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Abstract

This note addresses hyper-plane arrangements in Rd and functions that are constant in the interior of each of the
d-dimensional faces of the arrangement. We show that such a function g can be expressed in a simple form using basis
functions that are products of d or less indicator functions of the open half-spaces bounded by the hyper-planes in the
arrangement. Moreover, we present a simple and efficient algorithm that can be used to express g as a linear combination
of these basis functions.
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1 Introduction
For hyper-planes H1, . . . ,Hn in Rd we denote by A the arrangement of the n hyper-planes H1, . . . ,Hn. Hyper-plane
arrangements is a broad and well studied topic in mathematics with relations and applications to many other fields in
mathematics and computer science [5, 8, 9]. The objects of A are all the possible intersections of hyper-planes and open
half-spaces defined byH1, . . . ,Hn. Of particular interest to us will be the d-dimensional faces of the arrangement A . These
are in fact the connected components of Rd \ ∪ni=1Hi.

We recall the function sign : R→ R that is equal to 1 for every positive number and is equal to−1 for negative numbers.
We artificially define sign (0) to be −1. As will be elaborated below, the value of sign (0) will not be important for us at all
in the sequel.

In this note we address functions g : Rd → R that can be expressed in terms of the n sign functions sign (〈x, vi〉 − ci),
1 ≤ i ≤ n, where vi ∈ Rn and ci ∈ R are some given vectors and constants, respectively. Such functions were encountered
in the study of estimation and control of linear systems forced by Cauchy [3, 4, 6, 7] and Laplacian [1, 2] noises. When
derived, these functions g have a very complex form that leads to numerical difficulties in applications. The goal of this
note is to propose an alternative and simpler representation of those functions. In addition, it will show a simple and fast
algorithm to construct this representation. In this paper we will not care about the values of the function g at points x for
which 〈x, vi〉 − ci = 0 for some 1 ≤ i ≤ n. This is the reason why the value of sign (0) will not be of any importance in this
paper. For convenience we set sign (0) = −1.

It will be more convenient to work with the functions σi(x) = 1
2 [sign (〈x, vi〉 − ci) + 1]. Notice that σi(x) is the indicator

function of the open half-spaceH+
i = {x ∈ Rd | 〈x, vi〉 > ci}. That is, σi(x) = 1 for every x inH+

i and is equal to 0 otherwise.
Observe that a function g can be expressed in terms of the functions sign (〈x, vi〉 − ci) if and only if it can be expressed in
terms of σ1, . . . , σn.

Because each of the functions σ1, . . . , σn is constant in every d-dimensional face of A , then so are the functions g that
we study in this note.

It is easy to see that also the other way around is true. That is, given H1, . . . ,Hn, any function g : Rd \ ∪ni=1Hi → R that
is constant in every d-dimensional face of A can be expressed in terms of σ1, . . . , σn. To prove this observe that it is enough
to address functions g that are equal to 1 for every x in some d-dimensional face F of A and are equal to 0 otherwise. Let
In = {1, . . . , n} and I ⊂ In be the set of all indices i such that Hi supports a (d − 1)-dimensional facet of F . Then F is
equal to the intersection of all half-spaces containing F and bounded by Hi for some i ∈ I. Let Ia be the set of all indices
i ∈ I such that σi(x) = 1 for every x ∈ F . Let Ib = I \ Ia. Then g =

∏
i∈Ia σi ·

∏
i∈Ib(1 − σi). Consequently, any function
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g : Rd \ ∪ni=1Hi → R that is constant in every d-dimensional face of A can be written as a linear combination of products
of n or less of σ1, . . . , σn.

The main result in this note is the following improvement that is also tight.

Theorem 1.1. Let A be a hyper-plane arrangement of n affine hyper-planesH1, . . . ,Hn inRd defined byHi = {x | 〈x, vi〉 = ci},
where x ∈ Rd, vi ∈ Rd is normal to Hi, and ci ∈ R. For every 1 ≤ i ≤ n let σi denote the indicator function of the open half-
space {x | 〈x, vi〉 > ci} bounded by Hi. Let g be any function that is constant in the interior of every d-dimensional face in A .
Then there is a linear combination of products of d or less of the functions σi that is equal to g at any point in Rd \ ∪ni=1Hi.

Given a hyper-plane arrangement A of n affine hyper-planes H1, . . . ,Hn in Rd and a function g : Rd \ ∪ni=1Hi → R that
is constant on every d-dimensional face of A , Theorem 1.1 tells us that we can write g as a linear combination of products
of d or less of the functions σ1, . . . , σn. Specifically, let I ⊂ In be a subset of In with cardinality |I| ≤ d and denote by σI the
product

∏
i∈I σi. When I is the empty set, we define σ∅ = 1. Theorem 1.1 implies that the function g can be expressed as

g =
∑
|I|≤d

aIσI (1)

for all I ⊂ In with |I| ≤ d with some coefficients aI .
The number of such possible products σI and thus terms in the sum of (1) is equal to N =

∑d
i=0

(
n
i

)
. This raises the

question of an efficient computation of the N coefficients aI in (1). In Section 3 we provide an algorithm that given the
function g computes these coefficients with running time of O(2d

(
n
d

)
). That is, number of operations in the algorithm is

O(2d
(
n
d

)
), where calling to the function g is considered as one operation.

2 Proof of Theorem 1.1
We start with a preliminary result that will be used to prove the main theorem presented next. When stated separately,
not within the problem addressed in this note, its statement and proof can be greatly simplified, without hampering its
generalization.

Lemma 2.1. Let ∆d be a d-simplex in Rd. Let H1, . . . ,Hd+1 be the d+ 1 affine hyper-planes supporting the facets of ∆d. For
i = 1, . . . , d+ 1, let σi be the indicator function of the closed half-space bounded by Hi and containing ∆d. Then

d+1∏
i=1

(
1− σi

)
= 0. (2)

Proof. Assume, without loss of generality, that 0 ∈ ∆d. For i = 1, . . . , d + 1 we write Hi as Hi = {x | 〈x, vi〉 = ci}, where
vi ∈ Rd (orthogonal to Hi) is chosen such that ci > 0. Then ∆d = {x | ∀ 1 ≤ i ≤ d + 1, 〈x, vi〉 ≤ ci }. Observe that
the statement of the Lemma 2.1 is equivalent to saying that there is no vector u ∈ Rd such that 〈u, vi〉 > ci for every
1 ≤ i ≤ d+ 1. Assume to the contrary that there is such a vector u. Then for every α > 0 and every 1 ≤ i ≤ d+ 1 we have
〈−αu, vi〉 = −α〈u, vi〉 < −αci < 0 < ci. In other words, −αu ∈ ∆d for every α > 0. This is impossible as ∆d is bounded.

We can now proceed to the proof of Theorem 1.1. Observe that in order to prove Theorem 1.1 it is enough to consider
functions g that are indicator functions of d-dimensional faces in A .

Let F be a d-dimensional face in A and let g be the indicator function of F . Let I ⊆ In denote the set of indices i such
that Hi supports F at a facet of dimension d − 1. Let Ia and Ib be a partition of I into two parts such that if i ∈ Ia, then
F ⊂ {x | 〈x, vi〉 > ci} and if i ∈ Ib, then F ⊂ {x | 〈x, vi〉 < ci}. Observe that F is equal to the intersection of all open
half-spaces containing F that are bounded by some hyper-plane Hi where i ∈ I. Therefore, the function

g̃ =
∏
i∈Ia

σi ·
∏
i∈Ib

(1− σi)

is equal to g at any point not in ∪ni=1Hi.
If the cardinality |I| of I is smaller than or equal to d, we are done because g̃ can clearly be written as a linear combination

of products of |I| or less of the indicator functions σ1, . . . , σn. If the cardinality of I is larger than d, then g̃ can still be written
as a linear combination of products of the indicator functions σ1, . . . , σn, however the number of terms in each product may
exceed d. Therefore, Theorem 1.1 will follow if we can show that the product of every d + 1 of the indicator functions
σ1, . . . , σn is equal, on Rd \ ∪ni=1Hi, to a linear combination of products of d or less of the indicator functions σ1, . . . , σn.
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We prove this by induction on d. The basis of the induction is the case d = 1. In this case we have two indicator functions,
say σ1 and σ2. We would like to consider the function σ1σ2 and express it as a linear combination of products of zero or one
of the functions σ1 and σ2.

This could easily be left to the reader, but for completeness we bring the simple analysis here. For i = 1, 2 there exists
xi such that the function σi is either the indicator function of {x | x < xi} or of {x | x > xi}. Without loss of generality
assume that x1 ≤ x2. We consider four possible cases.
Case 1. σ1 is the indicator function of {x | x < x1} and σ2 is the indicator function of {x | x < x2}. In this case σ1σ2 = σ1.
Case 2. σ1 is the indicator function of {x | x < x1} and σ2 is the indicator function of {x | x > x2}. In this case σ1σ2 = 0.
Case 3. σ1 is the indicator function of {x | x > x1} and σ2 is the indicator function of {x | x < x2}. In this case σ1σ2 is
equal to the function σ1 + σ2 − 1.
Case 4. σ1 is the indicator function of {x | x > x1} and σ2 is the indicator function of {x | x > x2}. In this case σ1σ2 is
equal to the function σ2.
This concludes the case d = 1 being the basis of induction.

For d > 1 we consider two possible cases:
Case 1. k+ 1 of the vectors v1, . . . , vd+1 are linearly dependent for some 1 ≤ k < d. Without loss of generality, assume that
v1, . . . , vk+1 are linearly dependent. By a possible rotation of Rd, we can assume that span{v1, . . . , vk+1} ⊆ span{e1, . . . , ek},
where e1, . . . , ek are the first k elements of the standard basis of Rd. Let P : Rd → Rk be the projection on the first k
coordinates of Rd. In Rk, for every 1 ≤ i ≤ k + 1 we define H ′i = {x ∈ Rk | 〈P (vi), x〉 = ci} and let σ′i : Rk → R be the
indicator function of {x ∈ Rk | 〈P (vi), x〉 > ci}. Observe that for every x ∈ Rd and 1 ≤ i ≤ k + 1,

σi(x) = σ′i(P (x)). (3)

Because k < d, we can apply the induction hypothesis for dimension k and conclude that
∏k+1

i=1 σ
′
i is equal to a linear

combination of products of k or less of σ′1, . . . , σ′k+1. Because of (3) it follows that
∏k+1

i=1 σi is equal to a linear combination
of products of k or less of σ1, . . . , σk+1. Consequently,

d+1∏
i=1

σi =

k+1∏
i=1

σi ·
d+1∏

i=k+2

σi

is equal to a linear combination of products of d or less of σ1, . . . , σd+1.
Case 2. every set of d vectors from v1, . . . , vd+1 is linearly independent. We split into two possible subcases.
Case 2a. ∩d+1

i=1Hi = ∅. In this case H1, . . . ,Hd+1 are the d + 1 affine hyper-planes supporting the facets of the d-simplex
∆d whose vertices are vj = ∩d+1

i=1,i6=jHi for 1 ≤ j ≤ d + 1. We may assume, without loss of generality, that 0 ∈ ∆d. Let
I = {1, . . . , d + 1}. Let Ia and Ib be a partition of I into two parts such that if i ∈ Ia, then ci < 0, and if i ∈ Ib, then ci > 0.
Then ∏

i∈Ia

σi ·
∏
i∈Ib

(1− σi)

is the indicator function of the interior of ∆d. Applying (2) of Lemma 2.1 yields∏
i∈Ia

(1− σi) ·
∏
i∈Ib

σi = 0,

which proves the theorem for this case.
Case 2b. ∩d+1

i=1Hi 6= ∅. In this case ∩d+1
i=1Hi is a single point, because v1, . . . , vd are linearly independent. Without loss of

generality we assume that this single point is 0. Consequently, ci = 0 for 1 ≤ i ≤ d+ 1. Let α1, . . . , αd+1 be real numbers,
not all zero, such that

∑d+1
i=1 αivi = 0. Notice that in this case αi 6= 0 for all 1 ≤ i ≤ d+ 1, because every set of d vectors from

v1, . . . , vd+1 is linearly independent.
Define Ia = {1 ≤ i ≤ d + 1 | αi > 0} and Ib = {1 ≤ i ≤ d + 1 | αi < 0}. Notice that Ia and Ib form a partition of

{1, . . . , d+ 1}. We claim that ∏
i∈Ia

σi ·
∏
i∈Ib

(1− σi) = 0. (4)

Observe that once (4) is established we are done, as (4) implies that
∏d+1

i=1 σi is a linear combination of products of d or less
of σ1, . . . , σd+1.

To prove (4), notice that the contrary assumption is that there exists a vector u such that for every i ∈ Ia we have
〈u, vi〉 > 0 and for every i ∈ Ib we have 〈u, vi〉 < 0. It follows now from the definition of Ia and Ib that for every 1 ≤ i ≤ d+ 1
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we have αi〈u, vi〉 > 0. This is a contradiction as

d+1∑
i=1

αi〈u, vi〉 =

〈
u,

d+1∑
i=1

αivi

〉
= 〈u, 0〉 = 0. (5)

3 Computational aspects
Assume we are given a hyper-plane arrangement A of n affine hyper-planes H1, . . . ,Hn in Rd and a function g that is
constant on each of the d-dimensional faces of A . For every i = 1, . . . , n we let σi be the indicator function of a open half-
space bounded by Hi (we may choose any of the two). In this section we provide an algorithm of running time O(2d

(
n
d

)
)

that produces the representation of g as a linear combination of products of d or less of σ1, . . . , σn.
We start with a preliminary observation that we will need.

Observation 3.1. Assume H1, . . . ,Hd are d hyper-planes in Rd, passing through the origin, with normal vectors that are
linearly independent. Then H1, . . . ,Hd partition Rd into 2d regions and the horizontal hyper-plane {xd = 0} must avoid at
least two of them. Moreover, if {xd = 0} is not parallel to any intersection of d − 1 or less of H1, . . . ,Hd, then the horizontal
hyper-plane must avoid exactly two of the 2d regions.

Proof. Perhaps the easiest way to see this is to perform a linear transformation on Rd such that H1, . . . ,Hd coincide with
the d axis-parallel hyper-planes through the origin. ThenH1, . . . ,Hd partition Rd into 2d region F1, . . . , F2d that correspond
to the 2d different sign patterns of the d coordinates.

The linear transformation we performed takes the horizontal hyper-plane {xd = 0} to some hyper-plane H with a
normal vector v. Observe that the condition that H is not parallel to any intersection of d − 1 or less of H1, . . . ,Hd is
equivalent to that no coordinate of v is equal to 0.

There are at least two of the regions F1, . . . , F2d (and exactly two if the coordinates of v are all different from 0) whose
coordinates sign patterns either always agree with the sign pattern of the coordinates of v, or always disagree with the
sign pattern of the coordinates of v. These are exactly the regions avoided by H.

We will first assume that the arrangement A is in general position in the sense that no d + 1 hyper-planes from
H1, . . . ,Hn share a common point. For reasons that will become clear shortly, we assume without loss of generality that
no face in A is horizontal, i.e., is parallel to the hyper-plane {xd = 0}. This can be achieved by a generic rotation of A .

We start by computing all the
(
n
d

)
vertices of A . This can easily be done in time O(d3

(
n
d

)
) (we do not try to optimize here

as long as we are at least as fast as O(2d
(
n
d

)
)), simply by considering every subset of d of hyper-planes from H1, . . . ,Hn and

then solving a system of d linear equations in d variables.
It follows from Observation 3.1 that every vertex in A is the unique lowest point of a unique d-dimensional face in A .

Indeed, at every vertex X of A apply Observation 3.1, where H1, . . . ,Hd are taken to be the d hyper-planes meeting at X
and let H in Observation 3.1 be the horizontal hyper-plane through X, that is, H is the hyper-plane through X parallel to
{xd = 0}.

Theorem 1.1 tells us that any function g that is constant on every d-dimensional face of A can be written as a linear
combination of products of d or less of σ1, . . . , σn, given in (1). Notice that because H1, . . . ,Hn are in general position this
implies that the N =

∑d
i=0

(
n
i

)
products of d or less of σ1, . . . , σn form in fact a basis for the space of all functions g that

are constant on every d-dimensional face of A . This is because the number of d-dimensional faces in any arrangement of
n hyper-planes in general position is precisely N (see [5, 8, 9]). Although we will not use the fact that the products of d or
less of σ1, . . . , σn are linearly independent, it is useful to observe this fact in order to understand better the proof.

We will use, however, the following simple observation. We claim that even if we replace any σi by (1 − σi) in any of
the products of d or less of σ1, . . . , σn we will still remain with a basis for the space of all functions g that are constant on
every d-dimensional face of A . To see this, let I be a set of k indices from In, where 1 ≤ k ≤ d (the case k = 0 is trivial).
Let I ′ ⊂ I be any subset of I. We would like to show that we can replace

∏
i∈I σi by

∏
i∈I′(1 − σi) ·

∏
i∈I\I′ σi and remain

with a basis for the space of all functions g that are constant on every d-dimensional face of A . This is indeed true because∏
i∈I′(1 − σi) ·

∏
i∈I\I′ σi is equal to ±

∏
i∈I σi plus a linear combination of products of k − 1 or less of σ1, . . . , σn. This fact

can now be used to prove by induction on k that the replacement of any σi by (1 − σi) does not change the linear span of
these products.

We are given a function g that is constant on every d-dimensional face of A and we would like to find the representation
of it, that surely exists because of Theorem 1.1, as in (1). In particular, we want to find the N coefficients aI given the
values of g in the N d-dimensional faces of A .
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For every I ⊂ In such that |I| = d we consider the point XI that is the intersection of all the d hyper-planes Hi where
i ∈ I. As we observed, XI is the unique lowest point of a unique d-dimensional face that we denote by FI . Let I ′ ⊂ I be the
set of all indices i ∈ I such that σi is equal to 0 on FI . Define σ′I =

∏
i∈I′(1 − σi) ·

∏
i∈I\I′ σi. Observe that σ′I is equal to 0

at every point below XI . Moreover, σ′I is equal to 0 in all the d-dimensional faces that have XI as a vertex, except for FI

where σ′I is equal to 1.
As we already noticed, g can be written also as a linear combination of σ′I for |I| = d and σI for |I| < d. Let a′I for |I| ≤ d

be the coefficients such that g =
∑
|I|=d a

′
Iσ
′
I +
∑
|I|<d a

′
IσI . Let H be a horizontal hyper-plane that is lower than the lowest

vertex of A . Notice that H intersects precisely all the d-dimensional faces that do not have a lowest point. Notice also that∑
|I|=d a

′
Iσ
′
I is equal to 0 at every point on H simply because H is lower than all the vertices in A . Therefore, on H we have

g =
∑
|I|<d a

′
IσI . We therefore consider the (d−1)-dimensional arrangement of H ∩H1, . . . ,H ∩Hn in the d−1 dimensional

space H. We use induction and find the representation of g =
∑
|I|<d a

′
IσI on H with running time T (d − 1) that we will

analyze later (we will show that T (d) = O(2d
(
n
d

)
)). Having found the coefficients a′I for |I| < d we proceed to finding the

coefficients a′I for |I| = d.
Fix I ⊂ In such that |I| = d. We show how to find a′I . The point XI is the intersection of the d hyper-planes Hi, where

i ∈ I. By Observation 3.1, these hyper-planes partition Rd into 2d d-dimensional regions and therefore, XI is a vertex of
precisely 2d d-dimensional faces of A . Denote these d-dimensional faces by F1, . . . , F2d and recall that FI is one of these
faces.

Let SI be the function
∏

i∈I′(2(1 − σi) − 1) ·
∏

i∈I\I′(2σi − 1). To understand the simple meaning of SI observe that
2σi − 1 is equal to 1 in the half-space where σi = 1 and is equal to −1 in the half-space where σi = 0 (the same is true
for (2(1 − σi) − 1) with the change of role of the two half-spaces bounded by Hi). Therefore, SI is equal to 1 in FI (where
(1− σi) = 1 for all i ∈ I ′ and σi = 1 for all i ∈ I \ I ′). Moreover SI changes sign every time we cross one of the hyper-planes
Hi, where i ∈ I.

We claim that

a′I =

2d∑
i=1

g(Fi)SI(Fi). (6)

Notice that evaluating a′I in this way takes time 2d (that is, 2d calls to the function g).
To prove (6) recall that g =

∑
|J|=d a

′
Jσ
′
J +

∑
|J|<d a

′
JσJ . Hence, (6) is restated a

a′I =
∑
|J|=d

2d∑
i=1

a′Jσ
′
J(Fi)SI(Fi) +

∑
|J|<d

2d∑
i=1

a′JσJ(Fi)SI(Fi). (7)

Observe that we have
∑2d

i=1 a
′
Iσ
′
I(Fi)SI(Fi) = a′Iσ

′
I(FI)SI(FI) = a′I . This is because σ′I is equal to 0 on all the faces F1, . . . , F2d

except for FI on which σ′I is equal to 1. Therefore, in order to complete the proof of (6) it is enough to examine the sums in
(7) with J 6= I and show that

∑2d

i=1 a
′
Jσ
′
J(Fi)SI(Fi) = 0 for |J | = d and

∑2d

i=1 a
′
JσJ(Fi)SI(Fi) = 0 for |J | < d.

Let J ⊂ In, |J | = d, and J 6= I. Because |I| = d, it must be that I \ J is not empty. Choose arbitrarily some q ∈ I \ J . For
every face Fi the value σ′J(Fi) is either 1 or 0. If σ′J(Fi) = 0 for all 1 ≤ i ≤ 2d, we are done. For every face Fi with σ′J(Fi) = 1

consider the unique face Fi′ such that Fi and Fi′ share a common facet on the hyper-plane Hq. Observe that for Fi′ it is
also true that σ′J(Fi′) = 1 because q /∈ J . However SI(Fi) = −SI(Fi′). Therefore, in

∑2d

i=1 a
′
Jσ
′
J(Fi)SI(Fi) the terms i and

i′ for which σ′J(Fi) = σ′J(Fi′) = 1 cancel the contributions of each other, while the other terms are identically zero because
their respective σ′J = 0. Consequently,

∑2d

i=1 a
′
Jσ
′
J(Fi)SI(Fi) = 0. A similar argument as above holds when |J | < d to yield

that
∑2d

i=1 a
′
JσJ(Fi)SI(Fi) = 0. This concludes the proof of equation (6).

We can therefore find all the coefficients a′I for |I| = d in time O(2d
(
n
d

)
), as there are

(
n
d

)
subsets I of In with

|I| = d. To summarize, we found all the coefficients a′I in the representation of g as g =
∑
|I|=d a

′
Iσ
′
I +

∑
|I|<d a

′
IσI in

time O(2d
(
n
d

)
) + T (d− 1).

We are not done yet because we need to find the representation of g as g =
∑
|I|≤d aIσI . In order to do this we recall

that every σ′I for |I| = d is a product of d terms each of which is equal either to σi or to (1 − σi) for some i ∈ I. We can
therefore write it as linear sum of at most 2d products of d or less of σi where i ∈ I. This requires an additional work of
time O(2d

(
n
d

)
). Then we get a representation of g as a linear sum of at most

2d
(
n

d

)
+

(
n

d− 1

)
+

(
n

d− 2

)
+ . . .+

(
n

0

)
products of d or less of σ1, . . . , σn. With additional work of O(2d

(
n
d

)
) we can gather similar terms and get the required

representation of g as in (1).
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In order to analyze the running time T (d) we observe that T (d) = T (d−1)+O(2d
(
n
d

)
). This easily implies T (d) = O(2d

(
n
d

)
).

We have thus proved that the desired representation of g can be computed in time O(2d
(
n
d

)
) when the arrangement A

is in general position. We next show how to conclude from here an algorithm with the same running time also when A

may not be in general position. What we do is perturb by just a little bit the hyper-planes H1, . . . ,Hn and define g to be
0 (although it could take arbitrary values just as well) in the newly created d-dimensional faces. More precisely, we first
take sample points from every face in A before the perturbation. Then we perturb A . We find which new d-dimensional
faces correspond to the old ones. This can be done very quickly, as we just need to find the new d-dimensional faces to
which each of the old sample points belong. Now that we have the perturbed hyper-plane arrangement that is in general
position and the new function g, we apply our algorithm and the representation that we get for the new g will work also
for the original one.

A disadvantage of the above method for arrangements A that are not in a general position is that the representation
we obtain for g has more terms in (1) than the number of d-dimensional faces in A . Effectively it means that the basis we
use to represent g is larger than needed and one can find a smaller one, i.e., g could be fully represented as in (1) with the
number of terms that equals to the number of d-dimensional faces in A . In the next section we present an algorithm that
finds such a minimum-dimensional basis and shows how to find the coefficients of a representation of g with this basis.

4 The non-general-position case
Theorem 4.1. Let A be a hyper-plane arrangement of n affine hyper-planes H1, . . . ,Hn in Rd. For every 1 ≤ i ≤ n let σi
denote the indicator function of one of the two open half-spaces bounded by Hi. Let G be the linear vector space consisting
of all functions g that are constant in the interior of every d-dimensional face in A . Then there is a basis for G that consists
of products of d or less of the functions σi.

Remark. The size of the basis guaranteed in Theorem 4.1 is clearly equal to the dimension of G , that is, the number of
d-dimensional faces in A .

Proof. We prove the theorem by induction on d. For d = 1 there is nothing to prove because in this case the theorem is
equivalent to Theorem 1.1.

Assume the theorem is true for dimension d− 1 and we prove it for dimension d. Given d is fixed, we prove the theorem
by induction on n. The theorem is clearly true for n = 1 because in this case A consists of just two d-dimensional faces,
that is, the two open half-spaces bounded by H1. Then a basis for G is {1, σ1} and this is regardless of the choice of the
indicator function σ1.

Assume the theorem is true for n− 1 and we prove it for n. We would like to find a basis for G in which every element
is a product of d or less of σ1, . . . , σn. Consider the hyper-plane arrangement Ã of the n− 1 hyper-planes H1, . . . ,Hn−1. By
induction hypothesis, there is a basis whose elements are products of d or less of σ1, . . . , σn−1 for the linear space G̃ of all
the functions that are constant on the interior of every d-dimensional face of Ã . Denote this basis by a1, . . . , ak, where k is
the dimension of G̃ .

Consider now the hyper-plane Hn. For i = 1, . . . , n− 1 denote by H ′i the intersection Hi ∩Hn. Therefore, H ′i is a hyper-
plane of dimension d − 1 in Hn. Let A ′ denote the hyper-plane arrangement of H ′1, . . . ,H ′n−1 inside Hn. Let G ′ be the
linear space of all functions that are constant on every (d − 1)-dimensional face of A ′. For i = 1, . . . , n − 1 let σ′i denote
the restriction of σi to Hn. Notice that σ′i is the indicator function of one of the open half-spaces of Hn bounded by H ′i.
By the induction hypothesis, there is a basis for G ′ whose elements are products of d − 1 or less of σ′1, . . . , σ′n−1. Denote
the elements of this basis by b′1, . . . , b′`, where ` is the dimension of G ′. For j = 1, . . . , ` let Ij be the set of indices from
{1, . . . , n− 1} such that b′j =

∏
i∈Ij σ

′
i.

We observe that the number of d-dimensional faces in A is equal to the number of d-dimensional faces in Ã plus the
number of (d − 1)-dimensional faces in A ′. In other words, the dimension of G is equal to k + `, which is the sum of the
dimension of G̃ and the dimension of G ′.

We are now ready to define the desired basis for G . For j = 1, . . . , `, considering the subsets Ij used to define b′j above,
define bj =

∏
i∈Ij σi. We claim that B = {a1, . . . , ak} ∪ {σnb1, . . . , σnb`} is a basis for G . We remark that once we prove B

is a basis for G we are done, as every member of B is a product of d or less of σ1, . . . , σn. Moreover, to conclude that B is
indeed a basis for G it is enough to show that it spans G , because |B| is equal to k + `, the dimension of G .

In order to show that B spans G it is enough to show that the indicator function of every d-dimensional face in A can
be written as a linear combination of members of B. Let C be a d-dimensional face of A . If none of the facets of C is
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supported by Hn, then C is also a d-dimensional face in Ã and therefore the indicator function of C can be written as a
linear combination of a1, . . . , ak.

Assume therefore that Hn supports a facet of C. There is a unique cell in Ã that contains C. We denote this cell by C̃.
In fact C is equal to the intersection of C̃ with one of the two open half-spaces bounded by Hn.

Let C ′ = Hn ∩ C̃. C ′ is a (d − 1)-dimensional face in A ′. Therefore, the indicator function of C ′ can be written as∑`
j=1 βjb

′
j for some coefficients β1, . . . , β`. Now consider the function g =

∑`
j=1 βjbj . Notice that g is constant on every d-

dimensional face of A . Moreover, because the restriction of g to Hn is equal to
∑`

j=1 βjb
′
j , that is, to the indicator function

of C ′, then g must be equal to 1 on C̃ and must be equal to 0 on every other d-dimensional face of Ã whose interior is
intersected by Hn.

Consider now the function σng. This function is constant on every d-dimensional face of Ã except for C̃. Indeed, σng is
constant on every d-dimensional face of Ã whose interior is not intersected by Hn. It is equal to 0 on every d-dimensional
face of Ã whose interior is intersected by Hn except for C̃. The face C̃ is a union of two d-dimensional faces in A , namely,
C and C̃ \ C. The function σng is equal to 1 on one of C and C̃ \ C and is equal to 0 on the other.

Let f be the function that is equal to σng except that f is equal to 0 on C̃. Because f is in G̃ , we can write f =
∑k

j=1 αjaj

for some coefficients α1, . . . , αk. Now, the function σng − f is the indicator function of either C or C̃ \ C, the one for which
σng is equal to 1. If σng − f is the indicator function of C, then we are done because

σng − f =
∑̀
j=1

βjσnbj −
k∑

j=1

αjaj .

If σng−f is the indicator function of C̃ \C, then write the indicator function of C̃ as
∑k

j=1 γjaj . Then the indicator function
of C is equal to

k∑
j=1

γjaj − (σng − f) =

k∑
j=1

(γj + αj)aj −
∑̀
j=1

βjσnbj ,

and we are done again.
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