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Abstract

The middle graph M(G) of a graph G is the graph obtained by subdividing each edge of G exactly once and joining all
these newly introduced vertices of adjacent edges of G. A perfect Roman dominating function on a graph G is a function
f : V (G) → {0, 1, 2} satisfying the condition that every vertex v with f(v) = 0 is adjacent to exactly one vertex u for which
f(u) = 2. The weight of a perfect Roman dominating function f is the sum of weights of vertices. The perfect Roman
domination number is the minimum weight of a perfect Roman dominating function on G. In this paper, a characterization
of middle graphs with equal Roman domination and perfect Roman domination numbers is given.
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1. Introduction

Let G = (V,E) be an undirected graph with the vertex set V = V (G) and edge set E = E(G). The order of G is defined as
the cardinality of V . The open neighborhood of v ∈ V (G) is the set N(v) = {u ∈ V (G) | uv ∈ E(G)}. In [5], Hamada and
Yoshimura defined the middle graph of a graph. The middle graphM(G) of a graphG is the graph obtained by subdividing
each edge of G exactly once and joining all these newly introduced vertices of adjacent edges of G. The precise definition
of M(G) is as follows. The vertex set V (M(G)) is V (G) ∪ E(G). Two vertices v, w ∈ V (M(G)) are adjacent in M(G) if (i)
v, w ∈ E(G) and v, w are adjacent in G or (ii) v ∈ V (G), w ∈ E(G) and v, w are incident in G.

The study of Roman domination was motivated by the defense strategies used to defend the Roman Empire during the
reign of Emperor Constantine the Great, 274–337 AD. The concept of Roman domination was introduced in [3, 10, 11].
A function f : V (G) → {0, 1, 2} is a Roman dominating function on G if every vertex v ∈ V (G) for which f(v) = 0 is
adjacent to at least one vertex u ∈ V (G) for which f(u) = 2. The weight of a Roman dominating function is the value
ω(f) :=

∑
v∈V (G) f(v). The Roman domination number γR(G) is the minimum weight of a Roman dominating function

on G. As a variant of Roman domination, a function f : V (G) → {0, 1, 2} is a perfect Roman dominating function on G if
every vertex v ∈ V (G) for which f(v) = 0 is adjacent to exactly one vertex u ∈ V (G) for which f(u) = 2. The perfect Roman
domination number γpR(G) is the minimum weight of a perfect Roman dominating function on G. In [6], Henning et al.
introduced the notion of perfect Roman domination and showed that if T is a tree on n ≥ 3 vertices, then γpR(T ) ≤ 4

5n.
In [4], Darkooti et al. proved that it is NP-complete to decide whether a graph has a perfect Roman dominating function,
even if the graph is bipartite. This suggests determining the exact value of perfect Roman domination numbers for special
classes of graphs. Recently, the following result was proved in [1,9].

Theorem 1.1. Let G be a graph of order n. Then γR(M(G)) = n.

Based on this result, we characterize all graphs G such that γR(M(G)) = γpR(M(G)). We try to determine the exact
value of perfect Roman domination numbers in middle graphs of special classes of graphs. Note that recent results of
domination number in middle graphs were given in [7,8].

2. Main results

In this section, we introduce the concept of a middle Roman dominating function to study the Roman domination number
of the middle graph M(G) for a given graph G. A middle Roman dominating function (MRDF) on a graph G is a function
f : V ∪E → {0, 1, 2} satisfying the following conditions: (i) every element x ∈ V for which f(x) = 0 is incident to at least one

∗E-mail address: knukkj@pusan.ac.kr

www.dmlett.com
www.creativecommons.org/licenses/by/4.0/
mailto:knukkj@pusan.ac.kr


K. Kim / Discrete Math. Lett. 7 (2021) 94–97 95

element y ∈ E for which f(y) = 2, (ii) every element x ∈ E for which f(x) = 0 is adjacent or incident to at least one element
y ∈ V ∪E for which f(y) = 2. A MRDF f gives an ordered partition (V0∪E0, V1∪E1, V2∪E2) (or (V f

0 ∪E
f
0 , V

f
1 ∪E

f
1 , V

f
2 ∪E

f
2 )

to refer to f ) of V ∪ E, where Vi := {x ∈ V | f(x) = i} and Ei := {x ∈ E | f(x) = i}. The weight of a middle Roman
dominating function f is

∑
x∈V ∪E f(x). The middle Roman domination number γ?R(G) of G is the minimum weight of a

middle Roman dominating function of G. A γ?R(G)-function is a MRDF on G with weight γ?R(G). Similarly, we can define a
perfect middle Roman dominating function (PMRDF) and related definitions. By the definition of middle graphs, we state
the following remark.

Remark 2.1. For any graph G, γ?R(G) = γR(M(G)) and γ?pR(G) = γpR(M(G)).

For a subset S of G, the subgraph obtained from G by deleting all vertices in S and all edges incident with S is denoted
by G− S. For terminology and notation on graph theory not given here, the reader is referred to [2]. We make use of the
following result.

Proposition 2.1 ( [12]). Let G be a graph with components G1, . . . , Gt. Then γpR(G) =
∑t

i=1 γpR(Gi).

The following is our main theorem.

Theorem 2.1. Let G be a graph. Then γ?R(G) = γ?pR(G) if and only if there exists a γ?R(G)-function such that (i) vertices
incident to edges in E2 are adjacent to vertices in V1 and (ii) G− {u, v ∈ V (G) | uv ∈ E2} is an empty graph.

Proof. If G is an empty graph, then the statement holds. By Proposition 2.1, from now on we assume that G is connected
and not empty.

(⇒): Let f = (V0 ∪ E0, V1 ∪ E1, V2 ∪ E2) be a γ?pR(G)-function such that γ?R(G) = γ?pR(G). We proceed by proving six
claims.

Claim 1. V2 = ∅.
Suppose that there exists v ∈ V2. Consider G−{v}. Define g : V (G−{v})∪E(G−{v})→ {0, 1, 2} by g(x) = f(x). Then

g is a MRDF on G − {v} with ω(g) = n − 2. Since G − {v} has order n − 1, by Theorem 1.1 ω(g) ≥ γ?R(G − {v}) = n − 1, a
contradiction.

Claim 2. E1 = ∅.
Suppose that there exists e ∈ E1. Let u and v be vertices incident to e. We divides the following three cases depending

on the values of u and v assigned under f .

Case 1. u, v ∈ V0. There exist e1, e2 ∈ E2 such that u, v are incident to e1, e2, respectively. Also, there exist u′, v′ ∈
V (G) \ {u, v} such that u′, v′ are incident to e1, e2, respectively. Consider G − {u, u′, v, v′}. Define g : V (G − {u, u′, v, v′}) ∪
E(G−{u, u′, v, v′})→ {0, 1, 2} by g(x) = f(x). Since there is no edge inE2 adjacent to e1 or e2, g is a MRDF onG−{u, u′, v, v′}.
Then g is a MRDF with ω(g) ≤ n−5. SinceG−{u, u′, v, v′} has order n−4, by Theorem 1.1 ω(g) ≥ γ?R(G−{u, u′, v, v′}) = n−4,
a contradiction.

Case 2. u ∈ V0, v ∈ V1 or v ∈ V0, u ∈ V1. By symmetry, assume that u ∈ V0 and v ∈ V1. There exists e1 ∈ E2 incident to u.
Also, there exist u′ ∈ V (G) incident to e1. Consider G− {u, u′, v}. Define g : V (G− {u, u′, v}) ∪ E(G− {u, u′, v})→ {0, 1, 2}
by g(x) = min{f(x) + f(xv), 2} for each x ∈ N(v) \ {u} and g(x) = f(x) otherwise. Then g is a MRDF with ω(g) ≤ n − 4.
Since G− {u, u′, v} has order n− 3, by Theorem 1.1 ω(g) ≥ γ?R(G− {u, u′, v}) = n− 3, a contradiction.

Case 3. u, v ∈ V1. Consider G−{u, v}. Define g : V (G−{u, v})∪E(G−{u, v})→ {0, 1, 2} by g(x) = min{f(x)+ f(xu), 2}
for each x ∈ N(u) \ {v}, g(x) = min{f(x) + f(xv), 2} for each x ∈ N(v) \ {u} and g(x) = f(x) otherwise. Then g is a MRDF
with ω(g) ≤ n− 3. Since G− {u, v} has order n− 2, by Theorem 1.1 ω(g) ≥ γ?R(G− {u, v}) = n− 2, a contradiction.

Claim 3. Every edge in E2 is incident to vertices in V0.
Let e ∈ E2 and e = uv. Suppose that u 6∈ V0 or v 6∈ V0. Consider G − {u, v}. Define g : V (G − {u, v}) ∪ E(G − {u, v}) →

{0, 1, 2} by g(x) = min{f(x) + f(xu), 2} for each x ∈ N(u) \ {v}, g(x) = min{f(x) + f(xv), 2} for each x ∈ N(v) \ {u}
and g(x) = f(x) otherwise. Then g is a MRDF with ω(g) ≤ n − 3. Since G − {u, v} has order n − 2, by Theorem 1.1
ω(g) ≥ γ?R(G− {u, v}) = n− 2, a contradiction.

Claim 4. Every edge in E2 is adjacent to edges in E0.
By Claims 2, 3 and the hypothesis that f is a PMRDF, Claim 4 follows.

Claim 5. Vertices incident to edges in E2 are adjacent to vertices in V1.
Let uv = e ∈ E2. Suppose that u is adjacent to w ∈ V0. Then w must be incident to some e′ ∈ E2. Since uw ∈ E0 is

adjacent to e and e′, this is a contradiction.
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Claim 6. G− {u, v ∈ V (G) | uv ∈ E2} is an empty graph.
If H := G− {u, v ∈ V (G) | uv ∈ E2} is not empty, then every edge of H must be assigned 1 under f . The weight of f is

not equal to the order G, a contradiction.

(⇐): The conditions (i) and (ii) imply that γ?R(G) = γ?pR(G).

By Remark 2.1 and Theorem 2.1, we can characterize all graphsG such that γR(M(G)) = γpR(M(G)). Based on Theorem
2.1, we determine the exact value of perfect Roman domination numbers for middle graphs of paths, cycles and Kneser
graphs.

Proposition 2.2. For a path Pn of order n, γ?pR(Pn) = n

Proof. Let Pn = v1v2 . . . vn. Clearly γ?pR(P2) = 2. For n ≥ 3, we divides the following three cases.

Case 1. n ≡ 0 (mod 3). Define f : V (Pn) ∪ E(Pn) → {0, 1, 2} by f(v3i+1) = 1, f(v3i+2v3i+3) = 2 for 0 ≤ i ≤ n−3
3 and

f(x) = 0 otherwise.

Case 2. n ≡ 1 (mod 3). Define f : V (Pn) ∪ E(Pn)→ {0, 1, 2} by f(v3i+1) = 1, f(v3i+2v3i+3) = 2 for 0 ≤ i ≤ n−4
3 , f(vn) = 1

and f(x) = 0 otherwise.

Case 3. n ≡ 2 (mod 3). Define f : V (Pn) ∪ E(Pn) → {0, 1, 2} by f(v3i+1v3i+2) = 2, f(v3i+3) = 1 for 0 ≤ i ≤ n−5
3 ,

f(vn−1vn) = 2 and f(x) = 0 otherwise.
In any case, it is easy to see that f is a PMRDF with the weight n. This completes the proof.

Proposition 2.3. For a cycle Cn of order n, γ?pR(Cn) = n if n ≡ 0 (mod 3), n+ 1 otherwise.

Proof. Let Cn = v1v2 . . . vnv1, and let f be a γ?pR(Cn)-function. Suppose that ω(f) < |V (Cn) ∪ E(Cn)|. Then there exists an
element x ∈ V (Cn) ∪ E(Cn) such that f(x) = 2. If there exists an element x ∈ V (Cn) such that f(x) = 2, then it follows
from Theorem 2.1 that γ?pR(Cn) > γ?R(Cn).

Without loss of generality, now we assume that f(vn−1vn) = 2. Consider Cn − {vn−1, vn} ∼= Pn−2. If γ?R(Cn) = γ?pR(Cn),
then it follows from Theorem 2.1 that f(v1) = f(vn−2) = 1.

If n − 2 ≡ 1 (mod 3), then by the Case 2 of Proposition 2.2 Pn−2 has a PMRDF g such that g(v1) = g(vn−2) = 1 and
γ?pR(Pn−2) = n− 2. This implies that γ?pR(Cn) = n.

If n− 2 6≡ 1 (mod 3), then Theorem 2.1 implies that γ?pR(Cn) > γ?R(Cn). Now we can define a PMRDF f with the weight
n+ 1 by giving f(v1vn) = 1 in the Cases 2 and 3 of Proposition 2.2. Thus, γ?pR(Cn) = n+ 1.

Proposition 2.4. For a Kneser graph K(2m+ 1,m), γ?pR(K(2m+ 1,m)) = γ?R(K(2m+ 1,m)).

Proof. For m = 1, K(3, 1) ∼= K3 implies that γ?pR(K(3, 1)) = γ?R(K(3, 1)).
Now we assume that m ≥ 2. Let A be the family of m-element subsets of [2m] := {1, 2, . . . , 2m} and B the family of

(m− 1)-element subsets of [2m]. Let C = {{2m+ 1} ∪ b | b ∈ B}. Then V (K(2m+ 1,m)) = A ∪ C and

E(K(2m+ 1,m)) = {aa′ | a ∩ a′ = ∅ for a, a′ ∈ A} ∪ {ac | a ∩ c = ∅ for a ∈ A, c ∈ C}.

Consider the subgraph of K(2m+ 1,m) induced by A. Then it has a unique perfect matching M . Define

f : V (K(2m+ 1,m)) ∪ E(K(2m+ 1,m))→ {0, 1, 2}

by f(e) = 2 for e ∈ M , f(c) = 1 for c ∈ C and f(x) = 0 otherwise. Then f is a MRDF with weight |V (K(2m + 1,m))|. It
follows from Theorem 2.1 that f is a PMRDF such that γ?pR(K(2m+ 1,m)) = γ?R(K(2m+ 1,m)).

Finally, we conclude our paper by suggesting the following problems.

Problem 2.1. For a complete bipartite graph Km,n, what is the exact value of γ?pR(Km,n)?

Problem 2.2. For a complete graph Kn, what is the exact value of γ?pR(Kn)?
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