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Abstract
In the present paper, by virtue of the Faà di Bruno formula and some identities of the Bell polynomials of the second kind,
the authors derive two explicit formulas for degenerate Peters numbers and polynomials.
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1. Introduction

The Boole polynomials Bln(x;α) are defined in [8, p. 127, Section 4.5] by

(1 + t)x

1 + (1 + t)α
=

∞∑
n=0

Bln(x;α)
tn

n!
.

For x = 0, we call Bln(0;α) = Bln(α) the Boole numbers. As a generalization of the Boole polynomials Bln(x;α), the Peters
polynomials (or say, higher-order Boole polynomials) sn(x;α, µ) are given in [1] and [8, p. 128, Section 4.6] by

(1 + t)x

[1 + (1 + t)α]µ
=

∞∑
n=0

sn(x;α, µ)
tn

n!
.

These two polynomials are the members of the family of the Sheffer polynomials which play important roles in umbral
calculus. It is easy to see that sn(x;α, 1) = Bln(x;α). In the last decade, these polynomials and related ones have been
extensively considered in many works. In [4], the Witt-type formulas and several new identities for the Boole polynomials
Bln(x;α) were investigated. In [5], via so-called nonlinear differential equations satisfied by the generating function of
the Boole numbers Bln(α), some significant formulas involving the Boole numbers Bln(α) and their higher-order type were
presented. Hereafter, by applying related generating functions and infinite series, Simsek and his coauthor So established
in [9–12] a plenty of new identities, inequalities, recursive relations, and observations for polynomials of the Peters type
and for some combinatorial numbers and polynomials. For more information, we refer the reader to the papers [4,5] and
a number of related references cited therein.

Let
ex[(1+t)

λ−1]/λ(
1 + eα[(1+t)λ−1]/λ

)µ =

∞∑
n=0

sn(x;α, µ;λ)
tn

n!
.

Since
lim
λ→0

(1 + t)λ − 1

λ
= ln(1 + t),

we have
lim
λ→0

sn(x;α, µ;λ) = sn(x;α, µ).

Therefore, we call the sequence sn(x;α, µ;λ) degenerate Peters polynomials, call the sequence sn(0;α, µ;λ) = sn(α, µ;λ)

degenerate Peters numbers which are generated by

1(
1 + eα[(1+t)λ−1]/λ

)µ =

∞∑
n=0

sn(α, µ;λ)
tn

n!
,
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and call sn(x;α, 1;λ) = Bln(x;α, λ) degenerate Boole polynomials.
In this paper, via the Faà di Bruno formula (1) and with the help of several identities of the second kind Bell polynomials

stated in the next section, we present an explicit formula for degenerate Peters numbers sn(α, µ;λ) and degenerate Peters
polynomials sn(x;α, µ;λ), respectively.

2. Identities of the Bell polynomials of the second kind

In this section, in order to present our main results, we recall several identities of the Bell polynomials of the second kind.
The Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) were defined in [2, p. 134] by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
`i∈{0}∪N∑n−k+1
i=1 i`i=n∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(
xi
i!

)`i
, n ≥ k ≥ 0.

For n ∈ N, the Faà di Bruno formula is described in [2, p. 139] in terms of the Bell polynomials of the second kind
Bn,k(x1, x2, . . . , xn−k+1) by

dn

d tn
f ◦ h(t) =

n∑
k=1

f (k)(h(t)) Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (1)

In [2, p. 135], there is an identity

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1), (2)

where n ≥ k ≥ 0 and a, b, λ, α are any complex numbers. In [2, p. 135], there is the relation

Bn,k(1, 1, . . . , 1) = S(n, k), (3)

where the Stirling numbers of the second kind S(n, k) can be generated by

(et−1)k

k!
=

∞∑
n=k

S(n, k)
tn

n!
.

In [2, p. 136, Eq. [3n]], it was given that the Bell polynomials of the second kind Bn,k satisfy

Bn,k(x1 + y1, x2 + y2, . . . , xn−k+1 + yn−k+1) =
∑
r+s=k

∑
`+m=n

(
n

`

)
B`,r(x1, x2, . . . , x`−r+1) Bm,s(y1, y2, . . . , ym−s+1). (4)

In [6, Remark 1], there exists the formula

Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
`=0

(1− `λ)

)
=

(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`− qλ). (5)

The explicit formula (5) is equivalent to

Bn,k(〈λ〉1, 〈λ〉2, . . . , 〈λ〉n−k+1) =
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
〈λ`〉n (6)

which was presented in [7, Theorems 2.1 and 4.1], where the falling factorial 〈x〉n is defined for x ∈ C by

〈x〉n =

n−1∏
k=0

(x− k) =

x(x− 1) · · · (x− n+ 1), n ≥ 1;

1, n = 0;

When n ∈ N, the explicit formulas (5) and (6) were rearranged in [3, Remark 7.5] as

Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
`=0

(1− `λ)

)
= (−1)k

λn−1(n− 1)!

k!

k∑
`=1

(−1)``

(
k

`

)(
`/λ− 1

n− 1

)
for λ 6= 0 and

Bn,k(〈λ〉1, 〈λ〉2, . . . , 〈λ〉n−k+1) = (−1)kλ
(n− 1)!

k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)
, (7)

where the generalized binomial coefficient
(
z
w

)
is defined by

(
z

w

)
=


Γ(z + 1)

Γ(w + 1)Γ(z − w + 1)
, z, w, z − w ∈ C \ {−1,−2, . . . };

0, z ∈ C \ {−1,−2, . . . }, w, z − w ∈ {−1,−2, . . . }.
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3. An explicit formula of degenerate Peters numbers

In this section, we state and prove an explicit formula of degenerate Peters numbers sn(α, µ;λ).

Theorem 3.1. For n ∈ N, degenerate Peters numbers sn(α, µ;λ) can be explicitly computed by

sn(α, µ;λ) = (n− 1)!

n∑
k=1

(−1)k

k!

αk

λk−1

[
k∑
`=1

〈−µ〉`
2µ+`

S(k, `)

][
k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)]
. (8)

Proof. For n ∈ N, applying f(u) = 1
(1+eαu)µ and u = hλ(t) = (1+t)λ−1

λ → 0 as t → 0 to the Faà di Bruno formula (1) and
straightforwardly computing give

dn

d tn

[
1(

1 + eα[(1+t)λ−1]/λ
)µ
]

=

n∑
k=1

dk

duk

[
1

(1 + eαu)µ

]
Bn,k

(
h′λ(t), h′′λ(t), . . . , h

(n−k+1)
λ (t)

)
,

lim
u→0

dk

duk

[
1

(1 + eαu)µ

]
= lim
u→0

k∑
`=1

〈−µ〉`
(1 + eαu)µ+`

Bk,`
(
α eαu, α2 eαu, . . . , αk−`+1 eαu

)
= αk lim

u→0

k∑
`=1

〈−µ〉`
(1 + eαu)µ+`

eαu` Bk,`(1, 1, . . . , 1)

= αk
k∑
`=1

〈−µ〉`
2µ+`

S(k, `),

and

Bn,k

(
h′λ(t), h′′λ(t), . . . , h

(n−k+1)
λ (t)

)
=

(1 + t)kλ−n

λk
Bn,k(〈λ〉1, 〈λ〉2, . . . , 〈λ〉n−k+1)

=
(1 + t)kλ−n

λk
(−1)kλ

(n− 1)!

k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)

→ (−1)k

λk−1
(n− 1)!

k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)
, t→ 0,

where we used the identities (2), (3), and (7). Consequently, for n ∈ N, we obtain

sn(α, µ;λ) = lim
t→0

dn

d tn

[
1(

1 + eα[(1+t)λ−1]/λ
)µ
]

=

n∑
k=1

αk
k∑
`=1

〈−µ〉`
2µ+`

S(k, `)
(−1)k

λk−1
(n− 1)!

k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)

= (n− 1)!

n∑
k=1

(−α)k

λk−1k!

[
k∑
`=1

〈−µ〉`
2µ+`

S(k, `)

][
k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)]
.

The proof of the explicit formula (8) in Theorem 3.1 is thus complete.

Remark 3.1. It is clear that s0(α, µ;λ) = 1
2µ . From the explicit formula (8), we can derive the first few values of sn(α, µ;λ)

for 1 ≤ n ≤ 6 as follows:

s1(α, µ;λ) = − αµ

2µ+1
,

s2(α, µ;λ) =
αµ

2µ+2
[α(µ− 1)− 2λ+ 2],

s3(α, µ;λ) = − αµ

2µ+3

[
α2(µ− 3)µ+ 6α(λ+ µ− λµ− 1) + 4(λ2 − 3λ+ 2)

]
,

s4(α, µ;λ) =
αµ

2µ+4

[
α3(µ3 − 6µ2 + 3µ+ 2)− 12α2(λ− 1)(µ− 3)µ

+ 4α(7λ2 − 18λ+ 11)(µ− 1)− 8(λ3 − 6λ2 + 11λ− 6)
]
,

s5(α, µ;λ) = − αµ

2µ+5

[
α4µ(µ3 − 10µ2 + 15µ+ 10)− 20α3(λ− 1)(µ3 − 6µ2 + 3µ+ 2) + 20α2(5λ2 − 12λ+ 7)(µ− 3)µ

− 40α(3λ3 − 14λ2 + 21λ− 10)(µ− 1) + 16(λ4 − 10λ3 + 35λ2 − 50λ+ 24)
]
,
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s6(α, µ;λ) =
αµ

2µ+6
(α5(µ5 − 15µ4 + 45µ3 + 15µ2 − 30µ− 16)− 30α4(λ− 1)µ(µ3 − 10µ2 + 15µ+ 10)

+ 20α3(13λ2 − 30λ+ 17)(µ3 − 6µ2 + 3µ+ 2)− 120α2(6λ3 − 25λ2 + 34λ− 15)(µ− 3)µ

+ 16α(31λ4 − 225λ3 + 595λ2 − 675λ+ 274)(µ− 1)− 32(λ5 − 15λ4 + 85λ3 − 225λ2 + 274λ− 120)).

4. An explicit formula of degenerate Peters polynomials

Now, we establish an explicit formula of degenerate Peters polynomials sn(x;α, µ;λ) for n ∈ N.

Theorem 4.1. For n ∈ N, degenerate Peters polynomials sn(x;α, µ;λ) can be computed by

sn(x;α, µ;λ) = (n− 1)!

n∑
k=1

[
(−1)k

λk−1k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)]

×

[
k∑
`=1

〈−µ〉`
2µ+`

∑
r+s=`

∑
i+j=k

(
k

i

)(
−x
µ

)i(
α− x

µ

)j
S(i, r)S(j, s)

]
.

(9)

Proof. It is clear that

ex[(1+t)
λ−1]/λ(

1 + eα[(1+t)λ−1]/λ
)µ =

1(
e−(x/µ)[(1+t)λ−1]/λ + e(α−x/µ)[(1+t)λ−1]/λ

)µ =
1[

eAhλ(t) + eBhλ(t)
]µ ,

where A = − x
µ , B = α+A, and u = hλ(t) = (1+t)λ−1

λ → 0 as t→ 0. Then, by virtue of the Faà di Bruno formula (1) and the
identity (2), we have

lim
t→0

dn

d tn

[
ex[(1+t)

λ−1]/λ(
1 + eα[(1+t)λ−1]/λ

)µ
]

= lim
t→0

dn

d tn

(
1[

eAhλ(t) + eBhλ(t)
]µ
)

= lim
t→0

n∑
k=1

dk

duk

[
1

(eAu + eBu)µ

]
Bn,k

(
h′λ(t), h′′λ(t), . . . , h

(n−k+1)
λ (t)

)

=

n∑
k=1

lim
t→0

Bn,k

(
h′λ(t), h′′λ(t), . . . , h

(n−k+1)
λ (t)

)
lim
u→0

k∑
`=1

〈−µ〉`
(eAu + eBu)µ+`

×Bk,`
(
AeAu +BeBu, A2 eAu +B2 eBu, . . . , Ak−`+1 eAu +Bk−`+1 eBu

)
= (n− 1)!

n∑
k=1

[
(−1)k

λk−1k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)] k∑
`=1

〈−µ〉`
2µ+`

Bk,`
(
A+B,A2 +B2, . . . , Ak−`+1 +Bk−`+1

)

= (n− 1)!

n∑
k=1

[
(−1)k

λk−1k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)] k∑
`=1

〈−µ〉`
2µ+`

×
∑
r+s=`

∑
i+j=k

(
k

i

)
Bi,r

(
A,A2, . . . , Ai−r+1

)
Bj,s(B,B

2, . . . , Bj−s+1)

= (n− 1)!

n∑
k=1

[
(−1)k

λk−1k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)] k∑
`=1

〈−µ〉`
2µ+`

∑
r+s=`

∑
i+j=k

(
k

i

)
AiBj Bi,r(1, 1, . . . , 1) Bj,s(1, 1, . . . , 1)

= (n− 1)!

n∑
k=1

[
(−1)k

λk−1k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)] k∑
`=1

〈−µ〉`
2µ+`

∑
r+s=`

∑
i+j=k

(
k

i

)
AiBjS(i, r)S(j, s)

= (n− 1)!

n∑
k=1

[
(−1)k

λk−1k!

k∑
`=1

(−1)``

(
k

`

)(
λ`− 1

n− 1

)][ k∑
`=1

〈−µ〉`
2µ+`

∑
r+s=`

∑
i+j=k

(
k

i

)(
−x
µ

)i(
α− x

µ

)j
S(i, r)S(j, s)

]
,

where we used the identities (3) and (4). The explicit formula (9) is thus proved. The proof of Theorem 4.1 is complete.

Remark 4.1. If we set x = 0 in (9), we obtain (8).
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