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Abstract

The order of an Abelian Cayley graph of degree 2n and diameter 2 cannot exceed 2n2 + 2n+ 1, which is the famous Abelian
Cayley-Moore bound. Leung and Zhou [J. Combin. Theory Ser. A 171 (2020) Art# 105157] recently shown that such a graph
attaining the aforementioned bound exists if and only if n = 1, 2. This note is concerned with the Abelian Cayley graphs of
degree 2n and diameter 3, whose order is 2n2 + 2n + 2, one larger than the Abelian Cayley-Moore bound of degree 2n and
diameter 2. Their generating set denoted by S satisfies |S̃2| = 2n2 + 2n+ 1 where S̃ = S ∪ {e}, e being the identity element
of the underlying group. For n = 1, 2, it is easy to find examples. For n > 2, several non-existence results for infinitely many
values of n are provided by using two methods, which are related to symmetric polynomials theories and algebraic number
theory.
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1. Introduction

For positive integers d and k, denote by nd,k the largest order of a graph of maximum degree d and diameter k. The well-
known and widely studied degree-diameter problem is to determine the largest number nd,k. The famous upper bound on
the number nd,k is the Moore bound, which gives nd,k ≤ 1 + d + d(d − 1) + · · · + d(d − 1)k−1 for every d, k ≥ 1. Except for
k = 1 or d ≤ 2, graphs achieving the Moore bound exist only for k = 2 and d = 3, 7, and possibly 57; see [1,6,8]. Until now,
it is not known yet whether a Moore graph of degree d = 57 and diameter k = 2 on 3250 vertices exists. For a summary on
the history and development on this topic, we refer the reader to the survey paper of Miller and Širáň [14].

Let G be a finite group with identity element e and let S ⊂ G be a unit-free, inverse-closed generating set for G (i.e.
e /∈ S, S = S−1). The Cayley graph Γ(G,S) for the underlying group G and the generating set S is a graph with vertex set
V (Γ) = G and edge set E(Γ) = {{g, h}|g, h ∈ G, g−1h ∈ S}. As the generating set S is closed, g−1h ∈ S implies that h−1g ∈ S
and therefore our Cayley graphs are undirected. In particular, whenG is Abelian, we call Γ(G,S) an Abelian Cayley graph.
For a Cayley graph Γ(G,S), denoting S ∪ {e} by S̃, it is easy to show that its diameter is k if and only if k is the smallest
integer such that all elements of G appear in S̃k

(
S̃k =

{∏k
i=1 si : si ∈ S̃ for i = 1, 2, ..., k

})
and its degree is |S|.

For an Abelian Cayley graph with |S| = 2n and diameter k, denote by AC(2n, k) its largest order. The upper bound on
AC(2n, k) is given by

AC(2n, k) ≤
min{k,n}∑
i=0

2i
(
k

i

)(
n

i

)
. (1)

The right-hand-side of the above inequality is also called the Abelian Cayley-Moore bound, obtained first by Dougherty and
Faber in [7], and we denote its value by MC(2n, k). Obviously, MC(2n, 2) = 2n2 + 2n + 1. An Abelian Cayley graph whose
order meets MC(2n, k) is called an Abelian Cayley-Moore graph.

The problem whether Abelian Cayley-Moore graphs exist or not has been studied extensively. Leung and Zhou [10]
proved that Abelian Cayley-Moore graphs of diameter 2 exist if and only if n = 1, 2. As the Abelian Cayley-Moore bound
is sometimes hard to be met, several researchers working in this field try to find a larger lower bound of AC(2n, k); see
[4,7,11–13,17,18].

For a Cayley graph Γ(G,S) of degree 2n and diameter k + 1, suppose that G has size MC(2n, k) + λ, where λ is a small
positive integer. If S̃ satisfies |S̃k| = MC(2n, k), borrowing the terminology of Bannai and Ito [2], we call the parameter λ
the excess. We give two Abelian Cayley graphs of diameter 3 and excess 1 as follows, which are also the examples of the
graphs we research for n = 1, 2.
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Example 1.1. Let Cm denote the cyclic group of order m generated by g.

• For n = 1, let G = C6 and S = {g±1}. The graph Γ(G,S) is the 6-cycle.

• For n = 2, let G = C14. Define S = {g±1, g±4}. The graph Γ(G,S) is depicted in Figure 1. The corresponding packing
of Z2 by Lee spheres of radius 2 is given in Figure 2.
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Figure 1: The Cayley graph in C14 generated by {g±1, g±4}.
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Figure 2: The almost lattice packing of Z2 by Lee spheres of radius 2 associated with S.

In this paper, we consider the Abelian Cayley graphs Γ(G,S) of degree 2n, diameter 3 and excess 1 (i.e. |G| = MC(2n, 2)+

1 = 2n2 + 2n+ 2). Such Abelian Cayley graphs also provide almost lattice packings of Z2 by Lee spheres of radius 2 with a
small amount of blank.

The rest of this paper is organized as follows. In Section 2, we review some basic notations on group ring to obtain the
necessary and sufficient condition on this problem and translate the problem into several group ring equations. In Section
3, we provide some results about the non-existence of Abelian Cayley graphs for infinitely many values of n by utilizing
two approaches. The first approach involves the symmetric polynomials which is similar to the one used in [9] by Kim. The
second one is close to the one used in [20] which requires that |G| must have small prime divisors.

2. A necessary and sufficient condition

For convenience, we assume that G is a multiplicative group with identity element e. The group ring Z[G] denotes a set
of formal sums

∑
g∈G agg where ag ∈ Z. For any set A whose elements belong to G (A may be a multiset), we identify A

with the group ring element
∑
g∈G agg, where ag is the multiplicity of g appearing in A. The addition of elements in Z[G]

is defined as follows: ∑
g∈G

agg +
∑
g∈G

bgg :=
∑
g∈G

(ag + bg)g.

The multiplication is defined by ∑
g∈G

agg

 ·
∑
g∈G

bgg

 :=
∑
g∈G

(∑
h∈G

ahbh−1g

)
g.
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Moreover,

λ ·

∑
g∈G

agg

 :=
∑
g∈G

(λag) g.

where λ ∈ Z. For A =
∑
g∈G agg and t ∈ Z, we define

A(t) :=
∑
g∈G

agg
t.

For any A =
∑
g∈G agg and χ ∈ Ĝ where Ĝ is the character group of G, we define χ(A) =

∑
g∈G agχ(g). The following

inversion formula gives us a strategy to calculate ah for all h ∈ G and shows that A is completely determined by its
character value χ(A), where χ ranges over Ĝ.

Lemma 2.1. Let G be an Abelian group. If A =
∑
g∈G agg ∈ Z[G], then

ah :=
1

|G|
∑
χ∈Ĝ

χ(A)χ(h−1), (2)

for all h ∈ G.

Group rings and the associated characters are of great significance to research the difference sets and related topics.
See [3,16] and the references within. In the rest of this paper, by abuse of notation, we will use the same symbol to denote
a subset in G and the associated element in Z[G]. Moreover, we use |A| to denote the number of distinct elements in A,
rather than the counting of elements with multiplicity unless stating it specially.

For the Abelian Cayley graph Γ(G,S) which we research, we can prove that there is only one element of order 2 in G.

Lemma 2.2. Assume that Γ(G,S) is an Abelian Cayley graph of |S| = 2n, diameter 3 and excess 1. G is a multiplicative
group with identity element e. Then there is only one element f of order 2 in G and f /∈ S̃2.

Proof. Since 2 | |G| and 4 - |G|, there is only one element f of order 2 in G. By the order of S and S is inverse-closed, we
see that f /∈ S. Moreover, if f ∈ S̃2, then there exist a, b ∈ S such that f = ab = a−1b−1, which means |S̃2| < 2n2 + 2n + 1.
However, by the assumption that Γ(G,S) is of diameter 3 and excess 1, |S̃2| = 2n2+2n+1 which is a contradiction. Therefore,
f /∈ S̃2.

In the rest part of this section, we present a necessary and sufficient condition for the existence of an Abelian Cayley
graph Γ(G,S) which we research in the language of group ring equations.

Theorem 2.1. LetG be an Abelian multiplicative group of order 2n2+2n+2 with identity element e, and S an inverse-closed
subset of size 2n in G. Γ(G,S) is of excess 1 if and only if T = S ∪ {e} (For convenience, we use T rather than S̃ to denote
S ∪ {e}) viewed as an element in Z[G] satisfying

(a) e ∈ T ,

(b) T = T (−1),

(c) T 2 = 2G− T (2) + 2ne− 2f .

Proof. Suppose that S = {a1, · · · , an}
⋃
{a−1

1 , · · · , a−1
n }. By definition, T = e +

∑n
i=1(ai + a−1

i ). Hence, (a) and (b) are
obviously satisfied.

In the language of group ring, we have

e+ f +

n∑
i=1

(ai + a−1
i + a2

i + a−2
i ) +

∑
16i<j6n

(ai + a−1
i )(aj + a−1

j ) = G.

By computation, we have

T 2 =

(
e+

n∑
i=1

(ai + a−1
i )

)2

=e+ 2
n∑
i=1

(ai + a−1
i ) +

(
n∑
i=1

(ai + a−1
i )

)2
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=e+ 2

n∑
i=1

(ai + a−1
i ) +

n∑
i=1

(a2
i + a−2

i ) + 2
∑

16i<j6n

(ai + a−1
i )(aj + a−1

j ) + 2ne

=2e+ 2

n∑
i=1

(ai + a−1
i ) + 2

n∑
i=1

(a2
i + a−2

i ) + 2
∑

16i<j6n

(ai + a−1
i )(aj + a−1

j )

+ (2n− 1)e−
n∑
i=1

(a2
i + a−2

i )

=2(G− f) + 2ne− T (2)

=2G− T (2) + 2ne− 2f.

Therefore, (c) holds.
For the other direction of the proof, we only need to define S = T \ {e} and the verification is straightforward.

3. Main results

In this section, we intend to apply two approaches to prove non-existence results of T satisfying (a), (b) and (c) in Theorem
2.1. The first one is an imitation of the method provided by Kim in [9]. The second one based on the necessary and sufficient
condition mentioned in Section 2 is close to the one used in [20] by Zhang and Zhou which requires |G| having small prime
divisors.

3.1. A symmetric polynomial approach
First we apply the Kim’s approach to this problem. Compared with the original one in [9], we do not need the assumption
that |G| is a prime, but n2 + n+ 1 is a prime.

Theorem 3.1. Assume that G is an Abelian additive group of order 2(n2 + n+ 1) for n > 1 where p = n2 + n+ 1 is a prime.
Let a be the smallest positive integer for which p | 4a + 4n+ 2 and b be the smallest positive integer for which p | 4b − 1. (Let
a = ∞ if there is no a with p | 4a + 4n + 2.) If the equation a(x + 1) + by = n has no nonnegative integer solutions, then S

which is an inverse-closed and unitfree subset of size 2n in G and satisfies |T 2| = 2n2 + 2n+ 1 (T = S ∪ {e}) does not exist.

Proof. Assume that there exists such S. Separate S into R = {ri : i = 1, ..., n} and R(−1) = {r−1
i : ri ∈ R}. Since

|T 2| = 2n2 + 2n+ 1, then by Lemma 2.2,

{0}, {±ri : i = 1, ..., n}, {±2ri : i = 1, ..., n}, {±ri ± rj : 1 ≤ i < j ≤ n}

form a partition of G \ {f} where f is the unique element of order 2.
Assume H is a subgroup of G of index n2 + n + 1. Let ρ : G → G/H be the canonical homomorphism and xi = ρ(ri).

Then the multisets

{0}, {∗ ± ri : i = 1, ..., n ∗}, {∗ ± 2ri : i = 1, ..., n ∗}, {∗ ± ri ± rj : 1 ≤ i < j ≤ n ∗}

form a partition of 2G/H \ {0}. For an integer k, by calculation,
n∑
i=1

(x2k
i + (−xi)2k + (2xi)

2k + (−2xi)
2k)

+
∑

1≤i<j≤n

((xi + xj)
2k + (xi − xj)2k + (−xi + xj)

2k + (−xi − xj)2k)

=(4k + 4n+ 2)S2k + 2

k−1∑
t=1

(
2k

2t

)
S2tS2(k−t),

where St :=
∑n
i=1 x

t
i. Since this is also the sum of the 2k-th powers of every element in 2G/H \ {0},

(4k + 4n+ 2)S2k + 2

k−1∑
t=1

(
2k

2t

)
S2tS2(k−t) =

0, p− 1 - 2k;

−2, p− 1 | 2k.
(3)

Let a and b be the least positive integers satisfying p | 4a + 4n+ 2 and p | 4b − 1. Define

X = {ax+ by : x ≥ 1, y ≥ 0}.
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We prove the following two claims by induction on k.

Claim 1: If 1 ≤ k < p−1
2 is not in X, then S2k = 0.

By induction on k, suppose that S2k = 0 for each k ≤ k0 − 1 that is not in X. Assume that k0 /∈ X. As X is closed under
addition, for each t, either t or k0 − t is not in X.

Since any integer k for which p | 4k + 4n+ 2 must be of the form a+ by whence k ∈ X. This implies p - 4k0 + 4n+ 2. By
(3) and the induction hypothesis,

0 = (4k0 + 4n+ 2)S2k0 + 2

k0−1∑
t=1

(
2k0

2t

)
S2tS2(k0−t) = (4k0 + 4n+ 2)S2k0 .

Hence, S2k0 = 0.
Let ek be the elementary symmetric polynomials with respect to x2

1, x
2
2, ..., x

2
n.

Claim 2: If 1 ≤ k ≤ n < p−1
2 is not in X, then ek = 0.

We again prove by induction on k, suppose that ek = 0 for all k ≤ k0 − 1 not in X and k0 /∈ X. Since X is closed under
addition, for each 0 < t < k0, at least one of t and k0 − t is not in X. By Claim 1 and the inductive hypothesis, et = 0 or
S2(k0−t) = 0. Together with Newton identities on x2

1, x
2
2, ..., x

2
n, we have

k0ek0 = ek0−1S2 − ek0−2S4 + · · ·+ (−1)k0−1S2k0 = (−1)k0−1S2k0 = 0.

then ek0 = 0.
Note that en = x2

1 · · ·x2
n, it is clear that none of x1, ..., xn is 0. Then en 6= 0. By Claim 2, n ∈ X. This finishes the

proof.

By MAGMA [5] program, in 1 < n ≤ 105, n has 10750 choices to make n2 + n + 1 be a prime. However, only n = 2 and
n = 3 are not excluded by Theorem 3.1 in these values. The detailed result is showed in Table 1. Actually, Zhang and
Zhou [20, Subsection 3.1] provide a generalization of Kim’s approach which requires that 2n2 + 2n+ 1 has a prime divisor
larger that 2n+ 1.

In [20, Subsection 3.2], the approach to deal with |G| with a small prime divisor was put forward. Next, we use this
approach to deal with |G| = 2n2 + 2n+ 2 with a small prime divisor.

3.2. The method of Zhang and Zhou
By Lemma 2.2, we know that G has a unique element of order 2 denoted by f . Therefore, for any subgroup H of G, if |H|
is even, then H must contain f . Let (·) : G → G/H be the canonical homomorphism. Then f̄ is the identity element in
G/H. For A =

∑
g∈G agg ∈ Z[G], we define A =

∑
g∈G ag ḡ. Assume a subgroup H ≤ G of even order m, the following two

equations must hold for T satisfying Conditions (b) and (c).

(b’) T = T
(−1),

(c’) T 2
= 2mG/H − T (2)

+ 2n− 2.

Here, for the convenience of description, we use 1 to denote the identity element ē inG/H. Hence (2n−2)ē is simply written
as (2n− 2).

First, we consider a very special case for which Conditions (b’) and (c’) hold.

Lemma 3.1. Let K be an Abelian group of order v with identity element eK and S = a · eK + bK ∈ Z[K]. If v and m are
positive integers such that a+ vb = 2n+ 1 and mv = 2n2 + 2n+ 2, and S satisfies

S2 = 2mK − S + (2n− 2)eK , (4)

then 8n− 7 is a square in Z.

Proof. By calculation, we obtain
S2 = (aeK + bK)2

= a2eK + 2abK + b2vK

= a2eK + (ab+ b(2n+ 1))K.

By checking the coefficient of eK in (4), we get
a2 + a− 2n+ 2 = 0,

which shows that 8n− 7 must be a square in Z.

62



W. He / Discrete Math. Lett. 7 (2021) 58–65 63

As 3 is the smallest prime dividing |G|, let us look at the existence of T in G/H which is isomorphic to the cyclic group
C3 of order 3.

Proposition 3.1. Suppose that G/H ∼= C3, 8n − 7 is a non-square. Then there is no T ∈ Z[C3] of size 2n + 1 satisfying
Conditions (b’) and (c’).

Proof. We proceed by way of contradiction, assume that there exists T ∈ Z[C3] satisfying Conditions (b’) and (c’). Note that
T

(2)
= T

(−1)
= T . Thus T = a+ bG/H for some a, b ∈ Z≥0, and by Condition (c’) we have

T
2

= 2mG/H − T + 2n− 2.

By Lemma 3.1, it contradicts our assumption that 8n−7 is a non-square. Hence, there is no T ∈ Z[C3] satisfying Conditions
(b’) and (c’).

To get stronger non-existence results, we need to apply some konwledge on the algebraic number theory.

Lemma 3.2 ( [19], page 263). If m is a square-free integer, with prime factorization

m = 2t
∏
j

pj ,

where the pj are the distinct odd primes appearing in m, t = 0 or 1. Let m′ =
∏
j pj . Then the smallest cyclotomic field

containing Q(
√
m) is

Q(ζm′) if m ≡ 1 (mod 4);

Q(ζ4m′) if m ≡ −1 (mod 4);

Q(ζ8m′) if m ≡ 2 (mod 4).

Next, we look at v = 7, which is the second smallest possible odd prime dividing |G|. In order to deal with this case, we
need to exploit the theory about the decomposition of a prime p into prime ideals in Z[ζω], which can be found in [15].

Lemma 3.3. Let p be a prime and let ζω be a primitive ω-th root of unity in C. If ω = prω′ with gcd(ω′, p) = 1, then the prime
ideal decomposition of (p) in Z[ζω] is

(p) = (P1P2...Pd)
e,

where Pi’s are distinct prime ideals, e = ϕ(pr), d = ϕ(ω′)/f and f is the order of p modulo ω′. If t is an integer not divisible
by p and t ≡ ps (mod ω′) for a suitable integer s, then the field automorphism σt : ζω′ 7→ ζtω′ fixes the ideals Pi.

Theorem 3.2. Suppose that G/H ∼= C7, 8n− 7 is a non-square. Then there is no subset T ∈ Z[C7] of size 2n + 1 satisfying
Conditions (b’) and (c’).

Proof. By way of contradiction, assume that there exists a subset T ∈ Z[C7] satisfying Conditions (b’) and (c’), then

fi = T
(2i)

T
(2i)

+ T
(2i+1) − 2n+ 2 ≡ 0 (mod G/H), (5)

for i = 0, 1, 2. Thinking of them as polynomials with variables T (2i), we calculate the resultants of f0, f1 and f2 to obtain a
polynomial h having only one variable T . All above can be done by MAGMA [5]. Furthermore, we factorize h (mod G/H)

into 2 irreducible factors

h ≡ (T
2

+ T − 2n+ 2)l (mod G/H),

where

l = T
6 − T 5 − (6n− 7)T

4
+ (4n− 5)T

3
+ (12n2 − 30n+ 19)T

2 − (4n2 − 12n+ 9)T − 8n3 + 32n2 − 42n+ 19.

It is no doubt that h must be congruent to 0 modulo G/H. Because there is no zero divisors in the residue ring of Z[G/H]

modulo (G/H) which is isomorphic to Z[X]/(
∑6
i=0X

i), one of the two factors of h must be congruent to 0 modulo G/H.
Assume T 2

+ T − 2n + 2 is congruent to 0 modulo G/H. Let χ ∈ Ĝ/H be a non-principal character. Then χ(T ) ∈ Z[ζ7]

is such that
χ(T )2 + χ(T )− 2n+ 2 = 0, (6)

which implies that 8n − 7 is a square in Z[ζ7]. Because 8n − 7 is a non-square in Z, we can assume 8n − 7 has a square
divisor 8n − 7 = tk2 where t is a square-free integer larger than 1 and k ∈ Z. Then t ≡ 1 (mod 8). Obviously t > 7. By
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Lemma 3.2, the smallest cyclotomic field containing Q(
√

8n− 7) is Q(ζt) rather than Q(ζ7), so there is no χ(T ) such that
(6) holds. Hence, T 2

+ T − 2n+ 2 cannot be congruent to 0 modulo G/H, then l ≡ 0 (mod G/H).
Since l as a polynomial in T is of degree 6, we try to take a prime number p and consider the equation χ(l) = 0 modulo

p. Let p be primitive modulo v = 7, i.e. p = 3, 5 (mod v). By Lemma 3.3, (p) is a prime ideal in Z[ζv]. Substitute X for χ(T )

(mod p) in χ(l) ≡ 0 (mod p) and let its coefficients be calculated modulo p. Then we obtain a polynomial l(X) in Fp[X].
Let τ1 be a root of l(X). Suppose the degree of the minimal polynomial of τ1 is s. Then the conjugates of τ1 are

τp1 , τ
p2

1 , . . . , τp
s−1

1 . As p is primitive modulo v = 7, p v−1
2 ≡ −1 (mod v). Since χ(T

(p)
) ≡ χ(T )p (mod p) and T (−1)

= T ,

χ(T ) = χ(T
(−1)

) = χ

(
T

(p
v−1
2 )
)
≡ χ(T )p

v−1
2 (mod p).

Thus,
τp

3

1 = τp
v−1
2

1 = τ1

which means s = 1 or s = 3. Consequently all the roots τ1, τp1 , . . . , τ
ps−1

1 of l are in Fp3 .
By χ(T

(p)
) ≡ χ(T )p (mod p), we can calculate τi := χ(T

(2i)
) from τ1 as follows:

τi :≡ χ(T
(2i)

) ≡

 τp
3−i

1 (mod p), if p ≡ 3 (mod 7);

τp
i

1 (mod p), if p ≡ 5 (mod 7).
(7)

Consider the necessary conditions that τ1 must satisfy. First, by (5),

τ2
i + τi+1 − 2n+ 2 ≡ 0 (mod p), (8)

for i = 0, 1, 2. Second, we calculate the coefficients of aḡ by using the inversion formula (2). Let β be an element of order
v = 7 in Fpv−1 . For ḡ ∈ G/H with χ(ḡ) ≡ β (mod p),

aḡ =
1

7

(
(2n+ 1) +

6∑
i=1

χ(T
(i)

)χ(ḡ−i)

)

=
1

7

(
(2n+ 1) +

3∑
i=1

χ(T
(i)

)
(
χ(ḡi) + χ(ḡ−i)

))

≡ 1

7

(2n+ 1) +

2∑
j=0

τp
j

1 (βp
j

+ β−p
j

)

 (mod p).

(9)

It is obvious that aḡ (mod p) must correspond to an element in Fp. In addition, since the size of T is 2n+ 1, all aḡ ’s also
satisfy that ∑

ḡ∈G/H

aḡ ≡ 2n+ 1 (mod p). (10)

Based on all the previous necessary conditions, now we provide a method to exclude the existence of T satisfying
Conditions (b’) and (c’). First we choose a prime p. Then, depending on the value of n modulo p, we divide the calculations
into p different cases. In each case, l is a concrete polynomial. To check the necessary conditions, we calculate all the roots
of l in F3

p = F
v−1
2

p and then for each root τ1,

(i) plug it into (7) to get τi;

(ii) check whether (8) holds for each i;

(iii) derive aḡ from (9);

(iv) check whether aḡ satisfies aḡ (mod p) ∈ Fp and (10).

By our MAGMA program, taking p = 101, for each possible value of n modulo p, we can always find at least one of the
necessary conditions not satisfied. Hence there is no T such that Conditions (b’) and (c’) hold.

In the proof of Theorem 3.2, we need to raise T to T (2) in T
2 ≡ −T (2)

+ 2n − 2 (mod G/H) which is true only if 2 is a
generator in Cv ∼= G/H. Thus, we cannot apply this approach to G/H whose order is even. For |G/H| =

∏k
i=1 pi where

pi are prime numbers, if we can show the non-existence of T in G/H ′ which is of order pi for some i ∈ {1, . . . , k}, then we
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also have the non-existence result for G/H. Hence we only concentrate on the case in which |G/H| is an odd prime. As
n2 + n+ 1 is an odd number for all n ∈ Z, v | 2(n2 + n+ 1) implies v | n2 + n+ 1 for every odd prime v.

The approach used in the proof of Theorem 3.2 can be further applied for larger G/H. The next 5 possible values of
a prime dividing n2 + n + 1 is 13, 19, 31, 37 and 43. Our MAGMA program shows that for G/H ∼= C13, G/H ∼= C19 and
G/H ∼= C31, we can choose p = 227, p = 241 and p = 881 respectively and follows the steps in Theorem 3.2 to prove that
there is no T satisfying Conditions (b’) and (c’). For the next odd prime 37 dividing the order of G, our computer is not
powerful enough to provide us the univariate polynomial with the variable T by calculating the resultants of 18 pairs of
polynomials. Hence, we cannot provide any non-existence result for v = 37 or any larger prime numbers. As the process is
more or less the same, we omit it here and present the results directly as follows:

Corollary 3.1. Let G be an Abelian group of order 2n2 + 2n+ 2. Suppose that 8n− 7 is not a square in Z. Assume that one
collection of the following conditions holds

(1) 3, 7, 19 or 31 divides n2 + n+ 1;

(2) 13 | n2 + n+ 1, 8n− 11 /∈ {13k2 : k ∈ Z}.

There is no T ⊆ G viewed as an element in Z[G] satisfying Conditions (a), (b) and (c).

In Table 1, we list the cardinalities of n excluded by Corollary 3.1 and Theorem 3.1, respectively and the last row
indicates the numbers of n to which Corollary 3.1 or Theorem 3.1 can be applied.

Table 1: The numbers of n to which Corollary 3.1 and Theorem 3.1 can be applied, where v = |G/H|.
Conditions 10 102 103 104 105

3 | n2 + n+ 1 1 25 304 3240 33036

7 | n2 + n+ 1 1 21 260 2778 28316

13 | n2 + n+ 1 1 10 133 1469 15161

19 | n2 + n+ 1 0 8 96 1022 10432

31 | n2 + n+ 1 1 5 59 627 6394

Corollary 3.1 3 52 620 6486 65826

Theorem 3.1 3 29 186 1407 10748

Total 5 80 805 7892 76573
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