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Abstract
In this paper, the author considers the twisted q-analogues of Catalan numbers, which are arisen from the fermionic p-adic
q-integrals. By using the fermionic p-adic q-integrals or generating functions, some explicit identities and properties for the
twisted q-analogues of Catalan numbers and polynomials are given.
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1. Introduction

Although the Catalan numbers were named after the French-Belgian mathematician Eugène Charles Catalan (1814–
1894), they were initially introduced by the Mongolian mathematician Ming Antu in 1730. The Catalan numbers Cn are
given [7,15] by the generating function

∞∑
n=0

Cnt
n =

∞∑
n=0

1

n+ 1

(
2n

n

)
tn.

We note that
√
1− 4t = 1− 2

∞∑
m=0

(
2m

m

)
1

m+ 1
tm+1 = 1− 2

∞∑
m=0

Cmt
m+1, (0 < |4t| < 1). (1)

The Catalan numbers satisfy the recurrence relations

C0 = 1, Cn =

n−1∑
m=0

CmCn−1−m, (n ≥ 1).

Also, the Catalan numbers form a sequence of positive integers

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, · · ·

which is asymptotic to 4n/n
3
2
√
π, as n tends to ∞, and appears in various counting problems. They count certain types

of lattice paths, permutations, binary trees, and many other combinatorial objects. For more information on the Catalan
numbers, please refer to [5,7,9,11,12,15] and the closely related references therein.

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp denote the ring of p-adic integers, the field of
p-adic rational numbers and the completion of the algebraic closure of Qp, respectively. The p-adic norm | · |p is normalized
as |p|p = 1

p . The notation [x]q denotes

[x]q =
1− qx

1− q
.

Let f(x) be a continuous Cp-valued function on Zp. Then the fermionic p-adic integral on Zp is defined [3] by the limit, if
it exists,

I−1(f) =

∫
Zp

f(x)dµ−1(x) = lim
N→∞

pN−1∑
x=0

f(x)(−1)x.

From the above definition, we note that

I−1(f1) = −I−1(f) + 2f(0), where f1(x) = f(x+ 1).
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Remarkably, it follows from [2] that the Catalan numbers are represented by the fermionic p-adic integral on Zp∫
Zp

(1− 4t)
x
2 dµ−1(x) =

2

1 +
√
1− 4t

=

∞∑
n=0

1

n+ 1

(
2n

n

)
tn =

∞∑
n=0

Cnt
n, (0 < |4t| < 1).

where t ∈ Cp with |t|p < p−
1

p−1 . The application of the fermionic p-adic integral on Zp is an effective way to deduce many
important results for q-numbers and polynomials. For more information, please refer to [1,3,4,6,8,13,14].

Let q be an indeterminate in Cp with |1− q|p < 1. It is known that the fermionic p-adic q-integral on Zp is defined [4] by

I−q(f) =

∫
Zp

f(x)dµ−q(x) = lim
N→∞

pN−1∑
x=0

f(x)µ−q(x+ pNZp)

= lim
N→∞

1

[pN ]−q

pN−1∑
x=0

f(x)(−q)x,

where f is any continuous function on Zp. From the above definition, we can derive the following integral identity

qI−q(f1) + I−q(f) = [2]qf(0). (2)

The following are well known for the Stirling numbers of the first kind S1(n, k) for n ≥ 0 can be generated by

(x)n =

n∑
k=0

S1(n, k)x
k and 1

k!
(log (1 + t))k =

∞∑
n=k

S1(n, k)
tn

n!
,

where (x)0 = 1, (x)n = x(x− 1) · · · (x− n+ 1), (n ≥ 1). Further, for n ≥ 0, the Stirling numbers of the second kind S2(n, k)

are given by

xn =

n∑
k=0

S2(n, k)(x)k,
1

k!
(et − 1)k =

∞∑
n=k

S2(n, k)
tn

n!
.

For n ∈ N, let Tp be the p-adic locally constant space defined by

Tp =
⋃
n≥1

Cpn = lim
n→∞

Cpn ,

where Cpn = {w|wpn = 1} is the cyclic group of order pn (see [6,10,13]).
The aim of this paper is to construct a new type of numbers, the twisted q-analogues of Catalan numbers Cn,q,w by

virtue of a fermionic p-adic q-integral of Zp, and to investigate some properties and identities of these numbers.

2. Twisted q-analogues of Catalan numbers

Assume that t, q ∈ Cp such that
|t|p < p−

1
p−1 and |q − 1|p < 1.

For w ∈ Tp, let us take f(x) = wx(1− 4t)
x
2 in (2). Then we have∫

Zp

wx(1− 4t)
x
2 dµ−q(x) =

[2]q

wq
√
1− 4t+ 1

=
[2]q

1− w2q2 + 4w2q2t
(1− wq

√
1− 4t), (w 6= 1). (3)

Motivated from (3), we consider the twisted q-analogues of Catalan numbers Cn,q,w which are given by the generating
function to be

[2]q
1− w2q2 + 4w2q2t

(1− wq
√
1− 4t) =

∞∑
n=0

Cn,q,wt
n, (w 6= 1). (4)

When w = 1, we can recover the q-analogues of Catalan numbers, denoted by Cn,q, which are generated [5] by

[2]q
1− 2q2 + 4q2t

(1− q
√
1− 4t) =

∞∑
n=0

Cn,qt
n.

Especially q → 1,

lim
q→1

Cn,q =
1

2t
(1−

√
1− 4t) =

∞∑
n=0

Cnt
n,
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which recovers the Catalan numbers in (1). From (3) or (4), we observe that

[2]q
1− w2q2 + 4w2q2t

(1− wq
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(
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n=0

[
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{(
− 4w2q2
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)n
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(
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l

)
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(
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tn.

Combining this with (4) leads to the identity given in the next theorem.

Theorem 2.1. For w ∈ Tp and n ≥ 0, we have

Cn,q,w =
[2]q

1− w2q2

{(
− 4w2q2

1− w2q2

)n
+ wq
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l=0

(
2l

l

)
(−1)n−l

2l − 1

(
4w2q2
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)n−l}

=
[2]qwq
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(
2l

l

)
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2l − 1

(
4w2q2

1− w2q2

)n−l
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[2]q
1 + wq

(
− 4w2

1− w2

)n
.

For example,

C0,q,w =
[2]q

1 + wq
, C1,q,w =

2[2]qwq

(1 + wq)2
, C2,q,w =

[2]q(6w
2q3 + 2wq)

(1 + wq)3
,

C3,q,w =
[2]q(20w

3q5 + 16w2q3 + 4wq)

(1 + wq)4
, C4,q,w =

[2]q(70w
4q7 + 94w3q5 + 50w2q3 + 10wq)

(1 + wq)5
, · · ·

(5)

For the case w = 1 in (5), we have

C0,q = 1, C1,q =
2q

1 + q
, C2,q =

6q3 + 2q

(1 + q)2
, C3,q =

20q5 + 16q3 + 4q

(1 + q)3
, C4,q =

70q7 + 94q5 + 50q3 + 10q

(1 + wq)4
, · · · ,

and q → 1 in (5), we can derive the twisted Catalan numbers in [10]

C0,w =
2

1 + w
, C1,w =

4w

(1 + w)2
, C2,w =

12w2 + 4w

(1 + w)3
,

C3,w =
8(5w3 + 4w2 + w)

(1 + w)4
, C4,w =

70w4 + 94w3 + 50w2 + 10w

(1 + w)5
, · · · .

Note that
lim
q→1

lim
w→1

C0,q,w = 1 = C0, lim
q→1

lim
w→1

C1,q,w = 1 = C1, lim
q→1

lim
w→1

C2,q,w = 2 = C2,

lim
q→1

lim
w→1

C3,q,w = 5 = C3, lim
q→1

lim
w→1

C4,q,w = 14 = C4,

· · ·

lim
q→1

lim
w→1

Cn,q,w = lim
w→1

[2]q
1− wq

{(
− 4w2q2

1− w2q2

)n
+ wq

∞∑
l=0

(
2l

l

)
(−1)n−l

2l − 1

(
4w2q2

1− w2q2

)n−l}
=

(
2n

n

)
1

n+ 1
= Cn, (n ≥ 0).

3. Twisted q-analogues of Catalan polynomials

In this section, we assume that t, q ∈ Cp with |t|p < p−
1

p−1 and |q − 1|p < 1. For w ∈ Tp, we define the twisted q-analogues
of Catalan polynomials Cn,q,w(x) by the fermionic p-adic q-integral on Zp.∫

Zp

wy(1− 4t)
x+y
2 dµ−q(y) =

[2]q

wq
√
1− 4t+ 1

(1− 4t)
x
2 =

∞∑
n=0

Cn,q,w(x)t
n. (6)
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When x = 0, Cn,q,w = Cn,q,w(0) are the twisted q-analogue Catalan numbers in (3).
Now, we want to give relations between the twisted q-analogues of Catalan polynomials and the twisted q-Euler poly-

nomials. Recall from [6] that the twisted q-Euler polynomials En,q,w(x) are generated by
∞∑
n=0

En,q,w(x)
tn

n!
=

[2]q
wqet + 1

etx =

∫
Zp

wye(x+y)tdµ−q(y). (7)

When x = 0, En,q,w = En,q,w(0) are the twisted q-Euler numbers.
For w ∈ Tp, by (6) and (7), it follows that

∞∑
n=0

Cn,q,w(x)t
n =

∫
Zp

wy(1− 4t)
x+y
2 dµ−q(y)

=

∫
Zp

wy exp

((
x+ y

2

)
log (1− 4t)

)
dµ−q(y)

=

∞∑
m=0

1

2m
m! (log(1− 4t))

m
∫
Zp

wy(x+ y)mdµ−q(y)

=

∞∑
m=0

2−mEm,q,w(x)

∞∑
n=m

S1(n,m)
(−4t)n

n!

=

∞∑
n=0

(
n∑

m=0

2−mEm,q,w(x)S1(n,m)
(−4)n

n!

)
tn.

(8)

Equating coefficients of tn gives the next result.

Theorem 3.1. For w ∈ Tp and n ≥ 0, we have

Cn,q,w(x) =
(−1)n

n!

n∑
m=0

22n−mEm,q,w(x)S1(n,m).

Replacing t with 1
4 (1− e

2t) in (6) yields

∞∑
m=0

Em,q,w(x)
tm

m!
=

∫
Zp

wye(x+y)tdµ−q(y)

=

∞∑
n=0

(−1)nCn,q,w(x)
4n

(e2t − 1)n

=

∞∑
n=0

(−1)nCn,q,w(x)
4n

∞∑
m=n

S2(m,n)
2mtm

m!

=

n∑
m=0

(
m∑
n=0

(−1)n2m−2nn!S2(m,n)Cn,q,w(x)

)
tm

m!
.

Therefore, we obtain the inversion formula of Theorem 3.1.

Theorem 3.2. For w ∈ Tp and m ≥ 0, we have

Em,q,w(x) =

m∑
n=0

(−1)n2m−2nn!S2(m,n)Cn,q,w(x).

Alternatively, Cn,q,w(x) can be expressed as follows:
∞∑
n=0

Cn,q,w(x)t
n =

∫
Zp

wy(1− 4t)
x+y
2 dµ−q(y)

=

∞∑
n=0

(−4)n
∫
Zp

wy
(
x+ y

2

)
n

dµ−q(y)
tn

n!
=

∞∑
n=0

(−4)n
∫
Zp

wy
(x+y

2

n

)
dµ−q(y)t

n.

Comparing this with (8) leads to the the identity given in the next theorem.
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Theorem 3.3. For w ∈ Tp and n ≥ 0, we have∫
Zp

wy
(x+y

2

n

)
dµ−q(y) = (−1)nCn,q,w(x)

4n
, (x, y ∈ Zp).

For λ ∈ Zp, |t|p < p−
1

p−1 and w ∈ Tp, the twisted (q, λ)-Changhee polynomials Chn,q,w(x|λ) are defined by the generating
function

[2]q
wq(1 + t)λ + 1

(1 + t)x =

∞∑
n=0

Chn,q,w(x|λ)
tn

n!
.

Thus by (2), we get the fermionic p-adic q-integral representation of Chn,q,w(x|λ) by∫
Zp

wy(1 + t)λy+xdµ−q(y) =
[2]q

wq(1 + t)λ + 1
(1 + t)x =

∞∑
n=0

Chn,q,w(x|λ)
tn

n!
, (x ∈ Zp). (9)

When x = 0, we obtain the twisted (q, λ)-Changhee numbers Chn,q,w(λ) = Chn,q,w(0|λ), which are generated by

[2]q
wq(1 + t)λ + 1

=

∞∑
n=0

Chn,q,w(λ)
tn

n!
=

∫
Zp

wy(1 + t)λydµ−q(y). (10)

We note that Ch0,q,w(λ) = 1+q
1+wq . Specially w = 1, Chn,q(λ) = Chn,q,1(λ) is the nth (λ, q)-Changhee numbers in [5]. Hence

we have from (6) and (10)
∞∑
n=0

Cn,q,wt
n =

[2]q

wq
√
1− 4t+ 1

=

∞∑
n=0

Chn,q,w( 1
2 )(−4)n

tn

n!
. (11)

Futhermore, by using (6) and (9), we obtain
∞∑
n=0

Cn,q,w(x)t
n =

∫
Zp

wy(1− 4t)
x+y
2 dµ−q(y) =

∞∑
n=0

Chn,q,w
(

x
2

∣∣ 1
2

)
(−4)n t

n

n!
. (12)

Comparing the coefficients on both sides of (11) and (12) respectively, we obtain the next result.

Theorem 3.4. For w ∈ Tp and n ≥ 0, we have

(i) n!Cn,q,w = (−4)nChn,q,w( 1
2 ),

(ii) n!Cn,q,w(x) = (−4)nChn,q,w
(

x
2

∣∣ 1
2

)
.

It is easy to see that the generating function of Cn,q,w(x) can be reformulated as
∞∑
n=0

Cn,q,w(x)t
n =

[2]q

wq
√
1− 4t+ 1

(1− 4t)
x
2

=

( ∞∑
l=0

Cl,q,wt
l

)( ∞∑
m=0

( x
2

m

)
(−4)mtm

)
=

∞∑
n=0

(
n∑

m=0

( x
2

m

)
(−4)mCn−m,q,w

)
tn.

This implies another expression for the twisted q-analogues of Catalan polynomials

Cn,q,w(x) =

n∑
m=0

( x
2

m

)
(−4)mCn−m,q,w. (13)

Whereas we observe that

(1− 4t)
x
2 =

∞∑
l=0

(x
2

)l 1
l!
(log (1− 4t))

l

=

∞∑
l=0

(x
2

)l ∞∑
m=l

S1(m, l)(−4)m
tm

m!
=

∞∑
m=0

(
m∑
l=0

S1(m, l)
(−4)m

m!

(x
2

)l)
tm.

Combination of this identity with (13) results in
∞∑
n=0

Cn,q,w(x)t
n =

[2]q

wq
√
1− 4t+ 1

(1− 4t)
x
2 =

( ∞∑
k=0

Ck,q,wt
k

)( ∞∑
m=0

(
m∑
l=0

S1(m, l)
(−4)m

m!

(x
2

)l)
tm

)

=

∞∑
n=0

(
n∑

m=0

m∑
l=0

S1(m, l)
(−4)m

m!

(x
2

)l
Cn−m,q,w

)
tn.
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Equating coefficients on the very ends of the above identity arrives at another expression for Cn,q,w(x).

Cn,q,w(x) =

n∑
m=0

m∑
l=0

S1(m, l)
(−4)m

m!

(x
2

)l
Cn−m,q,w. (14)

Therefore, by (13) and (14), we have the next result.

Theorem 3.5. For w ∈ Tp and n ≥ 0, we have

Cn,q,w(x) =

n∑
m=0

( x
2

m

)
(−4)mCn−m,q,w =

n∑
m=0

m∑
l=0

S1(m, l)
(−4)m

m!

(x
2

)l
Cn−m,q,w.

Remark 3.1. In view of Theorems 3.1–3.5, by specializing q → 1, we can obtain several interesting identities for the twisted
Catalan polynomials Cn,w(x).

Remark 3.2. In view of Theorems 3.1–3.5, by specializing w = 1, we can recover the identities for the q-analogues of Catalan
polynomials Cn,q(x) in [5].

4. Conclusion

In this paper, we introduced the twisted q-analogues of the Catalan numbers Cn,q,w with the help of a fermionic p-adic
q-integral of Zp and derive explicit expressions and some identities for those numbers. In particular, we deduced explicit
expressions of Cn,q,w, as a rational function in q and w, in terms of the twisted q-Euler numbers and Stirling numbers
of the first kind, as a fermionic p-adic q-integral on Zp, and involving the twisted (q, λ)-Changhee numbers. In addition,
we considered a polynomial extension of the twisted q-analogues of Catalan numbers, namely the twisted q-analogues
of Catalan polynomials Cn,q,w(x), and derived explicit expressions in terms of the twisted Catalan numbers and Stirling
numbers of the first kind and of the twisted q-Euler polynomials and Stirling numbers of the first kind.
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