Discrete Mathematics Letters Discrete Math. Lett. 7 (2021) 5257
www.dmlett.com DOI: 10.47443/dm1.2021.0065

Research Article

Bounds on graph energy and Randi¢ energy

S. Burcu Bozkurt Altindag*

Yenikent Kardelen Konutlari, Selcuklu, 42070 Konya, Turkey
(Received: 14 June 2021. Received in revised form: 24 June 2021. Accepted: 6 July 2021. Published online: 10 July 2021.)

(© 2021 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

In the present paper, new lower and upper bounds on energy and Randié energy of non-singular (bipartite) graphs are
reported. Additionally, it is shown that the obtained lower bounds are stronger than two previously known lower bounds in
the literature.
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1. Introduction

Let G be a simple connected graph. Denote by n and m the number of vertices and edges of G, respectively. Let V(G) =
{v1,v2,...,v,} be the set of the vertices of G and d; be the degree of the vertex v; € V(G), i = 1,2,...,n. If v; and v; are
two adjacent vertices of GG, then it is denoted by ¢ ~ j. Let A and ¢ be the maximum and minimum vertex degrees of G,
respectively.

Let us denote by A = A (G) the adjacency matrix of a graph G. The eigenvalues A\; > Ay > --- > A, of A represent the
eigenvalues of G [6]. As well known in spectral graph theory, \; is the spectral radius of G and [6]

iAi:o, iA?:m and ﬁkizdetA. (1)
=1 =1 1=1

A graph G is called as non-singular if no eigenvalue of G is equal to zero. For non-singular graphs, it is obvious that
det A # 0. A graph G is singular if at least one of its eigenvalue is equal to zero. Then, det A = 0.
The energy of a graph G was defined in [12] as

E=E(G)=)Y_|\l. 2)
=1

This graph invariant is utilized to estimate the total T—electron energy of a molecule represented by a (molecular) graph.
[13,22]. A vast literature exists on F (G), for survey and comprehensive information, see [2,11,14,19,23].

Recently, energy of non-singular graphs has also been studied in the literature. In [8], Das et al. obtained a lower
bound on energy of non-singular graphs that improves the lower bounds in [3,22], under certain conditions. Gutman and
Das [15] established upper bounds on energy of non-singular (bipartite) molecular graphs. In [15], it was also stated that
the upper bound obtained on energy of non-singular molecular graphs improves the upper bound in [3].

The following upper bound on F (G) was found in [11]

E(G) < \/2m (n— 1) + n |det A" 3)

The Randié¢ matrix R = R (G) of a graph G is defined so that its (¢, j) — th entry is equal to 1/,/d;d; if i ~ j and is equal to
0 otherwise [1]. The eigenvalues p; > ps > --- > p, of R are called as the Randié eigenvalues of G [1]. Some well known
results concerning the Randi¢ eigenvalues are [1, 16]

ipizo,ip?:ﬂ%_l and ﬁpi:detR 4)
i=1 i=1 i=1
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where

Ra=R.(G)=> 1

is the general Randié index of the graph G [4,18].
In full analogous manner with the graph energy [12], the Randié¢ energy of G was introduced in [1]. It was defined
as [1]

RE =RE(G)=)Y_|pil. (5)
=1

For details on the properties and bounds of RE, see the recent works [1,9, 10,16,17,20,21,23].
The following upper bound on RE (G) was obtained in [17,21]

RE(G) <1+ \/(n —2)(2R_1 — 1) + (n— 1) |det R[>~ Y, (6)

In the present paper, we find new lower and upper bounds on energy and Randi¢ energy of non-singular (bipartite)
graphs. We also show that our lower bounds are stronger than two previously known lower bounds given in [7,9, 14, 17].

2. Lemmas
We now list some lemmas that will be needed for our main results.
Lemma 2.1. [5]1Letx; > —1for1<i<n.If> z;=0and Y |  z?>a*(1—-n""'), then

zn:ln(l—l—a:i) <lh(l+a-—an"')+(n—-1)h(l—an"').

i=1

Lemma 2.2. [6,27] Let G be a graph with n vertices and maximum vertex degree A. Then, for each 1 =1,2,....,n
Al <A
Lemma 2.3. [10] Let G be a graph with n vertices and without isolated vertices. Then, for each i =1,2,...,n
§lpil < |Ail < Alpsl )
where A and § denote, respectively, the maximum and minimum vertex degrees of G.
Lemma 2.4. [10] Let G be a graph with n vertices and without isolated vertices and let \; be its spectral radius. Then
S(RE(G)—1)<E(G)— M <A(RE(G)-1)
where A and ¢ denote, respectively, the maximum and minimum vertex degrees of G.
Lemma 2.5. [6,20] For a graph G, the Randié¢ spectral radius p; = 1.
Lemma 2.6. Let G be a bipartite graph with n vertices and without isolated vertices and let A\, be its spectral radius. Then
0(RE(G)—2) < E(G)—-2)\ <A(RE(G)-2)
where A and ¢ denote, respectively, the maximum and minimum vertex degrees of G.

Proof. Note that \; = —)\,, and p; = —p,,, for bipartite graphs [6]. Then, by taking summation (7) over i = 2,3,....,n — 1
and considering Lemma 2.5 and Equations (2) and (5), one can get the required result. O

Lemma 2.7. [16] Let G be a graph with n vertices, adjacency matrix A and Randié¢é matrix R. If A has n,,nyg and n_
positive, zero and negative eigenvalues, respectively (ny + ng + n_ = n), then R has ny,ng and n_ positive, zero and negative
eigenvalues, respectively.

For a graph G with n vertices, the following relation between the determinants of its adjacency and Randié¢ matrices
was also given in [16].

Lemma 2.8. [16] If G is a graph with isolated vertices, then det R = det A = 0. If G is a graph without isolated vertices,

then
det A

n

[ d:
=1

detR =
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3. Main results

Theorem 3.1. Let G be a connected non-singular graph with n > 2 vertices and m edges. Then

1/n
|det A|
E(G)Zn<(1+(n—1)b)(1—b)”1) ®

where

)

2mn — (2m (n—1)+n |detA\2/n)
b:

(n—1) (2m (n—1) +n|det A|2/">

E(G)

n

andxi:M—l,forlgign.

T

Proof. We first recall that [A\;| > 0, 1 < i < n, for a non-singular graph G. Let r =
Observe that z; > —1. By means of Equations (1)-(3), we also have

= =~ [\ i1 |l
;xi=;<r|—l>:z ; Y _n=0

and

n 2 n 2 n
> | Al 2 N 22 A
St = 3 (Blor) sz 2aaly,

i=1 =1
2

2m (n — 1) + n|det A|*/" -

2mn? 2 )
= ((n_l) (2m(n—1)+n\detA|2/") - nl) (1_n)

) 2mn — (2m (n—1) +n|det A‘z/n) .
) (n [(” -1 (2m (n—1) +n|detA|2/") ) <1 - n)

= (nb)’ <1 - ;) :

zn;ln </>Z|> <In(l+Mnm-1)b+(n—-1)In(l-0).

From Lemma 2.1, we get that

Hence,
[Tl <rm (4 (m-1)0)(1—0)""
i=1
that is,
|[det A| < <E1(1G)) I+ (n—-1)b)(1— b)”_1 )
This leads to the lower bound (8). O

For a non-singular graph G of order n, the following lower bound on E (G) was found in [7,14]
E(G) > n(|det A" (10)

Remark 3.1. Let b be given by Equation (9). Note that 0 < b < 1, since G is connected non-singular graph with n > 2
vertices and the fact that [11,22]

E(G) < \/Qm (n—1) 4+ n|det A|*" < V2mn.

Let
f@)=0+m-Dz)(1—z)""".

Note that f is decreasing for 0 < x < 1[25]. Thus, f(b) < f(0) = 1, this implies that the lower bound (8) is stronger than
the lower bound (10) for connected non-singular graphs. Further, if G is the graph Ko, then the equality in (8) holds.
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Theorem 3.2. Let G be a connected non-singular graph with n > 2 vertices, m edges and maximum vertex degree . Then

(11)

2 A
E(G)gm+n—1+mn(”|det|>.
n

2m
The equality in (11) is achieved for G = K,,.

Proof. At first, recall that the following inequality
r<l+4+zlhz,

for x > 0 [24]. Obviously, |\;| > 0, 1 < ¢ < n, for a non-singular graph G. Considering these facts with Equation (2), we
have

E(G) = M+ |\
=2

A+ (4 i In )
=2

IN

< X\ +n—1+AZln|)\1\,byLemma2.2
i=2

= M+n—1+Aln|detAl —AlnA. (12)

Let us consider the function f (z), defined by
fx)=2—Alna.

It is not difficult to see that f is a decreasing function in the interval 1 < 2 < A. Notice that \; > 27’” [6] and 277" is the
average of the vertex degrees that is inevitably greater than unity for connected (molecular) graphs [15]. These together
with Lemma 2.2 imply that 1 < 22 < \; < A. Therefore, we have

f(Ansf(zjf) =2?T—A1n(2;f).

Based on this inequality and Equation (12), we obtain the upper bound in (11). Moreover, one can readily check that the

equality in (11) is achieved for G = K,. O
Theorem 3.3. Let G be a connected non-singular bipartite graph with n > 2 vertices, m edges and maximum vertex degree
A. Then 2 qet A
4 t
BG) <™ f g am (MIAtAN (13)
n 4m?

Proof. Notice that z < 1+ zInz, for > 0 [24]. Further, |)\;| > 0, 1 < i < n, for non-singular graphs and \; = —\,,, for
bipartite graphs [6]. Taking into account these with Equation (2), we obtain

n—1

E(G) = 2M+) |\
=2

n—1
< 20+ ) (14 NI
=2
n—1
< 2\ +n-2+A) In|\|, by Lemma 2.2
=2
= 201+ n—2+Aln|det A| — Aln )2 (14)

Let
f(z) =2z — Alnz?

It can be readily seen that f is a decreasing function in the interval 1 < z < A. Recall from Theorem 3.2 that both 2™ and
A1 belong to this interval and A; > 2 [6]. Thus,

f<A1><f(2:‘) :4’”_mn<4m2>.

n n?

Combining this with Equation (14), we get the required result in (13). O
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In the next theorem, we give a lower bound on Randi¢ energy of non-singular graphs considering the similar techniques
in Theorem 3.1 together with Equations (4)—(6) and Lemmas 2.1, 2.5 and 2.7. Therefore, its proof is omitted.

Theorem 3.4. Let G be a connected non-singular graph with n > 3 vertices. Then

1/(n—1)
RE(G) 21+ (n—1) deeRl (15)
1I+(n—-2)c)(1l—-2¢)
where o
(n—=1)(2R-1 1)~ ((n —2)(2R_y — 1) + (n— 1) (|det R|)2/(”*1)) .
€= .
(n—2) ((n —2)(2R_1 — 1) + (n — 1) (|det R|)2/("‘1))
For a (connected) graph G of order n, the authors derived that [9,17]
1/(n—1)

RE(G) > 1+ (n—1) (Jdet RV = 1 4 (1 — 1) | 19t Al an

d;

il;ll

Remark 3.2. Let c be defined by Equation (16). Observe that 0 < ¢ < 1, since G is connected non-singular graph with n > 3
vertices and the fact that [17,20,21]

IN

1+ \/(n —2)(2R_1 — 1) + (n— 1) |det R[>~V
< 14+ —-1)(2R_; —1).

RE(G)

Consider the function f (x) defined as follows
@)=+ (n—2)z) (1—2)" .

Notice that f is decreasing for 0 < x < 1[26]. Then f (c) < f(0) = 1. Combining this with Lemma 2.8, we deduce that the
lower bound (15) is stronger than the lower bound (17) for connected non-singular graphs. Furthermore, if G is the complete
graph K,, then the equality in (15) is attained.

Theorem 3.5. Let G be a connected non-singular graph with n > 2 vertices, m edges, maximum vertex degree A and
minimum vertex degree 6. Then

2m

nflJrAln(M)

RE(G) <1+ 5 (18)
The equality in (18) is achieved for G = K,,.
Proof. According to Lemma 2.4 and Equation (12), we have
RE(G) < 1+ W
< 14 n—1+A(ln\§letA| —ln)\l).

From the above and the fact that \; > 27—2” [6], we arrive at

n—1+ A (In|det A| — In 22)
3 .
Hence the upper bound in (18) holds. Moreover, it is elementary to check that the equality in (18) is achieved for G = K,,. O

RE(G) <1+

Theorem 3.6. Let G be a connected non-singular bipartite graph with n > 2 vertices, m edges, maximum vertex degree A
and minimum vertex degree 5. Then

n— 2—|—Aln (n2|detA\)

4m?2
1)

RE(G) <2+ (19)

Proof. From Lemma 2.6 and Equation (14), we directly get

E(G) -2\

RE(G) < 2+ 5
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- 2+n72+A(ln\;1etA|fln)\f)

Considering this with the lower bound \; > 277” [6], we obtain

n—2+A <1n|detA| “In 4;")
RE(G) <2+ 5
which is the upper bound in (19). O

Remark 3.3. We finally note that the upper bounds in Equations (11), (13), (18) and (19) can be improved using a lower
bound such that \; > v > QTm in Theorems 3.2, 3.3, 3.5 and 3.6, respectively.
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