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Abstract

A red-white coloring of a nontrivial connected graph G of diameter d is an assignment of red and white colors to the vertices
of G where at least one vertex is colored red. Associated with each vertex v of G is a d-vector, called the code of v, whose
ith coordinate is the number of red vertices at distance i from v. A red-white coloring of G for which distinct vertices have
distinct codes is called an identification coloring or ID-coloring of G. A graph G possessing an ID-coloring is an ID-graph.
The minimum number of red vertices among all ID-colorings of an ID-graph G is the identification number or ID-number
of G. Necessary conditions are established for those trees that are ID-graphs. A tree T is starlike if T is obtained by
subdividing the edges of a star of order 4 or more. It is shown that for every positive integer r different from 2, there exist
starlike trees satisfying some prescribed properties having ID-number r.
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1. Introduction

Over the years, many methods have been introduced with the goal of uniquely identifying the vertices of a connected graph.
Often these approaches have employed distance and coloring. The oldest of these methods deal with what is referred to as
the metric dimension of a connected graph. For a nontrivial connected graph G of order n, the goal is to locate an ordered
set W = {w1, w2, . . . , wk} of k vertices in G, 1 ≤ k ≤ n, and associate with each vertex v of G the k-vector (a1, a2, . . . , ak),
where ai is the distance d(v, wi) between v and wi, 1 ≤ i ≤ k. If the n k-vectors produced in this manners are distinct,
then the vertices of G have been uniquely identified. For each connected graph G, such a set W can always be found since
we can always choose W = V (G). The primary problem here is to determine the minimum size of such a set W . This is
referred to as the metric dimension of G. Equivalently, the metric dimension of a connected graph G can be defined as the
minimum number of vertices of G that can be assigned the same color, say red, such that for every two vertices u and v

of G, there exists a red vertex w such that d(u,w) 6= d(v, w). This parameter is defined for every connected graph.
Another method that has been studied to uniquely identify the vertices of a connected graph G has been referred to as

the partition dimension of G. For a nontrivial connected graph G of order n, the goal is to obtain a k-coloring, 1 ≤ k ≤ n,
of the vertices of G, where the coloring is not required (or expected) to be a proper coloring. This results in k color classes
V1, V2, . . . , Vk of V (G). For each vertex v of G, we once again associate a vector, here a k-vector (a1, a2, . . . , ak) where ai
denotes the distance from v to a nearest vertex in Vi for 1 ≤ i ≤ k. If the vertices of G have distinct k-vectors, then the
vertices of G have been uniquely identified. Such a coloring always exists since we can always assign distinct colors to the
vertices of G, thereby obtaining a procedure that has similarity to metric dimension. The minimum number of colors that
accomplishes this goal is referred to as the partition dimension of G. The partition dimension of a connected graph G can
also be defined as the minimum number k of colors (denoted by 1, 2, . . . , k) that can be assigned to the vertices of G, one
color to each vertex, so that for every two vertices u and v of G, there exists a color i such that the distance between u and
a nearest vertex colored i is distinct from the distance between v and a nearest vertex colored i. This parameter is also
defined for every connected graph.

Another method that has been introduced for the purpose of uniquely identifying the vertices of a connected graph
is referred to as an identification coloring. Let G be a connected graph of diameter d ≥ 2 and let there be given a red-
white vertex coloring c of the graph G where at least one vertex is colored red. That is, the color c(v) of a vertex v in G

is either red or white and c(v) is red for at least one vertex v of G. With each vertex v of G, there is associated a d-vector
~d(v) = (a1, a2, . . . , ad) called the code of v corresponding to c, where the ith coordinate ai is the number of red vertices at

∗Corresponding author (ping.zhang@wmich.edu).

www.dmlett.com
www.creativecommons.org/licenses/by/4.0/
mailto:ping.zhang@wmich.edu


Y. Kono and P. Zhang / Discrete Math. Lett. 7 (2021) 66–73 67

distance i from v for 1 ≤ i ≤ d. If distinct vertices of G have distinct codes, then c is called an identification coloring or
ID-coloring. Equivalently, an identification coloring of a connected graphG is an assignment of the color red to a nonempty
subset of V (G) (with the color white assigned to the remaining vertices of G) such that for every two vertices u and v of G,
there is an integer k with 1 ≤ k ≤ d such that the number of red vertices at distance k from u is different from the number
of red vertices at distance k from v. A graph possessing an identification coloring is an ID-graph. A major difference here
from the two methods described above is that not all connected graphs are ID-graphs.

The concept of metric dimension was introduced independently by Slater [15] and by Harary and Melter [10] and has
been studied by many (see [4,7], for example). Slater described the usefulness of these ideas when working with U.S. Coast
Guard Loran (long range aids to navigation) stations in [15, 16]. Johnson [13, 14] of the former Upjohn Pharmaceutical
Company applied this in attempts to develop the capability of large datasets of chemical graphs. The concept of partition
dimension was introduced in [6]. These concepts as well as other methods of vertex identifications in graphs have been
studied by many with various applications (see [2, 3, 8, 9, 11, 12, 17, 18] for example). The concepts of ID-colorings and
ID-graphs were introduced and studied in [5].

All of the methods mentioned above involve constructing a vertex coloring of a connected graph G with the goal of
producing a vertex labeling of G (using vectors of the same size as labels) so that distinct vertices of G have the distinct
labels. Consequently, the goal of each of these methods is to obtain an irregular labeling of G. The general topic of
irregularity in graphs is described in [2]. There is the related topic of obtaining a labeling of G by means of colorings
where exactly two vertices of G have the same label. These are called artiregular labelings, a topic discussed in [1].

We first present five results obtained in [5] on ID-colorings. For an integer t ≥ 2, the members of a set S of t vertices of
a graph G are called t-tuplets (twins if t = 2 and triplets if t = 3) if either (1) S is an independent set in G and every two
vertices in S have the same neighborhood or (2) S is a clique, that is the subgraph G[S] induced by S is complete and every
two vertices in S have the same closed neighborhood.

Proposition 1.1. Let c be an ID-coloring of a connected graph G. If u and v are twins of G, then c(u) 6= c(v). Consequently,
if G is an ID-graph, then G is triplet-free.

Proposition 1.2. Let c be a red-white coloring of a connected graph G where there is at least one vertex of each color. If x
is a red vertex and y is a white vertex, then ~d(x) 6= ~d(y).

Theorem 1.1. A nontrivial connected graph G has ID(G) = 1 if and only if G is a path.

Theorem 1.2. A connected graph G of diameter 2 is an ID-graph if and only if G = P3.

Theorem 1.3. For a positive integer r, there exists a connected graph G with ID(G) = r if and only if r 6= 2.

The following result describes a property of ID-colorings.

Proposition 1.3. Let G be a connected graph with an ID-coloring c. If H is a connected subgraph of G such that (i) H
contains all red vertices in G and (ii) dG(x, y) = dH(x, y) for every two vertices x and y of H, then the restriction of c to H is
an ID-coloring of H.

Proof. Let diam(H) = d and let cH be the restriction of c to H. For a vertex v of H, let ~dcH (v) = (a′1, a
′
2, . . . , a

′
d) and let

~dc(v) = (a1, a2, . . . , ad, . . .). Notice that if d = diam(G), then ~dc(v) = (a1, a2, . . . , ad) while if d < diam(G), then at = 0 for each
integer t with d+ 1 ≤ t ≤ diam(G). Since H contains all red vertices in G and dG(v, w) = dH(v, w) for every vertex w of G,
it follows that ai = a′i for 1 ≤ i ≤ d and so the restriction of c to H is an ID-coloring of H.

Both conditions stated in the hypothesis of Proposition 1.3 for a connected subgraph H of a graph G are needed. For
example, consider the ID-graph G in Figure 1. The subgraph H1 of G does not contain all red vertices of G while the
subgraph H2 is not distance-preserving. For i = 1, 2, the restriction of the ID-coloring c of G to the subgraph Hi of G is not
an ID-coloring of Hi (since there are twins both of which are colored white).

Here, our emphasis turns to trees that are ID-graphs, namely ID-trees. We investigate structural problems of ID-trees,
provide necessary conditions for trees to be ID-trees, and establish a realization result on ID-numbers of ID-trees satisfying
some prescribed conditions.

2. ID-colorings of trees

The only t-tuplets, t ≥ 2, in a tree T are end-vertices of T , all with the same neighbor. As we saw, if T contains triplets, then
T is not an ID-tree. If T contains twins and possesses an ID-coloring, then the twins must be colored differently in every
ID-coloring. We now see that for trees, the concepts of twins and triplets are special cases of something more general.
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Figure 1: Two subgraphs of an ID-graph G.

If T is a tree with a vertex v possessing two isomorphic branches B1 and B2, then B1 and B2 are twin branches at v
if there is an isomorphism from B1 to B2 fixing v. If T contains a vertex v possessing three isomorphic branches B1, B2,
and B3 such that every two of them are twin branches, then B1, B2, and B3 are triplet branches at v. If the size of each
branch at v is 1, then T contains twins or triplets. For example, there are three isomorphic branches of size 5 at the vertex v
of the tree T of Figure 2. However, T has twin branches at v but no triplet branches at v.
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Figure 2: A tree T with twin branches of size 5 at v.

Let T1 and T2 be two rooted trees whose roots are v1 and v2, respectively. Then T1 and T2 are considered to be isomorphic
rooted trees, denoted T1 ∼= T2, if there is an isomorphism α : V (T1) → V (T2) such that α(v1) = v2. For i = 1, 2, let ci be a
red-white coloring of a tree Ti rooted at vi where T1 ∼= T2. Then c1 and c2 are considered to be isomorphic colorings, denoted
c1 ∼= c2, if there is an isomorphism α : V (T1)→ V (T2) such that α(v1) = v2 and c1(x) = c2(α(x)) for every vertex x of T1. In
particular, c1(v1) = c2(v2).

Observation 2.1. Suppose that a tree T has twin branches B1 and B2 at a vertex v and c is a red-white coloring of T . For
i = 1, 2, let ci be the restriction of c to Bi rooted at v. If c1 ∼= c2, then c is not an ID-coloring of T .

Let T0 be a tree of size k ≥ 1 rooted at a vertex v. If the color of v is fixed, say v is white, then there are at most 2k

distinct (non-isomorphic) red-white colorings of T0 in which v is colored white. Consequently, if there are more than 2k

copies of a particular branch of size k at v, then T is not an ID-tree by Observation 2.1. In the case when k = 1, this simply
says that no ID-tree can contain a triplet.

Let T be a tree rooted at a vertex v and let c be an ID-coloring of T . If T0 is a subtree of T of minimum order rooted
at v such that T0 contains all red vertices in T , then the restriction of c to T0 is an ID-coloring of T0 by Proposition 1.3.
Necessarily, all end-vertices of T0 are red. In the case when T0 is a path Pk+1 of size k whose end-vertices are v and w,
there are at most 2k−1 distinct red-white colorings of Pk+1 in which v is white and w is red.

A tree T is starlike if T is obtained by subdividing the edges of a star of order 4 or more. Equivalently, a tree T is starlike
if and only if T has exactly one vertex whose degree is greater than 2. This vertex is referred to as the central vertex of T .
If the degree of the central vertex v of a starlike T is k ≥ 3, then T has k branches (paths) at v, each branch containing v
as an end-vertex of T . For example, the starlike tree T in Figure 3 has four branches at its central vertex. This tree is
twin-free but does contain twin branches at its central vertex. This starlike tree is an ID-graph and an ID-coloring having
exactly four red vertices is shown in Figure 3. In fact, ID(T ) = 4.

Proposition 2.1. Let T be a starlike tree whose largest branch at its central vertex v has size k. If T is an ID-tree, then for
each integer i with 1 ≤ i ≤ k, there are at most 2i branches of size i or less at v. Consequently, if T is an ID-tree, then T has
at most 2k branches at v.

Proof. In view of Proposition 1.3, it suffices to determine the maximum number of distinct red-white colorings of all
branches (paths) of T such that v is white and all end-vertices are red. For each integer i with 1 ≤ i ≤ k, there are
2i−1 distinct red-white colorings of branches of size i at v in which v is colored white and the other end-vertex of each
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Figure 3: An ID-coloring of a twin-free starlike tree.

branch is colored red. Thus, the minimum number of branches of size i at v without duplicating a red-white coloring of
these branches is 2i−1. Therefore, the maximum number of all such red-white colorings of branches of all possibles sizes
at v is

∑k
i=1 2

i−1 = 2k − 1. Since there can be one branch of size k or less at v all of whose vertices are colored white,
it follows that there can be 2k branches at v such that the red-white colorings of every two isomorphic branches at v are
different.

Corollary 2.1. Let T be a starlike tree whose largest branch at its central vertex v has size k. If T has more than 2k branches
at v, then T is not an ID-tree.

For example, if T is a starlike ID-tree whose largest branch at its central vertex v has size 3, then (1) there are at most
two branches of size 1 at v, (2) there are at most four branches of size 2 or less at v, and (3) there are at most eight branches
of size 3 or less at v. As an illustration, the three starlike trees of Figure 4 satisfy all conditions (1)–(3).

(c)(b)(a)

Figure 4: Three starlike trees whose largest branch at its central vertex has size 3.

The tree of Figure 4(a) has eight branches of size 3 at its central vertex and no branches of size less than 3 at its central
vertex. The tree of Figure 4(b) has four branches of size 3, four branches of size 2, and no branches of size 1 at its central
vertex. The tree of Figure 4(c) has four branches of size 3, two branches of size 2, and two branches of size 1 at its central
vertex. In each case, there are eight branches at the central vertex of the tree. The red-white colorings of the three trees in
Figure 4 are essentially the same coloring. It can be shown that this coloring is an ID-coloring. For the red-white coloring
of the tree T of Figure 4(c), partial codes of the vertices of T containing the initial coordinates of each code are shown in
Figure 5. (These partial codes are sufficient to show that all codes are distinct.) Since every two distinct vertices of T have
distinct codes, this red-white coloring is an ID-coloring of T .

15−

11− 20− 14− 4−

04− 03−

14− 004−

104−

010− 000

10−20−

04− 05−

13−

103−

100−

Figure 5: An ID-coloring of a starlike tree.

Theorem 2.1. If T is a starlike tree with central vertex v whose branches at v have distinct sizes, then T is an ID-tree.

Proof. Suppose that deg v = k ≥ 3 and let B1, B2, . . ., Bk be the branches (paths) of T at v, where Bi has size mi and
mi < mi+1 for 1 ≤ i < k. Define a red-white coloring c of T that assigns the color white to v and the color red to all other
vertices of T . We show that c is an ID-coloring of T . By Proposition 1.2, it suffices to show that every two red vertices have
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distinct codes. Let x, y ∈ V (T )−{v} and let ~d(x) = (a1, a2, . . . , ad) and ~d(y) = (b1, b1, . . . , bd) where d = diam(T ) = mk−1+mk.
Suppose that d(x, v) = s and d(y, v) = t. We consider two cases, according to whether s 6= t or s = t.

Case 1. s 6= t, say s < t. Then as ∈ {0, 1} and bs ∈ {1, 2}. If as 6= bs, then ~d(x) 6= ~d(y). Thus, we may assume that
as = bs = 1. Thus, as+1 ∈ {k− 1, k} and bs+1 ∈ {0, 1}. Since k ≥ 3, it follows that as+1 ≥ 2 and so as+1 6= bs+1, implying that
~d(x) 6= ~d(y).

Case 2. s = t. Then x and y belong to different branches of T at v, say x ∈ V (Bi) and y ∈ V (Bj) where 1 ≤ i < j ≤ k. Let
Bi = (v = v0, v1, . . . , vmi

) and Bj = (v = u0, u1, . . . , umj
), where then x = vs and y = us. If mi − s+ 1 = s, then ami−s+1 = 0

and bmi−s+1 ≥ 1. If mi − s+ 1 6= s, then bmi−s+1 = ami−s+1 + 1. In either case, ~d(x) 6= ~d(y). Therefore, c is an ID-coloring
of T .

3. Starlike trees with prescribed ID-number

We saw in Theorem 1.3 that for every integer r ≥ 3, there exists a connected graph G with ID(G) = r. For such a given
integer r, the graph G described in the proof of Theorem 1.3 contains r pairwise disjoint twins from which it follows that
ID(G) ≥ r. It was therefore only necessary to show that ID(G) ≤ r. We now show that for every integer r ≥ 3, there exists a
tree T with no twins at all such that ID(T ) = r. In addition, we show that there is a tree without twin branches having ID-
number r. In particular, we show that for every odd integer r ≥ 5 there is a twin-free tree T whose automorphism group
contains (r+1)! elements such that ID(T ) = r. We also show that there is a red-white coloring c of the same class of trees T
where exactly r − 1 vertices are colored red such that ~d(x) = ~d(y) for exactly one pair x, y of vertices of T . Consequently,
there is a red-white coloring of these trees T with exactly two vertices having the same code. As we metioned earlier, such
a (red-white) coloring results in an antiregular labeling (see [1,2], for example.)

For each integer r ≥ 3, let T = Sr−1(K1,r+1) be the starlike tree obtained from the starK1,r+1 of order r+2 by subdividing
each edge of the r + 1 edges in Kr+1 exactly r − 1 times. Let v be the central vertex of T . Then the degree of v is r + 1 and
each of the r+1 branches of T at v has length r. For each integer i with 0 ≤ i ≤ r, let Bi = (v, vi,1, vi,2, . . . , vi,r) be a branch
of T at v. Then diam(T ) = 2r and T is twin-free.

Theorem 3.1. For each odd integer r ≥ 3, ID(Sr−1(K1,r+1)) = r.

Proof. For an odd integer r ≥ 3, let T = Sr−1(K1,r+1), where v is the central vertex of T and Bi = (v, vi,1, vi,2, . . ., vi,r) is
a branch of T at v for 0 ≤ i ≤ r. First, we show that ID(T ) ≥ r. For any red-white coloring of T that assigns the color red
to at most r − 1 vertices of T , there are at least two branches, say B0 and B1, of T at v such that the paths B0 − v and
B1 − v contain no red vertices of T . However then, ~d(v0,1) = ~d(v1,1), for example, and so this red-white coloring is not an
ID-coloring of T . Therefore, ID(T ) ≥ r.

Next, we show that T has an ID-coloring with exactly r red vertices. Define a red-white coloring c of T by assigning
the color red to each vertex vi,i for 1 ≤ i ≤ r and white to the remaining vertices of T . Thus, T has exactly r red vertices.
It remains to show that c is an ID-coloring of T . Since diam(T ) = 2r, the code of each vertex of T is a (2r)-vector. Let x
and y be two distinct vertices of T . We consider two cases, according to whether x and y are both red or both white. Let
~d(x) = (a1, a2, . . . , a2r) and ~d(y) = (b1, b2, . . . , b2r).

Case 1. x and y are both red. Let x = vi,i and y = vj,j where 1 ≤ i < j ≤ r.

? First, suppose that j 6= r. Since (1) the last nonzero coordinate in ~d(vi,i) is the (i + r)th coordinate where i + r =

d(vi,i, vr,r) and the last nonzero coordinate in ~d(vj,j) is the (j + r)th coordinate where j + r = d(vj,j , vr,r) and (2) i < j,
it follows that aj+r = 0 and bj+r = 1 and so ~d(x) 6= ~d(y).

? Next, suppose that j = r. We saw that the last nonzero coordinate in ~d(vi,i) where 1 ≤ i ≤ r − 1 is the (i + r)th
coordinate. Since the last nonzero coordinate in ~d(vr,r) is the (2r − 1)th coordinate where 2r − 1 = d(vr−1,r−1, vr,r),
it follows that if i 6= r − 1, then ~d(x) 6= ~d(y). Thus, we may assume that x = vr−1,r−1. Because the first nonzero
coordinate in ~d(vr−1,r−1) is the rth coordinate where r = d(v1,1, vr−1,r−1) and the first nonzero coordinate in ~d(vr,r) is
the (r + 1)th coordinate where r + 1 = d(v1,1, vr,r), it follows that ar = 1 and br = 0 and so ~d(x) 6= ~d(y).

Case 2. x and y are both white. First, we make some observations on the codes of vertices on B0.

• The vertices on B0 are the only white vertices of T whose codes contain the r-tuple (1, 1, . . . , 1) = 1r as a subsequence.
The vertex v is the only white vertex of T such that the first r coordinates of its code are 1 (that is, ~d(v) = (1r, 0r)).
For 1 ≤ t ≤ r, the vertex v0,t is the only white vertex such that in ~d(v0,t) the first t coordinates and the last r − t
coordinates are 0 while the remaining coordinates are 1 (that is, ~d(v0,t) = (0t, 1r, 0r−t) for 1 ≤ t ≤ r). Thus, all codes
of the vertices of B0 are distinct and they are also distinct from the codes of those white vertices that are not in B0.
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Hence, we may assume that neither x nor y belongs to B0. Let Qi = Bi − v = (vi,1, vi,2, . . . , vi,r) be the subpath of Bi for
1 ≤ i ≤ r. We consider two subcases, according to the location of x and y.

Subcase 2.1. x, y ∈ V (Qi) where 1 ≤ i ≤ r. Let x = vi,p and y = vi,q where 1 ≤ p < q ≤ r and p, q 6= i.

? First, suppose that i 6= r. Since (1) the last nonzero coordinate in ~d(vi,p) is the (p + r)th coordinate where p + r =

d(vi,p, vr,r) and the last nonzero coordinate in ~d(vi,q) is the (q+ r)th coordinate where q+ r = d(vi,q, vr,r) and (2) p < q,
it follows that aq+r−1 = 0 and bq+r−1 = 1 and so ~d(x) 6= ~d(y).

? Next, suppose that i = r. Since (1) the last nonzero coordinate in ~d(vr,p) is the (p+r−1)th coordinate where p+r−1 =

d(vi,p, vr−1,r−1) and the last nonzero coordinate in ~d(vr,q) is the (q+r−1)th coordinate where q+r−1 = d(vi,q, vr−1,r−1)

and (2) p < q, it follows that aq+r−1 = 0 and bq+r−1 = 1 and so ~d(x) 6= ~d(y).

Subcase 2.2. x ∈ V (Qi) and y ∈ V (Qj) where 1 ≤ i < j ≤ r. Let x = vi,p and y = vj,q where 1 ≤ p, q ≤ r, p 6= i, and q 6= j.
We consider two subcases, according to whether p = q or p 6= q.

Subcase 2.2.1. p = q. Then x = vi,p and y = vj,p where 1 ≤ i < j ≤ r and p /∈ {i, j}.

? First, suppose that j + 1 ≤ p ≤ r. Since (1) the first nonzero coordinate in ~d(vi,p) is the (p − i)th coordinate where
p− i = d(vi,p, vi,i) and the first nonzero coordinate in ~d(vj,p) is the (p− j)th coordinate where p− j = d(vj,p, vj,j) and
(2) i < j, it follows that ap−j = 0 and bp−j = 1 and so ~d(x) 6= ~d(y).

? Next suppose that 1 ≤ p ≤ i − 1. Let c0 be the red-white coloring of T obtained by recoloring vi,i and vj,j white and
all other vertices of T remain the same colors as in c. Since d(vi,p, w) = d(vj,p, w) for every red vertex w such that
w /∈ {vi,i, vj,j}, it follows that ~dc0(x) = ~dc0(y) = (f1, f2, . . . , f2r). Observe that d(vi,p, vi,i) = i − p, d(vi,p, vj,j) = j + p,
d(vj,p, vi,i) = i + p, and d(vj,p, vj,j) = j − p. Since i − p < min{i + p, j − p, j + p}, it follows that ai−p = fi−p + 1 and
bi−p = fi−p and so ~d(x) 6= ~d(y).

? Finally, suppose that i+ 1 ≤ p ≤ j − 1. Let c0 be the red-white coloring of T obtained by recoloring vi,i and vj,j white
and all other vertices of T remain the same colors as in c. Since d(vi,p, w) = d(vj,p, w) for every red vertex w such that
w /∈ {vi,i, vj,j}, it follows that ~dc0(x) = ~dc0(y) = (f1, f2, . . . , f2r). Observe that d(vi,p, vi,i) = p − i, d(vi,p, vj,j) = j + p,
d(vj,p, vi,i) = i + p, and d(vj,p, vj,j) = j − p. Since j + p > max{i + p, j − p, i + p}, it follows that aj+p = fj+p + 1 and
bj+p = fj+p and so ~d(x) 6= ~d(y).

Subcase 2.2.2. p 6= q. First, suppose that j 6= r. Since (1) the last nonzero coordinate in ~d(vi,p) is the (p+ r)th coordinate
where p+ r = d(vi,p, vr,r) and the last nonzero coordinate in ~d(vj,q) is the (q+ r)th coordinate where q+ r = d(vj,q, vr,r) and
(2) p 6= q, it follows that either ap+r 6= bp+r or aq+r 6= bq+r, implying that ~d(x) 6= ~d(y).

For simplification, we now introduce notation where a code is expressed when no 0 coordinate is given after the final
nonzero coordinate of a code. For example, if a code of a vertex is a 7-tuple (1, 0, 2, 1, 0, 0, 0), we simply write this code as
the 4-tuple (1, 0, 2, 1).

Next, suppose that j = r. Thus, x = vi,p where 1 ≤ i ≤ r − 1 and p 6= i and y = vr,q where 1 ≤ q ≤ r − 1 and p 6= q. We
consider two possibilities.

Subcase 2.2.2.1. 2 ≤ i ≤ r − 1. First, suppose that p ≥ i + 1. Then ~d(x) = ~d(vi,p) = (0i−p−1, 1, 0i, 1i−1, 0, 1r−i). If
~d(y) = ~d(vr,q) contains a coordinate 2, then ~d(x) 6= ~d(y). Thus, we may assume that d(vr,q, vr,r) = r − q 6= q + t for
1 ≤ t ≤ r − 1 and so ~d(y) = ~d(vr,q) = (0r−q−1, 1, 02q−r, 1r−1). Since 1r−1 is a subsequence in ~d(y) and is not a subsequence
of ~d(x), it follows that ~d(x) 6= ~d(y).

Next, suppose that 1 ≤ p ≤ i − 1. If i − p 6= p + ` for some ` ∈ [r] − {i}, then (1i−1, 0, 1r−i) is a subsequence of ~d(x) and
so there is no 2 as a coordinate of ~d(x). If ~d(y) = ~d(vr,q) contains a coordinate 2, then ~d(x) 6= ~d(y) and so ~d(y) = ~d(vr,q) =

(0r−q−1, 1, 02q−r, 1r−1). Thus, ~d(x) 6= ~d(y). Hence, we may assume that i− p = p+ ` for some ` ∈ [r]− {i} and so i = 2p+ `.
This implies that there is exactly one coordinate 2 of ~d(x), namely ai−p = 2. If ~d(y) has no coordinate 2, then ~d(x) 6= ~d(y).
Hence, we assume that ~d(y) has coordinate 2. This implies that d(vr,q, vr,r) = r − q = q + t for some t ∈ [r − 1] and br−q = 2

is the only coordinate 2 in ~d(y). Hence, i − p = r − q or r − i = q − p and so q > p. There are two possibilities here. If
i− p = r − q < p+ 1, then the second nonzero coordinate in ~d(x) is ap+1 while the the second nonzero coordinate in ~d(y) is
bq+1. If i− p = r − q > p+ 1, then the first nonzero coordinate in ~d(x) is ap+1 while the the fist nonzero coordinate in ~d(y)

is bq+1. In either case, ~d(x) 6= ~d(y). Therefore, c is an ID-coloring and so ID(T ) = r.
Subcase 2.2.2.2. i = 1. Then ~d(x) = ~d(v1,p) = (0p−2, 1, 0, 0, 1r−1). If ~d(y) = ~d(vr,q) contains a coordinate 2, then

~d(x) 6= ~d(y). Thus, we may assume that d(vr,q, vr,r) = r − q 6= q + t for 1 ≤ t ≤ r − 1. Since r − q < q + r − 1, it follows that
r − q ≤ q or q ≥ r/2. Then ~d(y) = ~d(vr,q) = (0r−q−1, 1, 02q−r, 1r−1). Thus, p − 2 = r − q − 1 (or p + q = r + 1), 2 = 2q − r (or
r = 2q − 2 is even) and so p = q − 1 (or q = p+ 1). Since r is odd, it follows that ~d(x) 6= ~d(y).
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The following is a consequence of Theorem 3.1.

Corollary 3.1. For each odd integer r ≥ 3, there exist a twin-free starlike tree T such that ID(T ) = r.

In the statement of Theorem 3.1, the condition that r ≥ 3 is an odd integer is only required in Subcase 2.2.2.2. In fact,
if r ≥ 4 is an even integer, then there are exactly two white vertices in the red-white coloring described in the proof of
Theorem 3.1, namely v1,p and vr,q where q = p + 1 and p + q = r + 1, that have the same code. That is, this red-white
coloring is antiregular. Therefore, we have the following.

Proposition 3.1. For each even integer r ≥ 4, there is an antiregular red-white coloring of the starlike tree Sr−1(K1,r+1)

having exactly r red vertices.

By the technique used in the proof of Theorem 3.1, the following result can be verified.

Proposition 3.2. Let r ≥ 4 be an even integer. If T is the starlike tree obtained by subdividing exactly one edge of
Sr−1(K1,r+1), then ID(T ) = r.

None of the trees appearing in the results just above have the identity automorphism group. We next describe a class
of trees having the identity automorphism group, where each such tree is necessarily twin-free, which can be used to show
that for every integer r ≥ 3, there is a tree T with the identity automorphism group such that ID(T ) = r.

Theorem 3.2. For each integer r ≥ 3, there is a starlike tree T of order 1 +
(
r+2
2

)
having the identity automorphism group

such that ID(T ) = r.

Proof. For each integer r ≥ 3, let K1,r+1 be the star of order r + 2 with central vertex v that is adjacent to the r + 1

end-vertices v1, v2, . . . , vr+1. Let T be the starlike tree obtained from the star K1,r+1 be subdividing the edge vvi of K1,r+1

exactly i− 1 times for 1 ≤ i ≤ r+1. In particular, vv1 is not subdivided and vvr+1 is subdivided exactly r times. Thus, T is
twin-free, the order of T is 1 +

(
r+2
2

)
and diam(T ) = 2r + 1. Since no two vertices of T are similar, it follows that T has the

identity automorphism group. For each integer i with 1 ≤ i ≤ r + 1, let Bi = (v, vi,1, vi,2, . . . , vi,i) be a branch of T at v.
First, we show that ID(T ) ≥ r. For any red-white coloring of T that assigns the color red to at most r − 1 vertices of T ,

there are at least two branches Bi and Bj of T at v such that the paths Bi − v and Bj − v contain no red vertices of T .
However then, ~d(vi,1) = ~d(vj,1), for example, and so this red-white coloring is not an ID-coloring of T . Therefore, ID(T ) ≥ r.
Next, we show that T has an ID-coloring with exactly r red vertices. Define a red-white coloring c of T by assigning the
color red to each vertex vi,i for 1 ≤ i ≤ r and white to the remaining vertices of T . Thus, T has exactly r red vertices. It
remains to show that c is an ID-coloring of T . Since diam(T ) = 2r + 1, the code of each vertex of T is a (2r + 1)-vector. Let
x and y be two distinct vertices of T . We consider two cases, according to whether x and y are both red or both white. Let
~d(x) = (a1, a2, . . . , a2r+1) and ~d(y) = (b1, b2, . . . , b2r+1).

Case 1. x and y are both red. Let x = vi,i and y = vj,j where 1 ≤ i < j ≤ r.

? First, suppose that j 6= r. Since (1) the last nonzero coordinate in ~d(vi,i) is the (i + r)th coordinate where i + r =

d(vi,i, vr,r) and the last nonzero coordinate in ~d(vj,j) is the (j + r)th coordinate where j + r = d(vj,j , vr,r) and (2) i < j,
it follows that aj+r = 0 and bj+r = 1 and so ~d(x) 6= ~d(y).

? Next, suppose that j = r. We saw that the last nonzero coordinate in ~d(vi,i) where 1 ≤ i ≤ r − 1 is the (i + r)th
coordinate. Since the last nonzero coordinate in ~d(vr,r) is the (2r − 1)th coordinate where 2r − 1 = d(vr−1,r−1, vr,r),
it follows that if i 6= r − 1, then ~d(x) 6= ~d(y). Thus, we may assume that x = vr−1,r−1. Because the first nonzero
coordinate in ~d(vr−1,r−1) is the rth coordinate where r = d(v1,1, vr−1,r−1) and the first nonzero coordinate in ~d(vr,r) is
the (r + 1)th coordinate where r + 1 = d(v1,1, vr,r), it follows that ar = 1 and br = 0 and so ~d(x) 6= ~d(y).

Case 2. x and y are both white. First, we verify the following claim.

Claim. If x ∈ V (Br+1) or y ∈ V (Br+1), then ~d(x) 6= ~d(y).

The vertices on Br+1 are the only white vertices of T whose codes contain the r-tuple (1, 1, . . . , 1) = 1r as a subsequence.
The vertex v is the only white vertex of T such that the first r coordinates of its code are 1 (that is, ~d(v) = (1r, 0r+1)). For
1 ≤ t ≤ r + 1, the vertex vr+1,t is the only white vertex such that in ~d(vr+1,t) the first t coordinates and the last r + 1 − t
coordinates are 0 while the remaining coordinates are 1 (that is, ~d(vr+1,t) = (0t, 1r, 0r+1−t) for 1 ≤ t ≤ r). Thus, all codes
of the vertices of Br+1 are distinct and they are also distinct from the codes of those white vertices that are not in Br+1.
Hence, the claim holds.

By the claim, we may assume that x /∈ V (Br+1) and y /∈ V (Br+1). Let Qi = Bi − v = (vi,1, vi,2, . . . , vi,i) be the subpath
of Bi for 2 ≤ i ≤ r. We consider two subcases, according to the location of x and y.

Subcase 2.1. x, y ∈ V (Qi) where 2 ≤ i ≤ r. Let x = vi,p and y = vi,q where 1 ≤ p < q ≤ i− 1.
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? First, suppose that i 6= r. Since (1) the last nonzero coordinate in ~d(vi,p) is the (p + r)th coordinate where p + r =

d(vi,p, vr,r) and the last nonzero coordinate in ~d(vi,q) is the (q+ r)th coordinate where q+ r = d(vi,q, vr,r) and (2) p < q,
it follows that aq+r−1 = 0 and bq+r−1 = 1 and so ~d(x) 6= ~d(y).

? Next, suppose that i = r. Since (1) the last nonzero coordinate in ~d(vr,p) is the (p+r−1)th coordinate where p+r−1 =

d(vi,p, vr−1,r−1) and the last nonzero coordinate in ~d(vr,q) is the (q+r−1)th coordinate where q+r−1 = d(vi,q, vr−1,r−1)

and (2) p < q, it follows that aq+r−1 = 0 and bq+r−1 = 1 and so ~d(x) 6= ~d(y).

Subcase 2.2. x ∈ V (Qi) and y ∈ V (Qj) where 2 ≤ i < j ≤ r. Let x = vi,p and y = vj,q where 1 ≤ p ≤ i−1 and 1 ≤ q ≤ j−1.
We consider two subcases, according to whether p = q or p 6= q.

Subcase 2.2.1. p = q. Then x = vi,p and y = vj,p where 2 ≤ i < j ≤ r and p /∈ {i, j}. Let c0 be the red-white
coloring of T obtained by recoloring vi,i and vj,j white and all other vertices of T remain the same colors as in c. Since
d(vi,p, w) = d(vj,p, w) for every red vertexw such thatw /∈ {vi,i, vj,j}, it follows that ~dc0(x) = ~dc0(y) = (f1, f2, . . . , f2r). Observe
that d(vi,p, vi,i) = i− p, d(vi,p, vj,j) = j + p, d(vj,p, vi,i) = i+ p, and d(vj,p, vj,j) = j − p. Since i− p < min{i+ p, j − p, j + p}, it
follows that ai−p = fi−p + 1 and bi−p = fi−p and so ~d(x) 6= ~d(y).

Subcase 2.2.2. p 6= q. First, suppose that j 6= r. Since (1) the last nonzero coordinate in ~d(vi,p) is the (p+ r)th coordinate
where p+ r = d(vi,p, vr,r) and the last nonzero coordinate in ~d(vj,q) is the (q+ r)th coordinate where q+ r = d(vj,q, vr,r) and
(2) p 6= q, it follows that either ap+r 6= bp+r or aq+r 6= bq+r, implying that ~d(x) 6= ~d(y).

Next, suppose that j = r. Thus, x = vi,p where 2 ≤ i ≤ r − 1 and 1 ≤ p ≤ i − 1 and y = vr,q where 1 ≤ q ≤ r − 1 and
p 6= q. If i − p 6= p + ` for some ` ∈ [r] − {i}, then (1i−1, 0, 1r−i) is a subsequence of ~d(x) and so there is no coordinate 2 in
~d(x). If ~d(y) = ~d(vr,q) contains 2 as a coordinate, then ~d(x) 6= ~d(y) and so ~d(y) = ~d(vr,q) = (0r−q−1, 1, 02q−r, 1r−1, 0, . . . , 0).
Thus, ~d(x) 6= ~d(y). Hence, we may assume that i − p = p + ` for some ` ∈ [r] − {i} and so i = 2p + `. This implies that
there is exactly one coordinate of ~d(x) which is 2, namely ai−p = 2. If ~d(y) has no coordinate 2, then ~d(x) 6= ~d(y). Hence,
we assume that ~d(y) has 2 as a coordinate. This implies that d(vr,q, vr,r) = r − q = q + t for some t ∈ [r − 1] and br−q = 2

is the only coordinate 2 in ~d(y). Hence, i − p = r − q or r − i = q − p and so q > p. There are two possibilities here. If
i− p = r − q < p+ 1, then the second nonzero coordinate in ~d(x) is ap+1 while the the second nonzero coordinate in ~d(y) is
bq+1. If i− p = r − q > p+ 1, then the first nonzero coordinate in ~d(x) is ap+1 while the the fist nonzero coordinate in ~d(y)

is bq+1. In either case, ~d(x) 6= ~d(y).
Therefore, c is an ID-coloring and so ID(T ) = r.

Several problems are suggested by the results presented here.

(1) For a given integer r ≥ 3, what is the smallest order of a tree T such that ID(T ) = r?

(2) For a given integer r ≥ 3, what is the smallest order of a twin-free tree T such that ID(T ) = r?

For (2), we have seen that this smallest order is no more than 1 +
(
r+2
2

)
.
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