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Abstract

Let G be a simple graph on n vertices. A dominating set of G is a subset of the vertex set V (G) of G, say S, such that every
vertex in V (G) \ S is adjacent to at least one vertex of S. The domination polynomial of G is the polynomial D(G, x) =∑n

i=1 d(G, i)xi, where d(G, i) is the number of dominating sets of G of size i. For every n ≥ 1, let Φn(x) be the average of the
domination polynomials of all labeled graphs on n vertices. In this paper, the polynomial Φn(x) is studied and it is shown
that Φn(x) is log-concave and unimodal.
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1. Introduction

Throughout this paper, we consider only simple graphs (the graphs with no loops and multiple edges). Let
G = (V (G), E(G)) be a simple graph. The order of G is the number of vertices of G. For a vertex v ∈ V (G), the
degree of v is the number of edges incident with v and is denoted by degG(v) (for simplicity we write deg(v) instead of
degG(v)). For a vertex v ∈ V (G), the open neighborhood of v is the set N(v) = {u ∈ V : uv ∈ E(G)} and the closed neigh-
borhood is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V (G), the open neighborhood of S is N(S) =

⋃
v∈S N(v) and the closed

neighborhood of S is N [S] = N(S) ∪ S. A set S ⊆ V (G) is a dominating set of G if N [S] = V (G), or equivalently, every
vertex in V (G) \ S is adjacent to at least one vertex of S. The domination number of G, denoted by γ(G), is the minimum
of the cardinality of the dominating sets of G. We denote the complete graph of order n, the cycle of order n and the path
of order n, by Kn, Cn, and Pn, respectively.

There are numerous polynomials associated with graphs. For example chromatic polynomial, clique polynomial, inde-
pendence polynomial, matching polynomial, edge cover polynomial, edge elimination polynomial, domination polynomial
and Tutte polynomial. For more details, see [1]– [22] and references therein. By studying these polynomials one can ob-
tain some properties of a graph. For instance the roots of these polynomials reflect some important information about the
structure of graphs. Let G be a graph of order n. The domination polynomial of G that is denoted by D(G, x) is the one
variable polynomial such that the coefficient of xk is dk, where dk is the number of dominating sets of G with size k. More
precisely

D(G, x) =

n∑
k=1

dkx
k.

For example, the domination polynomial of the complete graph Kn is D(Kn, x) = (x+ 1)n − 1. The domination polynomial
was first introduced in [5,8].

One of the most interesting properties of graph polynomials is unimodality. A polynomial f(x) =
∑n

i=0 aix
i with real

coefficients (or a sequence (a0, . . . , an)) is called unimodal if there is k ∈ {0, . . . , n}, k is called the mode of f(x), such that

a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an.

Also, f(x) (or a sequence (a0, . . . , an)) is called logarithmically concave (or simply, log-concave), if for every 1 ≤ i ≤ n− 1,
a2i ≥ ai−1 ai+1. The polynomial f(x) (or a sequence (a0, . . . , an)) is called symmetric (or palindromic) if ai = an−i for
i = 0, 1, . . . , n. It is known that any log-concave polynomial with positive coefficients (or a sequence of positive numbers) is
also unimodal. See [21] for more details on these definitions.
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The unimodality problems of graph polynomials have always been of great interest to researchers in graph polynomials.
In [20], it has been conjectured that the chromatic polynomial of a graph is unimodal. Recently, in [14], this conjectured
has been proved. It is conjectured that the domination polynomial of every graph is unimodal [5]. Also, there is a famous
conjecture due to Alavi et al. [1] on the unimodality of the independence polynomial of trees. The unimodality of graph
polynomials, in particular the unimodality of independence polynomial, have been extensively studied, see [1,7,10,11,14,
16, 22]. In [11], the authors show that the average of the independence polynomial of graphs is unimodal. Motivated by
these papers, in this paper we study the unimodality of domination polynomial. For every n ≥ 1, let Φn(x) be the average
of the domination polynomials of all labeled graphs on n vertices. In this paper first we indicate Φn(x) and then show that
this polynomial is log-concave. Since the coefficients of Φn(x) are positive, we conclude that Φn(x) is unimodal.

2. Results

For every integer n ≥ 1, let Gn be the set of all simple graphs on the vertices v1, . . . , vn. In other words Gn is the set of all
labeled graphs on the vertices v1, . . . , vn. Hence the cardinality of Gn is 2(n

2). Let Φn(x) be the average of all domination
polynomial of graphs of Gn. In other words,

Φn(x) = 2−(n
2)
∑
G∈Gn

D(G, x).

For example, Φ1(x) = x, Φ2(x) = x + x2, Φ3(x) = 3x+9x2+4x3

4 and Φ4(x) = 4x+27x2+28x3+8x4

8 . In this section, we determine
the coefficients of polynomial Φn(x) and show that Φn(x) is unimodal (in fact we prove that this polynomial is log-concave).

Theorem 2.1. For every integer n ≥ 1 we have

Φn(x) =

n∑
k=1

(
n

k

)
(1− 2−k)n−kxk.

Proof. Let n ≥ 1 be an integer and
Sn(x) = 2(n

2)Φn(x).

For a graph G, let T (G) be the set of all dominating sets of G. Therefore D(G, x) =
∑

I∈T (G) x
|I|. Note that the summation

is taken over all dominating sets of G. Hence

Sn(x) =
∑
G∈Gn

D(G, x) =
∑
G∈Gn

∑
I∈T (G)

x|I|.

Therefore
Sn(x) =

∑
∅ 6=I⊆{v1,...,vn}

λIx
|I|, (1)

where λI is the number of graphs G with the vertex set {v1, . . . , vn} such that I is a dominating set of G.
Hence to complete the proof it suffices to find λI . For every 1 ≤ k ≤ n, let Ik = {v1, . . . , vk}. Since the number of graphs

G on {v1, . . . , vn} is 2(n
2) and V (G) is a dominating set of G, λIn = 2(n

2). Thus assume that k ≤ n − 1. First we find the
number of bipartite graphs H with the parts {v1, . . . , vk} and {vk+1, . . . , vn} such that the degree of all vertices vk+1, . . . , vn

in H is non-zero. In other words N(vi) ∩ {v1, . . . , vk} 6= ∅ for i = k + 1, . . . , n. For j = 1, . . . , n − k define the property cj
as ”the degree of vj+k is zero”. Let M(cj1cj2 · · · cjm) be the number of bipartite graphs T with the parts {v1, . . . , vk} and
{vk+1, . . . , vn} such that the degree of all vertices vk+j1 , . . . , vk+jm in T is zero. Therefore M(cj1cj2 · · · cjm) = 2k(n−k−m)

(note that the number of bipartite graphs L with parts X and Y is 2|X||Y |). Let β be the number of bipartite graphs H
with the parts {v1, . . . , vk} and {vk+1, . . . , vn} such that the degree of all vertices vk+1, . . . , vn in H is non-zero. Using the
inclusion – exclusion principle we conclude that

β = 2k(n−k) −
∑

1≤j≤n−k

M(cj) +
∑

1≤j<j′≤n−k

M(cjcj′)−
∑

1≤j<j′<j′′≤n−k

M(cjcj′cj′′) + · · ·+ (−1)n−kM(c1 · · · cn−k).

Therefore
β = 2k(n−k) −

(
n− k

1

)
2k(n−k−1) +

(
n− k

2

)
2k(n−k−2) + · · ·+ (−1)n−k

(
n− k
n− k

)
2k(n−k−(n−k)).

Hence by the binomial Theorem we obtain that

β =

n−k∑
j=0

(−1)j
(
n− k
j

)
2k(n−k−j) =

n−k∑
j=0

(−1)j
(
n− k
j

)
(2k)n−k−j = (2k − 1)n−k. (2)
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Since the number of graphs on {v1, . . . , vk} is 2(k
2) and the number of graphs on {vk+1, . . . , vn} is 2(n−k

2 ) we find that

λIk = 2(k
2)2(n−k

2 )β. (3)

On the other hand (
n

2

)
=

(
k

2

)
+

(
n− k

2

)
+

(
k

1

)(
n− k

1

)
. (4)

So by the Equations (2), (3) and (4) we obtain that

λIk = 2(n
2)−k(n−k) (2k − 1)n−k = 2(n

2) (2k − 1)n−k

(2k)n−k
= 2(n

2) (1− 2−k)n−k. (5)

This equality shows that for every I where ∅ 6= I ⊆ {v1, . . . , vn},

λI = 2(n
2) (1− 2−|I|)n−|I|. (6)

On the other hand the number of subset of {v1, . . . , vn} with cardinality k is
(
n
k

)
. So, by Equations (1) and (6) we conclude

that the coefficient of xk in Sn(x) is (
n

k

)
2(n

2) (1− 2−k)n−k

for k = 0, . . . , n. In other words, the coefficient of xk in Φn(x) is(
n

k

)
(1− 2−k)n−k.

The proof is complete.

Now we show that the average of the domination polynomials of graphs is unimodal.

Theorem 2.2. For every integer n ≥ 1 the polynomial Φn(x) is log-concave and so is unimodal.

Proof. Let n ≥ 1 be an integer. The result easily follows for n ≤ 2. Hence let n ≥ 3. For every k ∈ {0, 1, . . . , n} let
An,k = (1 − 2−k)n−k. Note that An,0 = 0 and An,k > 0 for k ≥ 1. We claim the sequence An,0, . . . , An,n is log-concave. In
other words for every k ∈ {1, . . . , n − 1}, A2

n,k ≥ An,k−1An,k+1. For k = 1 there is nothing to prove. So let k ≥ 2. Since
(2k−1)2 > (2k−1−1)(2k+1−1), we have (2k−1)2n−2k > (2k−1−1)n−k(2k+1−1)n−k. On the other hand 2k+1−1 > 4(2k−1−1).
Hence

(2k − 1)2n−2k >
2k+1 − 1

2k−1 − 1
(2k−1 − 1)n−k+1 (2k+1 − 1)n−k−1 > 4(2k−1 − 1)n−k+1 (2k+1 − 1)n−k−1.

This implies that
(2k − 1)2n−2k > 4(2k−1 − 1)n−k+1 (2k+1 − 1)n−k−1. (7)

On the other hand
2k(n− k) = (k − 1)(n− k + 1) + (k + 1)(n− k − 1) + 2. (8)

By dividing the sides of Equation (7) by 22k(n−k) and using Equation (8), we obtain((
2k − 1

2k

)n−k)2

>

(
2k−1 − 1

2k−1

)n−k+1(
2k+1 − 1

2k+1

)n−k−1

. (9)

This shows that (
(1− 2−k)n−k

)2
>
(

1− 2−(k−1)
)n−k+1 (

1− 2−(k+1)
)n−k−1

.

Hence the claim is proved. Note that the positive sequence(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
is log-concave. Thus (since the non-negative sequence An,0, . . . , An,n is log-concave) we conclude that the sequence(

n

0

)
An,0,

(
n

1

)
An,1, . . . ,

(
n

n

)
An,n

is also log-concave. In other words Φn(x) is log-concave. Since the coefficients of Φn(x) are positive, Φn(x) is unimodal. The
proof is complete.
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