Research Article

Vertex identification in trees

Yuya Kono, Ping Zhang*
Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5248, USA

(Received: 23 April 2021. Accepted: 13 July 2021. Published online: 16 July 2021.)
© 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

A red-white coloring of a nontrivial connected graph G of diameter d is an assignment of red and white colors to the vertices of G where at least one vertex is colored red. Associated with each vertex v of G is a d-vector, called the code of v, whose i th coordinate is the number of red vertices at distance i from v. A red-white coloring of G for which distinct vertices have distinct codes is called an identification coloring or ID-coloring of G. A graph G possessing an ID-coloring is an ID-graph. The minimum number of red vertices among all ID-colorings of an ID-graph G is the identification number or ID-number of G. Necessary conditions are established for those trees that are ID-graphs. A tree T is starlike if T is obtained by subdividing the edges of a star of order 4 or more. It is shown that for every positive integer r different from 2 , there exist starlike trees satisfying some prescribed properties having ID-number r.

Keywords: distance; vertex identification; identification coloring; tree.
2020 Mathematics Subject Classification: 05C05, 05C12, 05C15, 05C90.

1. Introduction

Over the years, many methods have been introduced with the goal of uniquely identifying the vertices of a connected graph. Often these approaches have employed distance and coloring. The oldest of these methods deal with what is referred to as the metric dimension of a connected graph. For a nontrivial connected graph G of order n, the goal is to locate an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ of k vertices in $G, 1 \leq k \leq n$, and associate with each vertex v of G the k-vector $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, where a_{i} is the distance $d\left(v, w_{i}\right)$ between v and $w_{i}, 1 \leq i \leq k$. If the $n k$-vectors produced in this manners are distinct, then the vertices of G have been uniquely identified. For each connected graph G, such a set W can always be found since we can always choose $W=V(G)$. The primary problem here is to determine the minimum size of such a set W. This is referred to as the metric dimension of G. Equivalently, the metric dimension of a connected graph G can be defined as the minimum number of vertices of G that can be assigned the same color, say red, such that for every two vertices u and v of G, there exists a red vertex w such that $d(u, w) \neq d(v, w)$. This parameter is defined for every connected graph.

Another method that has been studied to uniquely identify the vertices of a connected graph G has been referred to as the partition dimension of G. For a nontrivial connected graph G of order n, the goal is to obtain a k-coloring, $1 \leq k \leq n$, of the vertices of G, where the coloring is not required (or expected) to be a proper coloring. This results in k color classes $V_{1}, V_{2}, \ldots, V_{k}$ of $V(G)$. For each vertex v of G, we once again associate a vector, here a k-vector $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ where a_{i} denotes the distance from v to a nearest vertex in V_{i} for $1 \leq i \leq k$. If the vertices of G have distinct k-vectors, then the vertices of G have been uniquely identified. Such a coloring always exists since we can always assign distinct colors to the vertices of G, thereby obtaining a procedure that has similarity to metric dimension. The minimum number of colors that accomplishes this goal is referred to as the partition dimension of G. The partition dimension of a connected graph G can also be defined as the minimum number k of colors (denoted by $1,2, \ldots, k$) that can be assigned to the vertices of G, one color to each vertex, so that for every two vertices u and v of G, there exists a color i such that the distance between u and a nearest vertex colored i is distinct from the distance between v and a nearest vertex colored i. This parameter is also defined for every connected graph.

Another method that has been introduced for the purpose of uniquely identifying the vertices of a connected graph is referred to as an identification coloring. Let G be a connected graph of diameter $d \geq 2$ and let there be given a redwhite vertex coloring c of the graph G where at least one vertex is colored red. That is, the color $c(v)$ of a vertex v in G is either red or white and $c(v)$ is red for at least one vertex v of G. With each vertex v of G, there is associated a d-vector $\vec{d}(v)=\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ called the code of v corresponding to c, where the i th coordinate a_{i} is the number of red vertices at

[^0]distance i from v for $1 \leq i \leq d$. If distinct vertices of G have distinct codes, then c is called an identification coloring or $I D$-coloring. Equivalently, an identification coloring of a connected graph G is an assignment of the color red to a nonempty subset of $V(G)$ (with the color white assigned to the remaining vertices of G) such that for every two vertices u and v of G, there is an integer k with $1 \leq k \leq d$ such that the number of red vertices at distance k from u is different from the number of red vertices at distance k from v. A graph possessing an identification coloring is an $I D$-graph. A major difference here from the two methods described above is that not all connected graphs are ID-graphs.

The concept of metric dimension was introduced independently by Slater [15] and by Harary and Melter [10] and has been studied by many (see [4,7], for example). Slater described the usefulness of these ideas when working with U.S. Coast Guard Loran (long range aids to navigation) stations in [15, 16]. Johnson [13, 14] of the former Upjohn Pharmaceutical Company applied this in attempts to develop the capability of large datasets of chemical graphs. The concept of partition dimension was introduced in [6]. These concepts as well as other methods of vertex identifications in graphs have been studied by many with various applications (see $[2,3,8,9,11,12,17,18]$ for example). The concepts of ID-colorings and ID-graphs were introduced and studied in [5].

All of the methods mentioned above involve constructing a vertex coloring of a connected graph G with the goal of producing a vertex labeling of G (using vectors of the same size as labels) so that distinct vertices of G have the distinct labels. Consequently, the goal of each of these methods is to obtain an irregular labeling of G. The general topic of irregularity in graphs is described in [2]. There is the related topic of obtaining a labeling of G by means of colorings where exactly two vertices of G have the same label. These are called artiregular labelings, a topic discussed in [1].

We first present five results obtained in [5] on ID-colorings. For an integer $t \geq 2$, the members of a set S of t vertices of a graph G are called t-tuplets (twins if $t=2$ and triplets if $t=3$) if either (1) S is an independent set in G and every two vertices in S have the same neighborhood or (2) S is a clique, that is the subgraph $G[S]$ induced by S is complete and every two vertices in S have the same closed neighborhood.

Proposition 1.1. Let c be an ID-coloring of a connected graph G. If u and v are twins of G, then $c(u) \neq c(v)$. Consequently, if G is an ID-graph, then G is triplet-free.

Proposition 1.2. Let c be a red-white coloring of a connected graph G where there is at least one vertex of each color. If x is a red vertex and y is a white vertex, then $\vec{d}(x) \neq \vec{d}(y)$.

Theorem 1.1. A nontrivial connected graph G has $\operatorname{ID}(G)=1$ if and only if G is a path.
Theorem 1.2. A connected graph G of diameter 2 is an ID-graph if and only if $G=P_{3}$.
Theorem 1.3. For a positive integer r, there exists a connected graph G with $\operatorname{ID}(G)=r$ if and only if $r \neq 2$.
The following result describes a property of ID-colorings.
Proposition 1.3. Let G be a connected graph with an ID-coloring c. If H is a connected subgraph of G such that (i) H contains all red vertices in G and (ii) $d_{G}(x, y)=d_{H}(x, y)$ for every two vertices x and y of H, then the restriction of c to H is an ID-coloring of H.
Proof. Let $\operatorname{diam}(H)=d$ and let c_{H} be the restriction of c to H. For a vertex v of H, let $\vec{d}_{c_{H}}(v)=\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{d}^{\prime}\right)$ and let $\vec{d}_{c}(v)=\left(a_{1}, a_{2}, \ldots, a_{d}, \ldots\right)$. Notice that if $d=\operatorname{diam}(G)$, then $\vec{d}_{c}(v)=\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ while if $d<\operatorname{diam}(G)$, then $a_{t}=0$ for each integer t with $d+1 \leq t \leq \operatorname{diam}(G)$. Since H contains all red vertices in G and $d_{G}(v, w)=d_{H}(v, w)$ for every vertex w of G, it follows that $a_{i}=a_{i}^{\prime}$ for $1 \leq i \leq d$ and so the restriction of c to H is an ID-coloring of H.

Both conditions stated in the hypothesis of Proposition 1.3 for a connected subgraph H of a graph G are needed. For example, consider the ID-graph G in Figure 1. The subgraph H_{1} of G does not contain all red vertices of G while the subgraph H_{2} is not distance-preserving. For $i=1,2$, the restriction of the ID-coloring c of G to the subgraph H_{i} of G is not an ID-coloring of H_{i} (since there are twins both of which are colored white).

Here, our emphasis turns to trees that are ID-graphs, namely ID-trees. We investigate structural problems of ID-trees, provide necessary conditions for trees to be ID-trees, and establish a realization result on ID-numbers of ID-trees satisfying some prescribed conditions.

2. ID-colorings of trees

The only t-tuplets, $t \geq 2$, in a tree T are end-vertices of T, all with the same neighbor. As we saw, if T contains triplets, then T is not an ID-tree. If T contains twins and possesses an ID-coloring, then the twins must be colored differently in every ID-coloring. We now see that for trees, the concepts of twins and triplets are special cases of something more general.

Figure 1: Two subgraphs of an ID-graph G.

If T is a tree with a vertex v possessing two isomorphic branches B_{1} and B_{2}, then B_{1} and B_{2} are twin branches at v if there is an isomorphism from B_{1} to B_{2} fixing v. If T contains a vertex v possessing three isomorphic branches B_{1}, B_{2}, and B_{3} such that every two of them are twin branches, then B_{1}, B_{2}, and B_{3} are triplet branches at v. If the size of each branch at v is 1 , then T contains twins or triplets. For example, there are three isomorphic branches of size 5 at the vertex v of the tree T of Figure 2. However, T has twin branches at v but no triplet branches at v.

Figure 2: A tree T with twin branches of size 5 at v.
Let T_{1} and T_{2} be two rooted trees whose roots are v_{1} and v_{2}, respectively. Then T_{1} and T_{2} are considered to be isomorphic rooted trees, denoted $T_{1} \cong T_{2}$, if there is an isomorphism $\alpha: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that $\alpha\left(v_{1}\right)=v_{2}$. For $i=1,2$, let c_{i} be a red-white coloring of a tree T_{i} rooted at v_{i} where $T_{1} \cong T_{2}$. Then c_{1} and c_{2} are considered to be isomorphic colorings, denoted $c_{1} \cong c_{2}$, if there is an isomorphism $\alpha: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ such that $\alpha\left(v_{1}\right)=v_{2}$ and $c_{1}(x)=c_{2}(\alpha(x))$ for every vertex x of T_{1}. In particular, $c_{1}\left(v_{1}\right)=c_{2}\left(v_{2}\right)$.

Observation 2.1. Suppose that a tree T has twin branches B_{1} and B_{2} at a vertex v and c is a red-white coloring of T. For $i=1,2$, let c_{i} be the restriction of c to B_{i} rooted at v. If $c_{1} \cong c_{2}$, then c is not an ID-coloring of T.

Let T_{0} be a tree of size $k \geq 1$ rooted at a vertex v. If the color of v is fixed, say v is white, then there are at most 2^{k} distinct (non-isomorphic) red-white colorings of T_{0} in which v is colored white. Consequently, if there are more than 2^{k} copies of a particular branch of size k at v, then T is not an ID-tree by Observation 2.1. In the case when $k=1$, this simply says that no ID-tree can contain a triplet.

Let T be a tree rooted at a vertex v and let c be an ID-coloring of T. If T_{0} is a subtree of T of minimum order rooted at v such that T_{0} contains all red vertices in T, then the restriction of c to T_{0} is an ID-coloring of T_{0} by Proposition 1.3. Necessarily, all end-vertices of T_{0} are red. In the case when T_{0} is a path P_{k+1} of size k whose end-vertices are v and w, there are at most 2^{k-1} distinct red-white colorings of P_{k+1} in which v is white and w is red.

A tree T is starlike if T is obtained by subdividing the edges of a star of order 4 or more. Equivalently, a tree T is starlike if and only if T has exactly one vertex whose degree is greater than 2 . This vertex is referred to as the central vertex of T. If the degree of the central vertex v of a starlike T is $k \geq 3$, then T has k branches (paths) at v, each branch containing v as an end-vertex of T. For example, the starlike tree T in Figure 3 has four branches at its central vertex. This tree is twin-free but does contain twin branches at its central vertex. This starlike tree is an ID-graph and an ID-coloring having exactly four red vertices is shown in Figure 3. In fact, $\operatorname{ID}(T)=4$.

Proposition 2.1. Let T be a starlike tree whose largest branch at its central vertex v has size k. If T is an ID-tree, then for each integer i with $1 \leq i \leq k$, there are at most 2^{i} branches of size i or less at v. Consequently, if T is an ID-tree, then T has at most 2^{k} branches at v.

Proof. In view of Proposition 1.3, it suffices to determine the maximum number of distinct red-white colorings of all branches (paths) of T such that v is white and all end-vertices are red. For each integer i with $1 \leq i \leq k$, there are 2^{i-1} distinct red-white colorings of branches of size i at v in which v is colored white and the other end-vertex of each

Figure 3: An ID-coloring of a twin-free starlike tree.
branch is colored red. Thus, the minimum number of branches of size i at v without duplicating a red-white coloring of these branches is 2^{i-1}. Therefore, the maximum number of all such red-white colorings of branches of all possibles sizes at v is $\sum_{i=1}^{k} 2^{i-1}=2^{k}-1$. Since there can be one branch of size k or less at v all of whose vertices are colored white, it follows that there can be 2^{k} branches at v such that the red-white colorings of every two isomorphic branches at v are different.

Corollary 2.1. Let T be a starlike tree whose largest branch at its central vertex v has size k. If T has more than 2^{k} branches at v, then T is not an ID-tree.

For example, if T is a starlike ID-tree whose largest branch at its central vertex v has size 3 , then (1) there are at most two branches of size 1 at v, (2) there are at most four branches of size 2 or less at v, and (3) there are at most eight branches of size 3 or less at v. As an illustration, the three starlike trees of Figure 4 satisfy all conditions (1)-(3).

Figure 4: Three starlike trees whose largest branch at its central vertex has size 3.
The tree of Figure 4(a) has eight branches of size 3 at its central vertex and no branches of size less than 3 at its central vertex. The tree of Figure 4(b) has four branches of size 3, four branches of size 2, and no branches of size 1 at its central vertex. The tree of Figure 4(c) has four branches of size 3, two branches of size 2, and two branches of size 1 at its central vertex. In each case, there are eight branches at the central vertex of the tree. The red-white colorings of the three trees in Figure 4 are essentially the same coloring. It can be shown that this coloring is an ID-coloring. For the red-white coloring of the tree T of Figure 4(c), partial codes of the vertices of T containing the initial coordinates of each code are shown in Figure 5. (These partial codes are sufficient to show that all codes are distinct.) Since every two distinct vertices of T have distinct codes, this red-white coloring is an ID-coloring of T.

Figure 5: An ID-coloring of a starlike tree.

Theorem 2.1. If T is a starlike tree with central vertex v whose branches at v have distinct sizes, then T is an ID-tree.
Proof. Suppose that $\operatorname{deg} v=k \geq 3$ and let $B_{1}, B_{2}, \ldots, B_{k}$ be the branches (paths) of T at v, where B_{i} has size m_{i} and $m_{i}<m_{i+1}$ for $1 \leq i<k$. Define a red-white coloring c of T that assigns the color white to v and the color red to all other vertices of T. We show that c is an ID-coloring of T. By Proposition 1.2, it suffices to show that every two red vertices have
distinct codes. Let $x, y \in V(T)-\{v\}$ and let $\vec{d}(x)=\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ and $\vec{d}(y)=\left(b_{1}, b_{1}, \ldots, b_{d}\right)$ where $d=\operatorname{diam}(T)=m_{k-1}+m_{k}$. Suppose that $d(x, v)=s$ and $d(y, v)=t$. We consider two cases, according to whether $s \neq t$ or $s=t$.

Case 1. $s \neq t$, say $s<t$. Then $a_{s} \in\{0,1\}$ and $b_{s} \in\{1,2\}$. If $a_{s} \neq b_{s}$, then $\vec{d}(x) \neq \vec{d}(y)$. Thus, we may assume that $a_{s}=b_{s}=1$. Thus, $a_{s+1} \in\{k-1, k\}$ and $b_{s+1} \in\{0,1\}$. Since $k \geq 3$, it follows that $a_{s+1} \geq 2$ and so $a_{s+1} \neq b_{s+1}$, implying that $\vec{d}(x) \neq \vec{d}(y)$.

Case 2. $s=t$. Then x and y belong to different branches of T at v, say $x \in V\left(B_{i}\right)$ and $y \in V\left(B_{j}\right)$ where $1 \leq i<j \leq k$. Let $B_{i}=\left(v=v_{0}, v_{1}, \ldots, v_{m_{i}}\right)$ and $B_{j}=\left(v=u_{0}, u_{1}, \ldots, u_{m_{j}}\right)$, where then $x=v_{s}$ and $y=u_{s}$. If $m_{i}-s+1=s$, then $a_{m_{i}-s+1}=0$ and $b_{m_{i}-s+1} \geq 1$. If $m_{i}-s+1 \neq s$, then $b_{m_{i}-s+1}=a_{m_{i}-s+1}+1$. In either case, $\vec{d}(x) \neq \vec{d}(y)$. Therefore, c is an ID-coloring of T.

3. Starlike trees with prescribed ID-number

We saw in Theorem 1.3 that for every integer $r \geq 3$, there exists a connected graph G with $\operatorname{ID}(G)=r$. For such a given integer r, the graph G described in the proof of Theorem 1.3 contains r pairwise disjoint twins from which it follows that $\operatorname{ID}(G) \geq r$. It was therefore only necessary to show that $\operatorname{ID}(G) \leq r$. We now show that for every integer $r \geq 3$, there exists a tree T with no twins at all such that $\operatorname{ID}(T)=r$. In addition, we show that there is a tree without twin branches having IDnumber r. In particular, we show that for every odd integer $r \geq 5$ there is a twin-free tree T whose automorphism group contains $(r+1)$! elements such that $\operatorname{ID}(T)=r$. We also show that there is a red-white coloring c of the same class of trees T where exactly $r-1$ vertices are colored red such that $\vec{d}(x)=\vec{d}(y)$ for exactly one pair x, y of vertices of T. Consequently, there is a red-white coloring of these trees T with exactly two vertices having the same code. As we metioned earlier, such a (red-white) coloring results in an antiregular labeling (see [1,2], for example.)

For each integer $r \geq 3$, let $T=S_{r-1}\left(K_{1, r+1}\right)$ be the starlike tree obtained from the star $K_{1, r+1}$ of order $r+2$ by subdividing each edge of the $r+1$ edges in K_{r+1} exactly $r-1$ times. Let v be the central vertex of T. Then the degree of v is $r+1$ and each of the $r+1$ branches of T at v has length r. For each integer i with $0 \leq i \leq r$, let $B_{i}=\left(v, v_{i, 1}, v_{i, 2}, \ldots, v_{i, r}\right)$ be a branch of T at v. Then $\operatorname{diam}(T)=2 r$ and T is twin-free.

Theorem 3.1. For each odd integer $r \geq 3, \operatorname{ID}\left(S_{r-1}\left(K_{1, r+1}\right)\right)=r$.
Proof. For an odd integer $r \geq 3$, let $T=S_{r-1}\left(K_{1, r+1}\right)$, where v is the central vertex of T and $B_{i}=\left(v, v_{i, 1}, v_{i, 2}, \ldots, v_{i, r}\right)$ is a branch of T at v for $0 \leq i \leq r$. First, we show that $\operatorname{ID}(T) \geq r$. For any red-white coloring of T that assigns the color red to at most $r-1$ vertices of T, there are at least two branches, say B_{0} and B_{1}, of T at v such that the paths $B_{0}-v$ and $B_{1}-v$ contain no red vertices of T. However then, $\vec{d}\left(v_{0,1}\right)=\vec{d}\left(v_{1,1}\right)$, for example, and so this red-white coloring is not an ID-coloring of T. Therefore, $\operatorname{ID}(T) \geq r$.

Next, we show that T has an ID-coloring with exactly r red vertices. Define a red-white coloring c of T by assigning the color red to each vertex $v_{i, i}$ for $1 \leq i \leq r$ and white to the remaining vertices of T. Thus, T has exactly r red vertices. It remains to show that c is an ID-coloring of T. Since $\operatorname{diam}(T)=2 r$, the code of each vertex of T is a ($2 r$)-vector. Let x and y be two distinct vertices of T. We consider two cases, according to whether x and y are both red or both white. Let $\vec{d}(x)=\left(a_{1}, a_{2}, \ldots, a_{2 r}\right)$ and $\vec{d}(y)=\left(b_{1}, b_{2}, \ldots, b_{2 r}\right)$.

Case 1. x and y are both red. Let $x=v_{i, i}$ and $y=v_{j, j}$ where $1 \leq i<j \leq r$.
\star First, suppose that $j \neq r$. Since (1) the last nonzero coordinate in $\vec{d}\left(v_{i, i}\right)$ is the $(i+r)$ th coordinate where $i+r=$ $d\left(v_{i, i}, v_{r, r}\right)$ and the last nonzero coordinate in $\vec{d}\left(v_{j, j}\right)$ is the $(j+r)$ th coordinate where $j+r=d\left(v_{j, j}, v_{r, r}\right)$ and (2) $i<j$, it follows that $a_{j+r}=0$ and $b_{j+r}=1$ and so $\vec{d}(x) \neq \vec{d}(y)$.

* Next, suppose that $j=r$. We saw that the last nonzero coordinate in $\vec{d}\left(v_{i, i}\right)$ where $1 \leq i \leq r-1$ is the $(i+r)$ th coordinate. Since the last nonzero coordinate in $\vec{d}\left(v_{r, r}\right)$ is the $(2 r-1)$ th coordinate where $2 r-1=d\left(v_{r-1, r-1}, v_{r, r}\right)$, it follows that if $i \neq r-1$, then $\vec{d}(x) \neq \vec{d}(y)$. Thus, we may assume that $x=v_{r-1, r-1}$. Because the first nonzero coordinate in $\vec{d}\left(v_{r-1, r-1}\right)$ is the r th coordinate where $r=d\left(v_{1,1}, v_{r-1, r-1}\right)$ and the first nonzero coordinate in $\vec{d}\left(v_{r, r}\right)$ is the $(r+1)$ th coordinate where $r+1=d\left(v_{1,1}, v_{r, r}\right)$, it follows that $a_{r}=1$ and $b_{r}=0$ and so $\vec{d}(x) \neq \vec{d}(y)$.

Case 2. x and y are both white. First, we make some observations on the codes of vertices on B_{0}.

- The vertices on B_{0} are the only white vertices of T whose codes contain the r-tuple $(1,1, \ldots, 1)=1^{r}$ as a subsequence. The vertex v is the only white vertex of T such that the first r coordinates of its code are 1 (that is, $\vec{d}(v)=\left(1^{r}, 0^{r}\right)$). For $1 \leq t \leq r$, the vertex $v_{0, t}$ is the only white vertex such that in $\vec{d}\left(v_{0, t}\right)$ the first t coordinates and the last $r-t$ coordinates are 0 while the remaining coordinates are 1 (that is, $\vec{d}\left(v_{0, t}\right)=\left(0^{t}, 1^{r}, 0^{r-t}\right)$ for $1 \leq t \leq r$). Thus, all codes of the vertices of B_{0} are distinct and they are also distinct from the codes of those white vertices that are not in B_{0}.

Hence, we may assume that neither x nor y belongs to B_{0}. Let $Q_{i}=B_{i}-v=\left(v_{i, 1}, v_{i, 2}, \ldots, v_{i, r}\right)$ be the subpath of B_{i} for $1 \leq i \leq r$. We consider two subcases, according to the location of x and y.

Subcase 2.1. $x, y \in V\left(Q_{i}\right)$ where $1 \leq i \leq r$. Let $x=v_{i, p}$ and $y=v_{i, q}$ where $1 \leq p<q \leq r$ and $p, q \neq i$.
\star First, suppose that $i \neq r$. Since (1) the last nonzero coordinate in $\vec{d}\left(v_{i, p}\right)$ is the $(p+r)$ th coordinate where $p+r=$ $d\left(v_{i, p}, v_{r, r}\right)$ and the last nonzero coordinate in $\vec{d}\left(v_{i, q}\right)$ is the $(q+r)$ th coordinate where $q+r=d\left(v_{i, q}, v_{r, r}\right)$ and (2) $p<q$, it follows that $a_{q+r-1}=0$ and $b_{q+r-1}=1$ and so $\vec{d}(x) \neq \vec{d}(y)$.
\star Next, suppose that $i=r$. Since (1) the last nonzero coordinate in $\vec{d}\left(v_{r, p}\right)$ is the ($p+r-1$) th coordinate where $p+r-1=$ $d\left(v_{i, p}, v_{r-1, r-1}\right)$ and the last nonzero coordinate in $\vec{d}\left(v_{r, q}\right)$ is the $(q+r-1)$ th coordinate where $q+r-1=d\left(v_{i, q}, v_{r-1, r-1}\right)$ and (2) $p<q$, it follows that $a_{q+r-1}=0$ and $b_{q+r-1}=1$ and so $\vec{d}(x) \neq \vec{d}(y)$.

Subcase 2.2. $x \in V\left(Q_{i}\right)$ and $y \in V\left(Q_{j}\right)$ where $1 \leq i<j \leq r$. Let $x=v_{i, p}$ and $y=v_{j, q}$ where $1 \leq p, q \leq r, p \neq i$, and $q \neq j$. We consider two subcases, according to whether $p=q$ or $p \neq q$.

Subcase 2.2.1. $p=q$. Then $x=v_{i, p}$ and $y=v_{j, p}$ where $1 \leq i<j \leq r$ and $p \notin\{i, j\}$.
\star First, suppose that $j+1 \leq p \leq r$. Since (1) the first nonzero coordinate in $\vec{d}\left(v_{i, p}\right)$ is the $(p-i)$ th coordinate where $p-i=d\left(v_{i, p}, v_{i, i}\right)$ and the first nonzero coordinate in $\vec{d}\left(v_{j, p}\right)$ is the $(p-j)$ th coordinate where $p-j=d\left(v_{j, p}, v_{j, j}\right)$ and (2) $i<j$, it follows that $a_{p-j}=0$ and $b_{p-j}=1$ and so $\vec{d}(x) \neq \vec{d}(y)$.
\star Next suppose that $1 \leq p \leq i-1$. Let c_{0} be the red-white coloring of T obtained by recoloring $v_{i, i}$ and $v_{j, j}$ white and all other vertices of T remain the same colors as in c. Since $d\left(v_{i, p}, w\right)=d\left(v_{j, p}, w\right)$ for every red vertex w such that $w \notin\left\{v_{i, i}, v_{j, j}\right\}$, it follows that $\vec{d}_{c_{0}}(x)=\vec{d}_{c_{0}}(y)=\left(f_{1}, f_{2}, \ldots, f_{2 r}\right)$. Observe that $d\left(v_{i, p}, v_{i, i}\right)=i-p, d\left(v_{i, p}, v_{j, j}\right)=j+p$, $d\left(v_{j, p}, v_{i, i}\right)=i+p$, and $d\left(v_{j, p}, v_{j, j}\right)=j-p$. Since $i-p<\min \{i+p, j-p, j+p\}$, it follows that $a_{i-p}=f_{i-p}+1$ and $b_{i-p}=f_{i-p}$ and so $\vec{d}(x) \neq \vec{d}(y)$.
\star Finally, suppose that $i+1 \leq p \leq j-1$. Let c_{0} be the red-white coloring of T obtained by recoloring $v_{i, i}$ and $v_{j, j}$ white and all other vertices of T remain the same colors as in c. Since $d\left(v_{i, p}, w\right)=d\left(v_{j, p}, w\right)$ for every red vertex w such that $w \notin\left\{v_{i, i}, v_{j, j}\right\}$, it follows that $\vec{d}_{c_{0}}(x)=\vec{d}_{c_{0}}(y)=\left(f_{1}, f_{2}, \ldots, f_{2 r}\right)$. Observe that $d\left(v_{i, p}, v_{i, i}\right)=p-i, d\left(v_{i, p}, v_{j, j}\right)=j+p$, $d\left(v_{j, p}, v_{i, i}\right)=i+p$, and $d\left(v_{j, p}, v_{j, j}\right)=j-p$. Since $j+p>\max \{i+p, j-p, i+p\}$, it follows that $a_{j+p}=f_{j+p}+1$ and $b_{j+p}=f_{j+p}$ and so $\vec{d}(x) \neq \vec{d}(y)$.

Subcase 2.2.2. $p \neq q$. First, suppose that $j \neq r$. Since (1) the last nonzero coordinate in $\vec{d}\left(v_{i, p}\right)$ is the $(p+r)$ th coordinate where $p+r=d\left(v_{i, p}, v_{r, r}\right)$ and the last nonzero coordinate in $\vec{d}\left(v_{j, q}\right)$ is the $(q+r)$ th coordinate where $q+r=d\left(v_{j, q}, v_{r, r}\right)$ and (2) $p \neq q$, it follows that either $a_{p+r} \neq b_{p+r}$ or $a_{q+r} \neq b_{q+r}$, implying that $\vec{d}(x) \neq \vec{d}(y)$.

For simplification, we now introduce notation where a code is expressed when no 0 coordinate is given after the final nonzero coordinate of a code. For example, if a code of a vertex is a 7 -tuple ($1,0,2,1,0,0,0$), we simply write this code as the 4 -tuple $(1,0,2,1)$.

Next, suppose that $j=r$. Thus, $x=v_{i, p}$ where $1 \leq i \leq r-1$ and $p \neq i$ and $y=v_{r, q}$ where $1 \leq q \leq r-1$ and $p \neq q$. We consider two possibilities.

Subcase 2.2.2.1. $2 \leq i \leq r-1$. First, suppose that $p \geq i+1$. Then $\vec{d}(x)=\vec{d}\left(v_{i, p}\right)=\left(0^{i-p-1}, 1,0^{i}, 1^{i-1}, 0,1^{r-i}\right)$. If $\vec{d}(y)=\vec{d}\left(v_{r, q}\right)$ contains a coordinate 2 , then $\vec{d}(x) \neq \vec{d}(y)$. Thus, we may assume that $d\left(v_{r, q}, v_{r, r}\right)=r-q \neq q+t$ for $1 \leq t \leq r-1$ and so $\vec{d}(y)=\vec{d}\left(v_{r, q}\right)=\left(0^{r-q-1}, 1,0^{2 q-r}, 1^{r-1}\right)$. Since 1^{r-1} is a subsequence in $\vec{d}(y)$ and is not a subsequence of $\vec{d}(x)$, it follows that $\vec{d}(x) \neq \vec{d}(y)$.

Next, suppose that $1 \leq p \leq i-1$. If $i-p \neq p+\ell$ for some $\ell \in[r]-\{i\}$, then $\left(1^{i-1}, 0,1^{r-i}\right)$ is a subsequence of $\vec{d}(x)$ and so there is no 2 as a coordinate of $\vec{d}(x)$. If $\vec{d}(y)=\vec{d}\left(v_{r, q}\right)$ contains a coordinate 2 , then $\vec{d}(x) \neq \vec{d}(y)$ and so $\vec{d}(y)=\vec{d}\left(v_{r, q}\right)=$ $\left(0^{r-q-1}, 1,0^{2 q-r}, 1^{r-1}\right)$. Thus, $\vec{d}(x) \neq \vec{d}(y)$. Hence, we may assume that $i-p=p+\ell$ for some $\ell \in[r]-\{i\}$ and so $i=2 p+\ell$. This implies that there is exactly one coordinate 2 of $\vec{d}(x)$, namely $a_{i-p}=2$. If $\vec{d}(y)$ has no coordinate 2 , then $\vec{d}(x) \neq \vec{d}(y)$. Hence, we assume that $\vec{d}(y)$ has coordinate 2. This implies that $d\left(v_{r, q}, v_{r, r}\right)=r-q=q+t$ for some $t \in[r-1]$ and $b_{r-q}=2$ is the only coordinate 2 in $\vec{d}(y)$. Hence, $i-p=r-q$ or $r-i=q-p$ and so $q>p$. There are two possibilities here. If $i-p=r-q<p+1$, then the second nonzero coordinate in $\vec{d}(x)$ is a_{p+1} while the the second nonzero coordinate in $\vec{d}(y)$ is b_{q+1}. If $i-p=r-q>p+1$, then the first nonzero coordinate in $\vec{d}(x)$ is a_{p+1} while the the fist nonzero coordinate in $\vec{d}(y)$ is b_{q+1}. In either case, $\vec{d}(x) \neq \vec{d}(y)$. Therefore, c is an ID-coloring and so $\operatorname{ID}(T)=r$.

Subcase 2.2.2.2. $\quad i=1$. Then $\vec{d}(x)=\vec{d}\left(v_{1, p}\right)=\left(0^{p-2}, 1,0,0,1^{r-1}\right)$. If $\vec{d}(y)=\vec{d}\left(v_{r, q}\right)$ contains a coordinate 2 , then $\vec{d}(x) \neq \vec{d}(y)$. Thus, we may assume that $d\left(v_{r, q}, v_{r, r}\right)=r-q \neq q+t$ for $1 \leq t \leq r-1$. Since $r-q<q+r-1$, it follows that $r-q \leq q$ or $q \geq r / 2$. Then $\vec{d}(y)=\vec{d}\left(v_{r, q}\right)=\left(0^{r-q-1}, 1,0^{2 q-r}, 1^{r-1}\right.$). Thus, $p-2=r-q-1$ (or $p+q=r+1$), $2=2 q-r$ (or $r=2 q-2$ is even) and so $p=q-1$ (or $q=p+1$). Since r is odd, it follows that $\vec{d}(x) \neq \vec{d}(y)$.

The following is a consequence of Theorem 3.1.
Corollary 3.1. For each odd integer $r \geq 3$, there exist a twin-free starlike tree T such that $\operatorname{ID}(T)=r$.
In the statement of Theorem 3.1, the condition that $r \geq 3$ is an odd integer is only required in Subcase 2.2.2.2. In fact, if $r \geq 4$ is an even integer, then there are exactly two white vertices in the red-white coloring described in the proof of Theorem 3.1, namely $v_{1, p}$ and $v_{r, q}$ where $q=p+1$ and $p+q=r+1$, that have the same code. That is, this red-white coloring is antiregular. Therefore, we have the following.

Proposition 3.1. For each even integer $r \geq 4$, there is an antiregular red-white coloring of the starlike tree $S_{r-1}\left(K_{1, r+1}\right)$ having exactly r red vertices.

By the technique used in the proof of Theorem 3.1, the following result can be verified.
Proposition 3.2. Let $r \geq 4$ be an even integer. If T is the starlike tree obtained by subdividing exactly one edge of $S_{r-1}\left(K_{1, r+1}\right)$, then $\operatorname{ID}(T)=r$.

None of the trees appearing in the results just above have the identity automorphism group. We next describe a class of trees having the identity automorphism group, where each such tree is necessarily twin-free, which can be used to show that for every integer $r \geq 3$, there is a tree T with the identity automorphism group such that $\operatorname{ID}(T)=r$.

Theorem 3.2. For each integer $r \geq 3$, there is a starlike tree T of order $1+\binom{r+2}{2}$ having the identity automorphism group such that $\operatorname{ID}(T)=r$.

Proof. For each integer $r \geq 3$, let $K_{1, r+1}$ be the star of order $r+2$ with central vertex v that is adjacent to the $r+1$ end-vertices $v_{1}, v_{2}, \ldots, v_{r+1}$. Let T be the starlike tree obtained from the star $K_{1, r+1}$ be subdividing the edge $v v_{i}$ of $K_{1, r+1}$ exactly $i-1$ times for $1 \leq i \leq r+1$. In particular, $v v_{1}$ is not subdivided and $v v_{r+1}$ is subdivided exactly r times. Thus, T is twin-free, the order of T is $1+\binom{r+2}{2}$ and $\operatorname{diam}(T)=2 r+1$. Since no two vertices of T are similar, it follows that T has the identity automorphism group. For each integer i with $1 \leq i \leq r+1$, let $B_{i}=\left(v, v_{i, 1}, v_{i, 2}, \ldots, v_{i, i}\right)$ be a branch of T at v.

First, we show that $\operatorname{ID}(T) \geq r$. For any red-white coloring of T that assigns the color red to at most $r-1$ vertices of T, there are at least two branches B_{i} and B_{j} of T at v such that the paths $B_{i}-v$ and $B_{j}-v$ contain no red vertices of T. However then, $\vec{d}\left(v_{i, 1}\right)=\vec{d}\left(v_{j, 1}\right)$, for example, and so this red-white coloring is not an ID-coloring of T. Therefore, $\operatorname{ID}(T) \geq r$. Next, we show that T has an ID-coloring with exactly r red vertices. Define a red-white coloring c of T by assigning the color red to each vertex $v_{i, i}$ for $1 \leq i \leq r$ and white to the remaining vertices of T. Thus, T has exactly r red vertices. It remains to show that c is an ID-coloring of T. Since $\operatorname{diam}(T)=2 r+1$, the code of each vertex of T is a ($2 r+1$)-vector. Let x and y be two distinct vertices of T. We consider two cases, according to whether x and y are both red or both white. Let $\vec{d}(x)=\left(a_{1}, a_{2}, \ldots, a_{2 r+1}\right)$ and $\vec{d}(y)=\left(b_{1}, b_{2}, \ldots, b_{2 r+1}\right)$.

Case 1. x and y are both red. Let $x=v_{i, i}$ and $y=v_{j, j}$ where $1 \leq i<j \leq r$.
\star First, suppose that $j \neq r$. Since (1) the last nonzero coordinate in $\vec{d}\left(v_{i, i}\right)$ is the $(i+r)$ th coordinate where $i+r=$ $d\left(v_{i, i}, v_{r, r}\right)$ and the last nonzero coordinate in $\vec{d}\left(v_{j, j}\right)$ is the $(j+r)$ th coordinate where $j+r=d\left(v_{j, j}, v_{r, r}\right)$ and (2) $i<j$, it follows that $a_{j+r}=0$ and $b_{j+r}=1$ and so $\vec{d}(x) \neq \vec{d}(y)$.
\star Next, suppose that $j=r$. We saw that the last nonzero coordinate in $\vec{d}\left(v_{i, i}\right)$ where $1 \leq i \leq r-1$ is the $(i+r)$ th coordinate. Since the last nonzero coordinate in $\vec{d}\left(v_{r, r}\right)$ is the $(2 r-1)$ th coordinate where $2 r-1=d\left(v_{r-1, r-1}, v_{r, r}\right)$, it follows that if $i \neq r-1$, then $\vec{d}(x) \neq \vec{d}(y)$. Thus, we may assume that $x=v_{r-1, r-1}$. Because the first nonzero coordinate in $\vec{d}\left(v_{r-1, r-1}\right)$ is the r th coordinate where $r=d\left(v_{1,1}, v_{r-1, r-1}\right)$ and the first nonzero coordinate in $\vec{d}\left(v_{r, r}\right)$ is the $(r+1)$ th coordinate where $r+1=d\left(v_{1,1}, v_{r, r}\right)$, it follows that $a_{r}=1$ and $b_{r}=0$ and so $\vec{d}(x) \neq \vec{d}(y)$.

Case 2. x and y are both white. First, we verify the following claim.
Claim. If $x \in V\left(B_{r+1}\right)$ or $y \in V\left(B_{r+1}\right)$, then $\vec{d}(x) \neq \vec{d}(y)$.
The vertices on B_{r+1} are the only white vertices of T whose codes contain the r-tuple $(1,1, \ldots, 1)=1^{r}$ as a subsequence. The vertex v is the only white vertex of T such that the first r coordinates of its code are 1 (that is, $\vec{d}(v)=\left(1^{r}, 0^{r+1}\right)$). For $1 \leq t \leq r+1$, the vertex $v_{r+1, t}$ is the only white vertex such that in $\vec{d}\left(v_{r+1, t}\right)$ the first t coordinates and the last $r+1-t$ coordinates are 0 while the remaining coordinates are 1 (that is, $\vec{d}\left(v_{r+1, t}\right)=\left(0^{t}, 1^{r}, 0^{r+1-t}\right)$ for $1 \leq t \leq r$). Thus, all codes of the vertices of B_{r+1} are distinct and they are also distinct from the codes of those white vertices that are not in B_{r+1}. Hence, the claim holds.

By the claim, we may assume that $x \notin V\left(B_{r+1}\right)$ and $y \notin V\left(B_{r+1}\right)$. Let $Q_{i}=B_{i}-v=\left(v_{i, 1}, v_{i, 2}, \ldots, v_{i, i}\right)$ be the subpath of B_{i} for $2 \leq i \leq r$. We consider two subcases, according to the location of x and y.

Subcase 2.1. $x, y \in V\left(Q_{i}\right)$ where $2 \leq i \leq r$. Let $x=v_{i, p}$ and $y=v_{i, q}$ where $1 \leq p<q \leq i-1$.
\star First, suppose that $i \neq r$. Since (1) the last nonzero coordinate in $\vec{d}\left(v_{i, p}\right)$ is the $(p+r)$ th coordinate where $p+r=$ $d\left(v_{i, p}, v_{r, r}\right)$ and the last nonzero coordinate in $\vec{d}\left(v_{i, q}\right)$ is the $(q+r)$ th coordinate where $q+r=d\left(v_{i, q}, v_{r, r}\right)$ and (2) $p<q$, it follows that $a_{q+r-1}=0$ and $b_{q+r-1}=1$ and so $\vec{d}(x) \neq \vec{d}(y)$.
\star Next, suppose that $i=r$. Since (1) the last nonzero coordinate in $\vec{d}\left(v_{r, p}\right)$ is the $(p+r-1)$ th coordinate where $p+r-1=$ $d\left(v_{i, p}, v_{r-1, r-1}\right)$ and the last nonzero coordinate in $\vec{d}\left(v_{r, q}\right)$ is the $(q+r-1)$ th coordinate where $q+r-1=d\left(v_{i, q}, v_{r-1, r-1}\right)$ and (2) $p<q$, it follows that $a_{q+r-1}=0$ and $b_{q+r-1}=1$ and so $\vec{d}(x) \neq \vec{d}(y)$.
Subcase 2.2. $x \in V\left(Q_{i}\right)$ and $y \in V\left(Q_{j}\right)$ where $2 \leq i<j \leq r$. Let $x=v_{i, p}$ and $y=v_{j, q}$ where $1 \leq p \leq i-1$ and $1 \leq q \leq j-1$. We consider two subcases, according to whether $p=q$ or $p \neq q$.

Subcase 2.2.1. $p=q$. Then $x=v_{i, p}$ and $y=v_{j, p}$ where $2 \leq i<j \leq r$ and $p \notin\{i, j\}$. Let c_{0} be the red-white coloring of T obtained by recoloring $v_{i, i}$ and $v_{j, j}$ white and all other vertices of T remain the same colors as in c. Since $d\left(v_{i, p}, w\right)=d\left(v_{j, p}, w\right)$ for every red vertex w such that $w \notin\left\{v_{i, i}, v_{j, j}\right\}$, it follows that $\vec{d}_{c_{0}}(x)=\vec{d}_{c_{0}}(y)=\left(f_{1}, f_{2}, \ldots, f_{2 r}\right)$. Observe that $d\left(v_{i, p}, v_{i, i}\right)=i-p, d\left(v_{i, p}, v_{j, j}\right)=j+p, d\left(v_{j, p}, v_{i, i}\right)=i+p$, and $d\left(v_{j, p}, v_{j, j}\right)=j-p$. Since $i-p<\min \{i+p, j-p, j+p\}$, it follows that $a_{i-p}=f_{i-p}+1$ and $b_{i-p}=f_{i-p}$ and so $\vec{d}(x) \neq \vec{d}(y)$.

Subcase 2.2.2. $p \neq q$. First, suppose that $j \neq r$. Since (1) the last nonzero coordinate in $\vec{d}\left(v_{i, p}\right)$ is the $(p+r)$ th coordinate where $p+r=d\left(v_{i, p}, v_{r, r}\right)$ and the last nonzero coordinate in $\vec{d}\left(v_{j, q}\right)$ is the $(q+r)$ th coordinate where $q+r=d\left(v_{j, q}, v_{r, r}\right)$ and (2) $p \neq q$, it follows that either $a_{p+r} \neq b_{p+r}$ or $a_{q+r} \neq b_{q+r}$, implying that $\vec{d}(x) \neq \vec{d}(y)$.

Next, suppose that $j=r$. Thus, $x=v_{i, p}$ where $2 \leq i \leq r-1$ and $1 \leq p \leq i-1$ and $y=v_{r, q}$ where $1 \leq q \leq r-1$ and $p \neq q$. If $i-p \neq p+\ell$ for some $\ell \in[r]-\{i\}$, then $\left(1^{i-1}, 0,1^{r-i}\right)$ is a subsequence of $\vec{d}(x)$ and so there is no coordinate 2 in $\vec{d}(x)$. If $\vec{d}(y)=\vec{d}\left(v_{r, q}\right)$ contains 2 as a coordinate, then $\vec{d}(x) \neq \vec{d}(y)$ and so $\vec{d}(y)=\vec{d}\left(v_{r, q}\right)=\left(0^{r-q-1}, 1,0^{2 q-r}, 1^{r-1}, 0, \ldots, 0\right)$. Thus, $\vec{d}(x) \neq \vec{d}(y)$. Hence, we may assume that $i-p=p+\ell$ for some $\ell \in[r]-\{i\}$ and so $i=2 p+\ell$. This implies that there is exactly one coordinate of $\vec{d}(x)$ which is 2 , namely $a_{i-p}=2$. If $\vec{d}(y)$ has no coordinate 2 , then $\vec{d}(x) \neq \vec{d}(y)$. Hence, we assume that $\vec{d}(y)$ has 2 as a coordinate. This implies that $d\left(v_{r, q}, v_{r, r}\right)=r-q=q+t$ for some $t \in[r-1]$ and $b_{r-q}=2$ is the only coordinate 2 in $\vec{d}(y)$. Hence, $i-p=r-q$ or $r-i=q-p$ and so $q>p$. There are two possibilities here. If $i-p=r-q<p+1$, then the second nonzero coordinate in $\vec{d}(x)$ is a_{p+1} while the the second nonzero coordinate in $\vec{d}(y)$ is b_{q+1}. If $i-p=r-q>p+1$, then the first nonzero coordinate in $\vec{d}(x)$ is a_{p+1} while the the fist nonzero coordinate in $\vec{d}(y)$ is b_{q+1}. In either case, $\vec{d}(x) \neq \vec{d}(y)$.

Therefore, c is an ID-coloring and so $\operatorname{ID}(T)=r$.
Several problems are suggested by the results presented here.
(1) For a given integer $r \geq 3$, what is the smallest order of a tree T such that $\operatorname{ID}(T)=r$?
(2) For a given integer $r \geq 3$, what is the smallest order of a twin-free tree T such that $\operatorname{ID}(T)=r$?

For (2), we have seen that this smallest order is no more than $1+\binom{r+2}{2}$.

Acknowledgment

We are grateful to Prof. Gary Chartrand for suggesting us concepts and kindly providing useful information on this topic.

References

[1] A. Ali, A survey of antiregular graphs, Contrib. Math. 1 (2020) 67-79.
[2] A. Ali, G. Chartrand, P. Zhang, Irregularity in Graphs, Springer, New York, 2021.
[3] G. G. Chappell, J. Gimbel, C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combin. 88 (2008) 349-366.
[4] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99-113.
[5] G. Chartrand, Y. Kono, P. Zhang, Distance vertex identification in graphs, J. Interconnection Netw. 21 (2021) Art\# 2150005.
[6] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Math. 59 (2000) 45-54.
[7] G. Chartrand, P. Zhang, The theory and applications of resolvability in graphs - a survey, Congr. Numer. 160 (2003) 47-68.
[8] F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau, P. Valicov, Identification, location-domination and metric dimension on interval and permutation graphs. I. Bounds, Theoret. Comput. Sci. 68 (2017) 43-58.
[9] F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau, P. Valicov, Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity, Algorithmica 78 (2017) 914-944.
[10] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191-195.
[11] M. Hauptmann, R. Schmied, C. Viehmann, Approximation complexity of metric dimension problem, J. Discrete Algorithms 14 (2012) $214-222$.
[12] C. Hernando, M. Mora, M. I. Pelayo, C. Seara, D. Wood, R. David, Extremal graph theory for metric dimension and diameter, Electron. J. Combin. 17 (2010) Art\# R30.
[13] M. A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Statist. 3 (1993) 203-236.
[14] M. A. Johnson, Browsable structure-activity datasets, In: R. Carbó-Dorca, P. G. Mezey (Eds.), Advances in Molecular Similarity, Vol. 2, JAI Press Inc., Stamford, 1998, pp. 153-170.
[15] P. J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549-559.
[16] P. J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455.
[17] P. Zhang, Color-Induced Graph Colorings, Springer, New York, 2015.
[18] P. Zhang, A Kaleidoscopic View of Graph Colorings, Springer, New York, 2016.

[^0]: *Corresponding author (ping.zhang@wmich.edu).

