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Abstract

A red-white coloring of a nontrivial connected graph G of diameter d is an assignment of red and white colors to the vertices
of G where at least one vertex is colored red. Associated with each vertex v of G is a d-vector, called the code of v, whose
ith coordinate is the number of red vertices at distance i from v. A red-white coloring of G for which distinct vertices have
distinct codes is called an identification coloring or ID-coloring of G. A graph G possessing an ID-coloring is an ID-graph.
The minimum number of red vertices among all ID-colorings of an ID-graph G is the identification number or ID-number
of G. A caterpillar is a tree of order 3 or more, the removal of whose leaves produces a path. A caterpillar possessing
an ID-coloring is an ID-caterpillar. In this note, we characterize all ID-caterpillars, determine all possible values of the
ID-numbers of ID-caterpillars, and show that each value is realizable.
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1. Introduction

Let G be a nontrivial connected graph. The distance d(u, v) between vertices u and v in G is the minimum number of edges
in a u− v path in G. The eccentricity e(v) of a vertex v of G is the distance between v and a vertex farthest from v in G. The
diameter diam(G) of G is the largest eccentricity among the vertices of G. Equivalently, the diameter of G is the greatest
distance between any two vertices of G.

Let G be a connected graph of diameter d ≥ 2 and let there be given a red-white vertex coloring c of G where at least one
vertex is colored red. That is, the color c(v) of a vertex v in G is either red or white and c(v) is red for at least one vertex v

of G. With each vertex v of G, there is associated a d-vector ~d(v) = (a1, a2, . . . , ad) called the code of v corresponding to c,
where the ith coordinate ai is the number of red vertices at distance i from v for 1 ≤ i ≤ d. If distinct vertices of G have
distinct codes, then c is called an identification coloring or ID-coloring of G. A graph possessing an identification coloring
is an ID-graph. The minimum number of red vertices among all ID-colorings of an ID-graph G is the identification number
or ID-number ID(G) of G. These concepts were introduced by Gary Chartrand and first studied in [1]. In this note, we
study a well-known class of trees, namely caterpillars.

A caterpillar T is a tree of order 3 or more, the removal of whose leaves produces a path called the spine of T . A star
is therefore a caterpillar with a trivial spine and a double star (a tree of diameter 3) is a caterpillar whose spine is the
path P2 of order 2. A caterpillar possessing an ID-coloring is therefore an ID-caterpillar. Here, we determine all those
caterpillars that are ID-caterpillars and their possible ID-numbers. For this purpose, it is useful to present some results
obtained in [1,2].

For an integer t ≥ 2, the members of a set S of t vertices in a graph G are called t-tuplets (twins if t = 2 and triplets if
t = 3) if either (1) S is an independent set in G and every two vertices in S have the same neighborhood or (2) S is a clique,
that is the subgraph G[S] induced by S is complete and every two vertices in S have the same closed neighborhood.

Proposition 1.1. Let G be a connected graph with twins u and v. If c is an ID-coloring of G, then c(u) 6= c(v). Consequently,
If G is an ID-graph, then G is triplet-free.

Proposition 1.2. Let c be a red-white coloring of a connected graph G where there is at least one vertex of each color. If x
is a red vertex and y is a white vertex, then ~d(x) 6= ~d(y).

Theorem 1.1. For a positive integer r, there exists a connected graph G with ID(G) = r if and only if r 6= 2.
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Theorem 1.2. A nontrivial connected graph G has ID(G) = 1 if and only if G is a path.

Theorem 1.3. A connected graph G of diameter 2 is an ID-graph if and only if G = P3.

Since every caterpillar of maximum degree 5 or more contains triplets, the following observation is an immediate
consequence of Proposition 1.1.

Observation 1.1. No caterpillar of maximum degree 5 or more is an ID-tree.

By Theorems 1.2 and 1.3 and Observation 1.1, we need only consider caterpillars of diameter 3 or more and maximum
degree 3 or 4. In this note, we present the following results on ID-caterpillars and their ID-numbers.

1. A caterpillar is an ID-caterpillar if and only if it is triplet-free.

2. If T is a caterpillar of diameter 3 or more and maximum degree 3, then ID(T ) = 3.

3. If T be a k-twin caterpillar (a caterpillar with exactly k pairs of twins) of diameter 4 or more and maximum degree 4,
then max{3, k} ≤ ID(T ) ≤ k+3. Furthermore, for each pair (k, t) of integers where k ≥ 0 and t ∈ {0, 1, 2, 3} such that
k + t ≥ 3, there is a k-twin caterpillar Tk,t for which ID(Tk,t) = k + t.

2. Which caterpillars are ID-graphs?

We begin with caterpillars of diameter 3 or more and maximum degree 3.

Theorem 2.1. If T is a caterpillar of diameter 3 or more and maximum degree 3, then T is an ID-caterpillar and ID(T ) = 3.

Proof. Let T be a caterpillar of diameter d ≥ 3 and maximum degree 3. By Theorems 1.1 and 1.2, it suffices to show that T
has an ID-coloring with exactly three red vertices. If d = 3, then T is a double star of order 5 or 6. Since these two double
stars have ID-colorings with exactly three red vertices (as shown in Figure 1), we may assume that d ≥ 4.
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Figure 1: ID-colorings of two double stars.

Let P = (v0, v1, . . . , vd) be a longest path in T , where d = diam(T ) ≥ 4. For 1 ≤ i ≤ d − 1, if deg vi = 3, then let ui be
the end-vertex of T that is not in P and adjacent to vi. Define a red-white coloring c of T by assigning the color red to vi

if i = 0, 1, d and the color white to the remaining vertices of T . This red-white coloring is illustrated for the caterpillar of
diameter 8 in Figure 2. We show that c is an ID-coloring of T . Let x and y be two distinct vertices of T . By Proposition 1.2,
we may assume that x and y have the same color in T . Since (i) the first and the last coordinates of ~d(v0) are both 1, (ii)
the first coordinate of ~d(v1) is 1 and the last coordinate of ~d(v1) is 0, and (iii) the first coordinate of ~d(vd) is 0 and the last
coordinate of ~d(vd) is 1, it follows that the three red vertices v0, v1 and vd have distinct codes. Thus, we may assume that x
and y are white vertices. Let ~d(x) = (a1, a2, . . . , ad) and ~d(y) = (b1, b2, . . . , bd).
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Figure 2: An ID-coloring of a caterpillar of diameter 8.

First, observe that for each vertex z of T , the eccentricity of z is e(z) = max{d(z, v0), d(z, vd)}. Since v0 and vd are
red vertices of T , it follows that the e(z)th coordinate of ~d(z) is the final coordinate of ~d(z) that is not 0. Consequently,
if e(x) 6= e(y), say e(x) < e(y) = s, then as = 0 but bs 6= 0, which implies that ~d(x) 6= ~d(y). Hence, we may assume that
e(x) = e(y) = s. We consider three cases, according to the location of x and y.

Case 1. x = ui and y = uj where 1 ≤ i < j ≤ d − 1. Since e(ui) = e(uj) = s and 1 ≤ i < j ≤ d − 1, it follows that
e(ui) = d(ui, vd) and e(uj) = d(uj , v0). Then bs−1 = 1 (since d(uj , v1) = s− 1) and as−1 = 0. Hence, ~d(x) 6= ~d(y).
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Case 2. x = vi and y = vj where 2 ≤ i < j ≤ d−1. Since e(vi) = e(vj) = s and 2 ≤ i < j ≤ d−1, it follows that e(vi) = d(vi, vd)

and e(vj) = d(vj , v0). Then bs−1 = 1 (since d(vj , v1) = s− 1) and as−1 = 0. Hence, ~d(x) 6= ~d(y).

Case 3. x = ui where 1 ≤ i ≤ d−1 and y = vj where 2 ≤ i < j ≤ d−1. Since e(ui) = e(vj) = s, it follows that y ∈ {vi−1, vi+1}.
If y = vi−1, then d(ui, vd) = d(vi−1, vd) = s = d − i + 1. Since d(vi−1, v1) = i − 2 and d(ui, v1) = i, it follows that ai−2 = 0

and bi−2 = 1. Hence, ~d(x) 6= ~d(y). If y = vi+1, then d(ui, v0) = d(vi+1, v0) = s = i + 1 and d(ui, v1) = d(vi+1, v1). If as 6= bs

or as−1 6= bs−1, then ~d(x) 6= ~d(y). Thus, we may assume that as = bs and as−1 = bs−1. Since d(ui, vd) = d(vi+1, vd) + 2, it
follows that as = bs = 1 and as−1 = bs−1 = 1. This implies that bd−i−1 = 1, where d − i − 1 = d(vi+1, vd), and ad−i−1 = 0,
implying that ~d(x) 6= ~d(y).

We now consider triplet-free caterpillars of diameter at least 4 and maximum degree 4. A triplet-free caterpillar with
exactly k pairs of twins is called a k-twin caterpillar. Figure 3 shows a 2-twin caterpillar of diameter 4 and a 4-twin
caterpillar of diameter 5. Next we show that every triplet-free caterpillar of diameter at least 4 and maximum degree 4 is
an ID-caterpillar and present bounds for the ID-number of a k-twin caterpillar, which shows that its ID-number is one of
four numbers (in terms of k).

Figure 3: A 2-twin caterpillar and a 4-twin caterpillar.

Theorem 2.2. Let T be a caterpillar of diameter d ≥ 4 and maximum degree 4. If T is a k-twin for some positive integer k,
then T is an ID-caterpillar and

max{3, k} ≤ ID(T ) ≤ k + 3.

Proof. Since ID(T ) ≥ max{3, k} by Proposition 1.1 and Theorems 1.1–1.3, it remains to show that ID(T ) ≤ k+3. Let P=(v1,
v2, . . ., vd−1) be the spine of T . For each integer i with 1 ≤ i ≤ d− 1, let Li be the set of end-vertices of T that are adjacent
to vi. Then 1 ≤ |Li| ≤ 3 for i = 1, d − 1 and 0 ≤ |Li| ≤ 2 for 2 ≤ i ≤ d − 2. We may assume that deg v2 ≥ deg vd−2. Define a
red-white coloring c of T by

(1) assigning the color red to v1, exactly one vertex u1 in L1, exactly one vertex ud−1 in Ld−1, and exactly one vertex ui

in Li if |Li| = 2 for 2 ≤ i ≤ d− 2 and

(2) assigning the color white to the remaining vertices of T .

Thus, for 1 ≤ i ≤ d−1, the red end-vertex adjacent to vi (should it exist) is denoted by ui and the white end-vertex adjacent
to vi (should it exist) is denoted by wi. In particular, the red vertex u1 is adjacent to the red vertex v1 and the red vertex ud−1

is adjacent to the white vertex vd−1. Let r denote the number of red vertices in T . Then

r =


k + 3 if |L1| = |Ld−1| = 1

k + 2 if {|L1|, |Ld−1|} = {1, 2}

k + 1 if |L1| = |Ld−1| = 2.

Thus, r ≥ 3 if k ∈ {0, 1, 2}. It remains to show that c is an ID-coloring of T . Let x and y be two distinct vertices of T . By
Proposition 1.2, we may assume that x and y have the same color in T . Let ~d(x) = (a1, a2, . . . , ad) and ~d(y) = (b1, b2, . . . , bd).
First, observe that for each vertex z of T , the eccentricity of z is e(z) = max{d(z, u1), d(z, ud−1)}. Since u1 and ud−1 are
red vertices of T , it follows that the e(z)th coordinate of ~d(z) is the final coordinate of ~d(z) that is not 0. Consequently,
if e(x) 6= e(y), say e(x) < e(y) = s, then as = 0 but bs 6= 0, which implies that ~d(x) 6= ~d(y). Hence, we may assume that
e(x) = e(y) = s. We consider two cases, according to whether x and y are both red or both white.

Case 1. x and y are both red. Observe that

• u1 and v1 are the only red vertices whose first coordinate is 1 and e(u1) > e(v1);

• for 2 ≤ i ≤ d− 1, if ui exists, then the first coordinate of ~d(ui) is 0 and e(ud−1) > e(ui) for 2 ≤ i ≤ d− 2.
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Thus, we may assume that x = ui and y = uj where 2 ≤ i < j ≤ d − 2. Since e(ui) = e(uj) = s and 2 ≤ i < j ≤ d − 2,
it follows that s = d(ui, ud−1) = d(uj , u1). Since (1) d(uj , v1) = d(ui, vd−1) = s − 1, (2) v1 is red and vd−1 is white, and (3)
deg v2 ≥ deg vd−2, it follows that bs−1 > as−1. Hence, ~d(x) 6= ~d(y).

Case 2. x and y are both white. Observe that

• w1 (should it exist) is the only white vertex whose whose code begins with 111

• wd−1 (should it exist) is only white peripheral vertex whose code begins with 0, and

• w2 (should it exist) is the only white vertex whose whose code begins with 02.

Thus, we may assume that x, y ∈ {wi : 3 ≤ i ≤ d − 2} ∪ {vi : 2 ≤ i ≤ d − 1}. We consider three cases, according to the
location of x and y.

Subcase 2.1. x = wi and y = wj where 3 ≤ i < j ≤ d − 2. Since e(wi) = e(wj) = s and 3 ≤ i < j ≤ d − 2, it follows that
s = d(wi, ud−1) = d(wj , u1). Since (1) deg v2 ≥ deg vd−2, (2) v1 is red and vd−1 is white, and (3) d(wi, vd−1) = d(wj , v1) =

d(wj , u2) = s− 1 (should u2 exist), we have bs−1 > as−1. Hence, ~d(x) 6= ~d(y).

Subcase 2.2. x = vi and y = vj where 2 ≤ i < j ≤ d − 1. Since e(vi) = e(vj) = s and 2 ≤ i < j ≤ d − 1, it follows that
s = d(vi, ud−1) = d(vj , u1). Since (1) deg v2 ≥ deg vd−2, (2) v1 is red and vd−1 is white, and (3) d(vj , v1) = d(vj , u2) = s − 1

(should u2 exist), we have bs−1 > as−1. Hence, ~d(x) 6= ~d(y).

Subcase 2.3. x = wi where 3 ≤ i ≤ d − 2 and y = vj where 2 ≤ i < j ≤ d − 1. Since e(wi) = e(vj) = s, it follows
that y ∈ {vi−1, vi+1}. If y = vi−1 where i ≥ 3, then d(wi, ud−1) = d(vi−1, ud−1) = s. Since (1) deg v2 ≥ deg vd−2 and (2)
d(vi−1, v1) = d(vi−1, u2) = i − 2 (should u2 exist) and d(wi, v1) = i, it follows that bi−2 > ai−2 = 1. Hence, ~d(x) 6= ~d(y).
If y = vi+1, then d(wi, u1) = d(vi+1, u1) = s. Observe that if z ∈ {vp, up : 1 ≤ p ≤ i} ∪ {wp : 1 ≤ p ≤ i − 1}, then
d(wi, z) = d(vi+1, z). Let t be the smallest integer with i + 1 ≤ t ≤ d − 1 such that ut exists (where it is possible that
t = d − 1) and so ut is red. Since d(wi, ut) = d(vi+1, ut) + 2 and t − i = d(vi+1, ut), it follows that bt−i > at−i. Hence,
~d(x) 6= ~d(y).

By Theorem 2.2, if T is a k-twin caterpillar, then max{3, k} ≤ ID(T ) ≤ k + 3. In fact, every integer between max{3, k}
and ≤ k + 3 is realizable as the ID-number of some k-twin caterpillar, as we show next.

Theorem 2.3. For each pair (k, t) of integers where k ≥ 0 and t ∈ {0, 1, 2, 3} such that k+t ≥ 3, there is a k-twin caterpillar T
for which ID(T ) = k + t.

Proof. We verify the following four statements.

1. For each integer k ≥ 0, there exists a k-twin caterpillar T with ID(T ) = k + 3.

2. For each integer k ≥ 1, there exists a k-twin caterpillar T with ID(T ) = k + 2.

3. For each integer k ≥ 2, there exists a k-twin caterpillar T with ID(T ) = k + 1.

4. For each integer k ≥ 3, there exists a k-twin caterpillar T with ID(T ) = k.

We provide a complete proof for Statements 1 and 2 and provide an outline of a proof for Statements 3 and 4.
First, we verify Statement 1. By Theorem 2.1, if T is a caterpillar of diameter 3 or more and maximum degree 3,

then ID(T ) = 3. Thus, the statement is true for k = 0 and so we may assume that k ≥ 1. Let T be a caterpillar of
diameter d = k + 3 ≥ 4 and let P be the spine of T such that each end-vertex of P is adjacent to exactly one end-vertex
and each interior vertex of P is adjacent to exactly two end-vertices. Thus, T contains exactly k = d − 3 twins. We show
that ID(T ) = d = k + 3. Let (v0, v1, . . . , vd) be the longest path in T and so P = (v1, v2, . . . , vd−1) is the spine of T . For each
integer i with 2 ≤ i ≤ d− 2, let ui and wi be the two end-vertices of T that are adjacent to vi. Since T contains exactly d− 3

twins, it follows by Theorem 2.2 that ID(T ) ≤ d. Thus, it remains to show that ID(T ) ≥ d. Assume, to the contrary, that
ID(T ) ≤ d−1 and let c be an ID-coloring of T with exactly ID(T ) red vertices. Since ui and wi are twins in T for 2 ≤ i ≤ d−2,
we may assume that c(ui) is red and c(wi) is white. Since d(v1, z) = d(w2, z) for each z ∈ V (T ) − {v0}, it follows that if v0
and v1 are both white, then ~d(v1) = ~d(w2), which is impossible. Thus, at least one of v0 and v1 is red. If v0 is white and v1

is red, then ~d(v1) = ~d(u2). Thus, v0 must be red. Similarly, vd must be red. Hence, ID(T ) = d− 1 and v0, vd, and ui, where
2 ≤ i ≤ d − 2, are the d − 1 red vertices of T . However then, ~d(v0) = ~d(vd−1), for example, which is impossible. Therefore,
ID(T ) = d = k + 3 and so Statement 1 holds.
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To verify Statement 2, let T be a caterpillar of diameter d = k + 4 ≥ 5 where (v0, v1, . . . , vd) be the longest path in T

such that deg vi = 2 for i = 1, d − 2, d − 1 and deg vi = 4 for 2 ≤ i ≤ d − 3. Thus, T contains exactly k = d − 4 ≥ 1 twins.
We show that ID(T ) = d − 2 = k + 2 ≥ 3. For each integer i with 2 ≤ i ≤ d − 3, let ui and wi be the two end-vertices of T
that are adjacent to vi. First, we show that ID(T ) ≥ k + 2. Let c be an ID-coloring of T . Since ui and wi are twins in T

for 2 ≤ i ≤ d − 3, we may assume that c(ui) is red and c(wi) is white. Since d(v1, z) = d(w2, z) for each z ∈ V (T ) − {v0}, it
follows that if v0 and v1 are both white, then ~d(v1) = ~d(w2), which is impossible. Thus, at least one of v0 and v1 must be
red. Similarly, at least one vertex in {vd−2, vd−1, vd} must be red. Thus, ID(T ) ≥ k + 2.

Next, we show that T has an ID-coloring with exactly k + 2 red vertices. Define a red-white coloring c of T by (1)
assigning the color red to v0, vd, and ui for 2 ≤ i ≤ d − 3 and (2) assigning the color white to the remaining vertices of T .
Thus, T has exactly k+2 red vertices. We show that c is an ID-coloring of T . Let x and y be two distinct vertices of the same
color in T , where ~d(x) = (a1, a2, . . . , ad) and ~d(y) = (b1, b2, . . . , bd). First, observe that for each vertex z of T , the eccentricity
of z is e(z) = max{d(z, u1), d(z, ud−1)}. Since u1 and ud−1 are red vertices of T , it follows that the e(z)th coordinate of ~d(z)

is the final coordinate of ~d(z) that is not 0. Consequently, if e(x) 6= e(y), say e(x) < e(y) = s, then as = 0 but bs 6= 0, which
implies that ~d(x) 6= ~d(y). Hence, we may assume that e(x) = e(y) = s. We consider two cases, according to whether x and
y are both red or both white.

Case 1. x and y are both red. Since (1) v0 and vd are the only red peripheral vertices and (2) ~d(v0) begins with 001, and
~d(vd) begins with 000, we may assume that x = ui and y = uj where 2 ≤ i < j ≤ d − 2. Since e(ui) = e(uj) = s and
2 ≤ i < j ≤ d− 2, it follows that s = d(ui, vd) = d(uj , v0). Then bs−1 = 1 and as−1 = 0. Hence, ~d(x) 6= ~d(y).

Case 2. x and y are both white. Observe that

• vd−2 is the only white vertex whose whose code begins with 02,

• vd−1 is the only white vertex whose whose code begins with 10,

• for 2 ≤ i ≤ d− 3, the first coordinate of ~d(wi) is 0 and for 1 ≤ j ≤ d− 3, the first coordinate of ~d(vj) is 1, which implies
that ~d(wi) 6= ~d(vj), and

• e(v1) > e(vi) for 2 ≤ i ≤ d− 3, which implies that ~d(v1) 6= ~d(vi).

Thus, we may assume that x = wi and y = wj where 2 ≤ i < j ≤ d − 3 or x = vi and y = vj where 2 ≤ i < j ≤ d − 3.
First, suppose that x = wi and y = wj where 2 ≤ i < j ≤ d − 3. Since e(wi) = e(wj) = s and 2 ≤ i < j ≤ d − 3, it follows
that s = d(wi, vd) = d(uj , v0). Then bs−1 > as−1 (since d(uj , u2) = s− 1). Hence, ~d(x) 6= ~d(y). Next, suppose that x = vi and
y = vj where 2 ≤ i < j ≤ d − 3. Since e(vi) = e(vj) = s and 2 ≤ i < j ≤ d − 3, it follows that s = d(vi, vd) = d(vj , v0). Then
bs−1 > as−1 (since d(vj , u2) = s− 1). Hence, ~d(x) 6= ~d(y).

Hence, c is an ID-coloring of T with exactly k + 2 red vertices and so ID(T ) ≤ k + 2. Therefore, ID(T ) = k + 2 and
Statement 2 holds.

We now provide an outline of a proof of Statement 3. By Theorem 2.1, every caterpillar of diameter 3 or more and
maximum degree 3 has ID-number 3. Thus, if T is a caterpillar of diameter 3 or more and maximum degree 3 such
that each of two end-vertices of its spine is adjacent to two end-vertices, then T has k = 2 twins such that ID(T ) = 3.
Consequently, we may assume that k ≥ 3. Let T be a caterpillar of diameter d = k + 1 ≥ 4 and let P be the spine of T
such that every vertex of P is adjacent to exactly two end-vertices. Thus, T contains exactly k = d− 1 twins. We show that
ID(T ) = d = k + 1. Let P=(v1, v2, . . ., vd−1) be the spine of T . For each integer i with 1 ≤ i ≤ d − 1, let ui and wi be the
two end-vertices of T that are adjacent to vi. Since ui and wi are twins in T for 1 ≤ i ≤ d− 1, it follows by Proposition 1.1
that ID(T ) ≥ d − 1. Assume, to the contrary, that there is an ID-coloring of T with exactly d − 1 red vertices. We may
assume that ui is red for 1 ≤ i ≤ d − 1. However then, v1 and vd−1 have the same code, for example, which is impossible.
Therefore, ID(T ) ≥ d. To show ID(T ) ≤ d, we define a red-white coloring c of T by (1) assigning the color red to v1 and ui

for 1 ≤ i ≤ d− 1 and (2) assigning the color white to the remaining vertices of T . Thus, T has exactly d red vertices. It can
be shown that c is an ID-coloring of T . Therefore, ID(T ) = d = k + 1.

To provide an outline of a proof Statement 4, let T be a caterpillar of diameter d = k+2 ≥ 5 and let P = (v1, v2, . . . , vd−1)

be the spine of T such that each vertex of P is adjacent to exactly two end-vertices except vd−2 having degree 2. Thus, T
contains exactly k = d− 2 twins. We show that ID(T ) = d− 2 = k. For each integer i with 1 ≤ i ≤ d− 1 and i 6= d− 2, let ui

and wi be the two end-vertices of T that are adjacent to vi. Since T contains exactly d−2 twins, it follows that ID(T ) ≥ d−2.
To show that ID(T ) ≤ d − 2, we define a red-white coloring c of T by (1) assigning the color red to ui for 1 ≤ i ≤ d − 3 and
ud−1 and (2) assigning the color white to the remaining vertices of T . It can be shown that c is an ID-coloring of T with
exactly d− 2 red vertices. Therefore, ID(T ) = d− 2 = k.
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