 2.

Figure 2: Graphs of order five with a dominating vertex.

Case 1: $G\left[N\left[u_{1}\right]\right] \in\left\{\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}, \mathcal{G}_{4}\right\}$.
Since each of $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}$ and \mathcal{G}_{4} contains an induced K_{4}, from Corollary 2.2 it follows that $D(G)=5$.

Case 2: $G\left[N\left[u_{1}\right]\right]=\mathcal{G}_{5}$, as shown in Figure 3 .
In this case we observe that $\left|N^{2}\left(u_{1}\right)\right|>1$, else G is isomorphic to $G_{3,2}$. Therefore, there exist at least two vertices, say $u_{6}, u_{7} \in N^{2}\left(u_{1}\right)$. Suppose we have a pair of adjacent vertices, say $u_{2}, u_{3} \in N^{1}\left(u_{1}\right)$ such that u_{2} is adjacent to u_{6} and u_{3} is adjacent to u_{7}. Then, $\pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{4}, u_{7}\right\},\left\{u_{5}, u_{6}\right\} \cup V^{\prime}\right\}$, where $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{7}\right\}$, is an upper domatic partition of G. In the case of a non-adjacent pair of vertices, say $u_{2}, u_{5} \in N^{1}\left(u_{1}\right)$ having adjacency between the pair of vertices (u_{2}, u_{6}) and (u_{5}, u_{7}), the vertex u_{3} is adjacent either to u_{6} or to another vertex $u_{8} \in N^{2}\left(u_{1}\right)$. In the former case $\left\{\left\{u_{1}\right\},\left\{u_{3}\right\},\left\{u_{5}\right\},\left\{u_{4}, u_{6}\right\},\left\{u_{2}, u_{7}\right\} \cup V^{\prime}\right\}$, where $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{7}\right\}$ forms an upper domatic partition of G, whereas in the latter case $\left\{\left\{u_{1}\right\},\left\{u_{3}\right\},\left\{u_{5}\right\},\left\{u_{4}, u_{8}\right\},\left\{u_{2}, u_{7}, u_{6}\right\} \cup V^{\prime}\right\}$, where $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ constitute an upper domatic partition of G. Hence, $D(G)=5$.

Figure 3: The graph \mathcal{G}_{5}.
Case 3: $G\left[N\left[u_{1}\right]\right]=\mathcal{G}_{6}$, as shown in Figure 4.
From the structure of \mathcal{G}_{6}, we note that there exist vertices $u_{6}, u_{7} \in N^{2}\left(u_{1}\right)$ that are adjacent to u_{3}. Then, the sets $\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{4}, u_{7}\right\}$ along with $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{7}\right\}$ constitutes an upper domatic partition of cardinality five, proving that $D(G)=5$.

Figure 4: The graph \mathcal{G}_{6}.
Case 4: $G\left[N\left[u_{1}\right]\right] \in\left\{\mathcal{G}_{7}, \mathcal{G}_{8}\right\}$, as shown in Figure 5.
When $G\left[N\left[u_{1}\right]\right]=\mathcal{G}_{7}$ or \mathcal{G}_{8}, there is a vertex $u_{6} \in N^{2}\left(u_{1}\right)$ such that u_{3} is adjacent to u_{6} but u_{2} is not adjacent to u_{6}. Then $\pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{5}, u_{6}\right\},\left\{u_{4}\right\} \cup V^{\prime}\right\}$, where $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$, is an upper domatic partition of G proving that $D(G)=5$.

Figure 5: The graphs \mathcal{G}_{7} and \mathcal{G}_{8}.
Case 5: $G\left[N\left[u_{1}\right]\right] \in\left\{\mathcal{G}_{9}, \mathcal{G}_{10}\right\}$, as shown in Figure 6.
In this case, suppose there is a vertex $u_{6} \in N^{2}\left(u_{1}\right)$ such that u_{2} and u_{3} are adjacent to u_{6}. Then considering $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$, we get an upper domatic partition $\pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{4}, u_{6}\right\},\left\{u_{5}\right\} \cup V^{\prime}\right\}$ of G proving that $D(G)=5$. Else, there exist vertices $u_{6}, u_{7} \in N^{2}\left(u_{1}\right)$ such that u_{2} is adjacent to u_{6} and u_{3} is adjacent to u_{7}. Then $\pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{4}, u_{6}, u_{7}\right\},\left\{u_{5}\right\} \cup V^{\prime}\right\}$ is an upper domatic partition of G with $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{7}\right\}$ proving that $D(G)=5$.

Figure 6: The graphs \mathcal{G}_{9} and \mathcal{G}_{10}.
Case 6: $G\left[N\left[u_{1}\right]\right]=\mathcal{G}_{11}$, as shown in Figure 7.
Note that \mathcal{G}_{11} is acyclic. If G contains a C_{3}, then G also contains one of the graphs \mathcal{G}_{i}, where $1 \leq i \leq 10$ as a subgraph. Hence it suffices to consider the case when G is C_{3}-free. We now examine the adjacency relation between the vertices of $N^{1}\left(u_{1}\right)$ and $N^{2}\left(u_{1}\right)$.

Figure 7: The graph \mathcal{G}_{11}.

Subcase 6.1: $\left|N^{1}\left(u_{6}\right) \cap N^{1}\left(u_{1}\right)\right|=4$, for some $u_{6} \in N^{2}\left(u_{1}\right)$.
In this case, if there is a vertex $u_{7} \in N^{2}\left(u_{1}\right)$, such that u_{7} is adjacent to at least two vertices in $N^{1}\left(u_{1}\right)$, say u_{2} and u_{3}, then $\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}, u_{6}\right\},\left\{u_{4}, u_{7}\right\},\left\{u_{5}\right\} \cup V^{\prime}\right\}$, where $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{7}\right\}$, is an upper domatic partition of G proving that $D(G)=5$. If every vertex in $N^{2}\left(u_{1}\right)$ except u_{6} is adjacent to exactly one vertex in $N^{1}\left(u_{1}\right)$, then the partition $\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}, u_{6}\right\},\left\{u_{4}, u_{7}, u_{8}\right\},\left\{u_{5}\right\} \cup V^{\prime}\right\}$, where $u_{7}, u_{8} \in N^{2}\left(u_{1}\right)$ are adjacent to u_{2} and u_{3} respectively and $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$, is an upper domatic partition of G proving that $D(G)=5$.

Subcase 6.2: $\left|N^{1}\left(u_{6}\right) \cap N^{1}\left(u_{1}\right)\right|=3$, for some $u_{6} \in N^{2}\left(u_{1}\right)$.
Let $u_{4} \in N^{1}\left(u_{1}\right)$ be the vertex not adjacent to u_{6}. Consider another vertex $u_{7} \in N^{2}\left(u_{1}\right)$ adjacent to the vertex u_{2}. Let $u_{8} \in N^{3}\left(u_{1}\right)$ be a vertex adjacent to u_{7}. Then, the partition $\pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}, u_{7}\right\},\left\{u_{4}, u_{6}, u_{8}\right\},\left\{u_{5}\right\} \cup V^{\prime}\right\}$, where $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$, is an upper domatic partition of G proving that $D(G)=5$.

Subcase 6.3: $\left|N^{1}\left(u_{6}\right) \cap N^{1}\left(u_{1}\right)\right|=2$, for some $u_{6} \in N^{2}\left(u_{1}\right)$.
Let u_{3} and u_{5} be the vertices in $N^{1}\left(u_{1}\right)$ not adjacent to u_{6} implying that $u_{2}, u_{4} \in N^{1}\left(u_{1}\right)$ are adjacent to u_{6}. If there exists a vertex $u_{7} \in N^{2}\left(u_{1}\right)$ that is adjacent to both u_{2} and u_{3}, then the partition $\pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}, u_{6}\right\},\left\{u_{4}, u_{7}\right\},\left\{u_{5}\right\} \cup V^{\prime}\right\}$, where $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{7}\right\}$, is an upper domatic partition of G proving that $D(G)=5$. Else if $u_{7} \in N^{2}\left(u_{1}\right)$ is adjacent to u_{2} but not u_{3}, then there exists $u_{8} \in N^{2}\left(u_{1}\right)$ such that $u_{3} u_{8} \in E(G)$, so that the partition $\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}, u_{6}\right\},\left\{u_{4}, u_{7}, u_{8}\right\},\left\{u_{5}\right\} \cup\right.$ $\left.V^{\prime}\right\}$, where $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$, is an upper domatic partition of G proving that $D(G)=5$. In case u_{4} is adjacent to both u_{6} and u_{7}, the vertex u_{8} is chosen such that $u_{4} u_{8} \notin E(G)$.

Subcase 6.4: $\left|N^{1}(u) \cap N^{1}\left(u_{1}\right)\right|=1$, for each $u \in N^{2}\left(u_{1}\right)$.
Consider the vertices $u_{6}, u_{7} \in N^{1}\left(u_{2}\right), u_{8} \in N^{1}\left(u_{3}\right)$ and $u_{9} \in N^{1}\left(u_{6}\right)$ along with $N^{1}\left(u_{1}\right)=\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$. Then, either the partition $\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}, u_{6}\right\},\left\{u_{4}, u_{7}, u_{8}\right\},\left\{u_{5}, u_{9}\right\} \cup V^{\prime}\right\}$ or the partition $\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}, u_{6}\right\},\left\{u_{4}, u_{7}, u_{8}, u_{9}\right\},\left\{u_{5}\right\} \cup V^{\prime}\right\}$, where $V^{\prime}=V(G) \backslash\left\{u_{1}, u_{2}, \ldots, u_{9}\right\}$, is an upper domatic partition of G of cardinality five, the former being the case when u_{6} is adjacent to u_{8}.

Thus, in all the six cases we have demonstrated the existence of an upper domatic partition of cardinality five of the graph G, proving that $D(G)=5$. This completes the proof.

Corollary 2.3. If G is a 4-regular graph such that $G \neq G_{3,2}$, then $D(G)=5$.
Remark 2.1. There exist r-regular graphs of same order having different upper domatic numbers.

Figure 8: Regular graphs of same order with different upper domatic numbers.

The partition $\pi_{1}=\left\{\left\{v_{5}, v_{6}, v_{7}\right\},\left\{v_{4}, v_{8}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}\right\}$ is an upper domatic partition of the graph G_{1}. If $D\left(G_{1}\right)>5$, then a D-partition of G_{1} contains at least four singleton sets, but it can be verified that G_{1} contains no K_{4}. Therefore, $D\left(G_{1}\right)=5$. It can be easily seen that $D\left(G_{2}\right)=6$ with the D-partition $\pi_{2}=\left\{\left\{u_{2}, u_{6}\right\},\left\{u_{4}, u_{8}\right\},\left\{u_{1}\right\},\left\{u_{3}\right\},\left\{u_{5}\right\},\left\{u_{7}\right\}\right\}$.

Remark 2.2. $G_{3,2}$ is the graph with least order such that $D\left(G_{3,2}\right)<\delta\left(G_{3,2}\right)+1$, which leads to the following conjecture.
Conjecture. If a graph G is $G_{3,2}$-free, then $D(G) \geq \delta(G)+1$.
Theorem 2.7. If G is a 5-regular graph of girth at least five, then $D(G)=6$.
Proof. Let G be a 5-regular graph of girth at least five. We prove this result by employing a colouring protocol where the set of colour classes form an upper domatic partition of the graph G. Choose an induced cycle C_{k}, where $k \geq 5$. Colour four consecutive vertices of the cycle with colours $3,1,2$ and 3 respectively and the remaining vertices of the cycle with colour 6. Further, assign colours 4,5 and 6 to vertices lying outside C_{k} and are adjacent to the vertices that have been coloured 1, 2 and 3 as shown in Figure 9.

Figure 9: A subgraph of a 5-regular graph G of girth at least 5.

Next colour the neighbours of vertices coloured 4 in such a way that at least two of these vertices are assigned colours 5 and 6. Note that in case there is adjacency among the vertices that have been already coloured, this condition automatically follows. Finally, colour all the remaining vertices with colour 6 . The resulting vertex partition of colour classes is an upper domatic partition of cardinality six, thus proving that $D(G)=6$.

Next, we discuss the upper domatic number of the complement $\overline{C_{n}}$ of a cycle C_{n}. Note that the complement of a cycle of order n is an $(n-3)$-regular graph whose clique number is $\omega\left(\overline{C_{n}}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Theorem 2.8. For the cycle $C_{n}, D\left(\overline{C_{n}}\right)=\left\lfloor\frac{3 n}{4}\right\rfloor$.
Proof. Consider the cyclic labelling of the vertices of $\overline{C_{n}}$ where u_{i} is not adjacent to $u_{i-1(\bmod n)}$ and $u_{i+1(\bmod n)}$, see the labelling of $\overline{C_{8}}$ shown in Figure 10. Depending on the value of n, the vertex set is partitioned as follows.
Case 1: When $n(\bmod 4)=1$, partition the vertex set of $\overline{C_{n}}$ in the following manner, where $t=\left\lfloor\frac{n}{2}\right\rfloor$.

Figure 10: The graph $\overline{C_{8}}$.

$$
V_{i}= \begin{cases}\left\{u_{2 i-1}\right\}, & \text { if } 1 \leq i \leq t \\ \left\{u_{2(i-t)}, u_{2(i-t)+t}\right\}, & \text { if } t+1 \leq i \leq\left\lfloor\frac{3 n}{4}\right\rfloor-1 \\ \left\{u_{t}, u_{n-1}, u_{n}\right\}, & \text { if } i=\left\lfloor\frac{3 n}{4}\right\rfloor\end{cases}
$$

Case 2: When $n(\bmod 4)=2$, the following vertex partition is considered, where $t=\left\lfloor\frac{n}{2}\right\rfloor$.

$$
V_{i}= \begin{cases}\left\{u_{2 i-1}\right\}, & \text { if } 1 \leq i \leq t, \\ \left\{u_{2(i-t)}, u_{2(i-t)+t-1}\right\}, & \text { if } t+1 \leq i \leq\left\lfloor\frac{3 n}{4}\right\rfloor-1, \\ \left\{u_{t-1}, u_{n-2}, u_{n}\right\}, & \text { if } i=\left\lfloor\frac{3 n}{4}\right\rfloor .\end{cases}
$$

Case 3: When $n(\bmod 4)=3$, we consider the following partition where $t=\left\lfloor\frac{n}{2}\right\rfloor$.

$$
V_{i}= \begin{cases}\left\{u_{2 i-1}\right\}, & \text { if } 1 \leq i \leq t, \\ \left\{u_{2(i-t)}, u_{2(i-t)+t+1}\right\}, & \text { if } t+1 \leq i \leq\left\lfloor\frac{3 n}{4}\right\rfloor-1, \\ \left\{u_{t+1}, u_{n}\right\}, & \text { if } i=\left\lfloor\frac{3 n}{4}\right\rfloor\end{cases}
$$

Case 4: When $n(\bmod 4)=0$, partition $V\left(\overline{C_{n}}\right)$ in the following manner, where $t=\left\lfloor\frac{n}{2}\right\rfloor$.

$$
V_{i}= \begin{cases}\left\{u_{2 i-1}\right\}, & \text { if } 1 \leq i \leq t, \\ \left\{u_{2(i-t)}, u_{2(i-t)+t}\right\}, & \text { if } t+1 \leq i \leq\left\lfloor\frac{3 n}{4}\right\rfloor .\end{cases}
$$

The partitions thus obtained in all these cases are upper domatic partitions. The sets $V_{1}, V_{2}, \ldots, V_{t}$ are singleton sets and contain the vertices $u_{1}, u_{3}, \ldots, u_{2 t-1}$, respectively, which together induce a clique of $\overline{C_{n}}$. In $\overline{C_{n}}$, any set $\left\{u_{i}, u_{j}\right\}$, where $j \notin\{(i-2) \bmod n,(i+2) \bmod n\}$ is a dominating set, hence the remaining sets in the partition are dominating sets. Since $\omega\left(\overline{C_{n}}\right)=t$, from Theorem 2.3 it follows that

$$
D\left(\overline{C_{n}}\right)=\left\lfloor\frac{3 n}{4}\right\rfloor .
$$

Acknowledgement

We gratefully acknowledge the valuable suggestions of referees that helped us in improving this article.

References

[1] E. J. Cockayne, S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
[3] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. McRae, N. Phillips, The upper domatic number of a graph, AKCE Int. J. Graphs Comb. 17 (2020) 139-148.
[4] S. T. Hedetniemi, P. Slater, T. W. Haynes, Fundamentals of Domination in Graphs, CRC Press, Boca Raton, 1998.
[5] L. C. Samuel, M. Joseph, New results on upper domatic number of graphs, Commun. Comb. Optim. 5 (2020) 125-137.
[6] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.

[^0]: *Corresponding author (libin.samuel@res.christuniversity.in).

