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Abstract

In this note, we present constructive bijections from Dyck and Motzkin meanders with catastrophes to Dyck paths avoiding
some patterns. As a byproduct, we deduce correspondences from Dyck and Motzkin excursions to restricted Dyck paths.
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1. Introduction and notations

The domain of lattice paths provides a very fertile ground for the combinatorial community. They have many applications
in computer science, queuing theory, biology and physics [17], and there are a multitude of one-to-one correspondences
with various combinatorial objects such as directed animals, pattern avoiding permutations, bargraphs, RNA structures
and so on [4, 8, 17]. A recurring problem in combinatorics is the enumeration of these paths with respect to their length
and other statistics [2, 3, 6, 11–14, 16]. In the literature, Dyck and Motzkin paths are the most often considered, possibly
because they are, respectively, counted by the famous Catalan and Motzkin numbers (see A108 and A1006 in the Sloane’s
On-line Encyclopedia of Integer Sequences [15]).

Throughout this note, a lattice path is defined by a starting point (0, 0), an ending point (n, k) with n, k ≥ 0, it consists
of steps lying in S = {(1, i) : i ∈ Z, i ≤ 1}, and it never goes below the x-axis. The length of a path is the number of
its steps. We denote by ε the empty path, i.e., the path of length zero. Constraining the steps to be in {(1, 1), (1,−1)}
or {(1, 1), (1, 0), (1,−1)}, and fixing the end point on the x-axis, we retrieve the well-known definition of Dyck and Motzkin
paths [17] respectively. LetDn be the set of Dyck paths of semilength n, we defineD = ∪n≥0Dn. For short, we set U = (1, 1),
D = (1,−1), F = (1, 0) and Di = (1,−i) for i ≥ 2.

Considering these notations, a Motzkin meander with catastrophes is a lattice path where possible steps are U,D, F and
Di for i ≥ 2, such that all steps Di end on the x-axis, and if we add the property that the path ends on the x-axis, we call it
a Motzkin excursion with catastrophes (see [1]). Dyck meanders and Dyck excursions with catastrophes are those avoiding
the step F . Let Mn (respectively En) be the set of length n Dyck meanders (respectively excursions) with catastrophes,
and we setM = ∪n≥0Mn (respectively E = ∪n≥0En). The sets of Motzkin meanders and excursions with catastrophes are
respectively denoted by adding prime superscripts,M′ and E ′. As mentioned in Corollary 2.4 in [1], the cardinality ofMn

is given by the sequence A274115 in [15], and the cardinality of En is given by the sequence A224747. For instance, we
have UUDFUUFD3UDUUUDDUD2UUFFUF ∈ M′23 and UUDUUDUD3UDUUUDDUD2 ∈ E17, and we refer to Figure
1 for an illustration of these two paths. Since Motzkin meanders with catastrophes can be obtained from Dyck meanders
with catastrophes by possibly adding flat steps F , the ordinary generating function (o.g.f.) for the cardinality of M′n is
given by

M(x/(1− x))
1− x

where
M(x) =

2x

2x+ (x+ 1)
(√

1− 4x2 − 1
)

is the o.g.f. for Mn (see [1]), which generates the (n + 1)th term of A54391. Simarly, E ′n is counted by the nth term of
A54391.
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Figure 1: (a) A Motzkin meander with catastrophes inM′23, and (b) a Dyck excursion with catastrophes in E17 .

Dyck meanders with catastrophes was first introduced by Krinik et al. in [9] in the context of queuing theory. They
correspond to the evolution of the queue by allowing some resets modeled by a catastrophe step Di for i ≥ 2. Recently
in [1], Banderier and Wallner provide many results about the enumeration and limit laws of these objects. Using algrebraic
methods they prove that the setMn of length n Dyck meanders with catastrophes has the same cardinality as the set of
equivalence classes of semilength n+1 Dyck paths modulo the positions of the pattern DUU , which in turn (see [10]) is in
one-to-one correspondence with the setAn of semilength n Dyck paths avoiding occurrences at height h > 0 of the patterns
UUU and DUD. They also provide a constructive bijection between En and the set of length n Motzkin paths having their
flat steps F at height one.

The motivation of this work is to exhibit one-to-one correspondences between restricted Dyck paths (with no catas-
trophes) and the sets of paths with catastrophes Mn, En, M′n, and E ′n. In Section 2 we present a constructive bijection
betweenMn and An. Considering its restriction to excursions with catastrophes, we prove that En is in one-to-one corre-
spondence with the set A′n of Dyck paths in An where any occurrence UD on the x-axis appears before an occurrence of
UUU (not necessarily contiguous to the occurrence UD). This bijection establishes a curious correspondence connecting
Dyck meanders with catastrophes and equivalence classes modulo the positions of DUU in Dyck paths. In Section 3 we
conduct the counterpart study for Motzkin meanders and excursions. More precisely, we exhibit a bijection betweenM′n
and the set Bn+1 of semilength n+ 1 Dyck paths avoiding the pattern UUU at height h ≥ 2, which also induces a bijection
from the set E ′n of Motzkin excursions with catastrophes to the set Bn. The following table gives an overview of all these
correspondences.

Dyck meanders with cat. Mn → An Dyck paths avoiding UUU and DUD at h > 0

Dyck excursions with cat. En → A′n An whose every UD on the x-axis appears before UUU
Dyck paths Dn → A?2n Dyck paths starting with UU and avoiding UUU and DUD

Motzkin meanders with cat. M′n → Bn+1 Dyck paths avoiding UUU at h ≥ 2

Motzkin excursions with cat. E ′n → Bn
Motzkin paths Motzn → B′n+1 Dyck paths avoiding UUU at h ≥ 2 and DU at h = 1.

2. Dyck meanders with catastrophes

In this section we exhibit a constructive bijection between the setMn of length n Dyck meanders with catastrophes and
the set An of semilength n Dyck paths having no occurrence of the consecutive three steps UUU and DUD at height h > 0

(or equivalently with a minimal ordinate h > 0). We set A = ∪n≥0An. Let us define recursively the map φ fromM to D as
follows. For P ∈M, we set

φ(P ) =



ε if P = ε, (i)

UDφ(α) if P = Uα, (ii)

UUDφ(α)Dφ(β) if P = UαDβ, (iii)

Uφ(αD)Dφ(β) if P = UαD2β, (iv)

UDφ(αDi−1)φ(β) if P = UαDiβ and i ≥ 3, (v)

where β ∈ M, and α is either the empty path or a lattice path consisting of U - and D-steps such that α (respectively αD,
αDk−1) ends on the x-axis in the case (iii) (respectively (iv), (v)), and α does not necessarily end on the x-axis in the case
(ii).

Due to the recursive definition, the image by φ of a length n Dyck meander with catastrophes is a Dyck path of
semilength n. For instance, the images of U , UD, UUD2, UUDUUD3 are respectively

UD, UUDD, UUUDDD, UUDDUUDUUDDD.

We refer to Figure 2 for an illustration of this mapping.
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α
φ−→

φ(α)
(ii)

α β
φ−→

φ(α)
φ(β)

(iii)

α β
k = 2

φ−→
φ(αD)

φ(β)
(iv)

α
β

k ≥ 3

φ−→ φ(αDk−1) φ(β)
(v)

Figure 2: Illustration of the bijection φ betweenMn and An.

Lemma 2.1. For any n ≥ 0,

• if P ∈Mn then we have φ(P ) ∈ An,

• if P ∈ Dn then we have φ(P ) ∈ A∗2n, where A∗0 = {ε} and for n ≥ 1, the set A∗2n consists of semilength 2n Dyck paths
avoiding the patterns UUU and DUD and starting with UUD.

Proof. We proceed by induction on n. The case n = 0 is obvious. For k ≤ n, we assume that for any P ∈ Dk we have
φ(P ) ∈ A∗2k and for any P ∈Mk we have φ(P ) ∈ Ak. Now, let us prove the result for k = n+ 1.

Whenever P ∈ Dn+1 we can write P = UαDβ where α, β ∈ D. Thus, we have φ(P ) = UUDφ(α)Dφ(β), and using the
recurrence hypothesis on α and β, φ(P ) is of semilength 2n + 2, starts with UUD and avoids the pattern UUU . Moreover
φ(α) (respectively φ(β)) is either empty or it starts with UUD, which implies that φ(P ) avoidsDUD, and thus φ(P ) ∈ A∗2n+2.

Now let us assume P ∈Mn+1.

• If P = Uα with α ∈Mn, then φ(P ) = UDφ(α) and the recurrence hypothesis implies that φ(P ) avoids UUU andDUD
at height h > 0.

• If P = UαDβ where α ∈ D and β ∈ M, then the first part of the proof implies that φ(α) avoids UUU and DUD, and
with the recurrence hypothesis on β, φ(P ) = UUDφ(α)Dφ(β) belongs to A.

• If P = UαD2β and αD ∈ D, then using the first part of the proof φ(αD) is not empty and avoids UUU and DUD. The
recurrence hypothesis implies that φ(P ) = Uφ(αD)Dφ(β) belongs to A.

• If P = UαDiβ where i ≥ 3 and αDi−1 ends on the x-axis, then using a simple induction on i ≥ 2, φ(αDi−1) is not
empty and avoids UUU and DUD. The recurrence hypothesis implies that φ(P ) = Uφ(αDi−1)Dφ(β) ∈ A.

The induction is completed.

Theorem 2.1. For n ≥ 0, the map φ :Mn → An is a bijection. Moreover, we have φ(Dn) = A∗2n.

Proof. Due to the enumerative results in [1] (see Corollary 2.4) and the above lemma, it suffices to prove that φ is injective
fromMn to An. We proceed by induction on n. The case n = 0 is obvious. For k ≤ n, we assume that φ is an injection from
Mk to Ak, and we prove the result for k = n+ 1.

According to the definition of φ and Lemma 2.1, the image by φ of P ∈M satisfying (ii) is a Dyck path starting by (UD)kR

for some k ≥ 1 where R is a Dyck path in A∗2i for some i ≥ 0, which means that R avoids UUU ; a meander satisfying (iii) is
sent by φ to a Dyck path in A∗2i for some i ≥ 1; a meander satisfying (iv) is sent to a Dyck path starting with UUUD; and a
meander satisfying (v) is sent to a Dyck path starting with (UD)k for some k ≥ 1 and such that it contains an occurrence
UUU on the x-axis. Then, for P,Q ∈ Mn+1, φ(P ) = φ(Q) implies that P and Q belong to the same case (i), (ii), (iii), (iv)
or (v). So, the recurrence hypothesis induces P = Q which completes the induction. Thus φ is injective. SinceMn and An
have the same cardinality (see [1] and A274115 in [15]), φ is a bijection.

Considering the previous lemma, it suffices to check that A∗2n is counted by the Catalan numbers in order to prove
φ(Dn) = A∗2n. A Dyck path P ∈ A∗2n is either empty or it consists of a sequence of UUDαD where α belongs to A∗2n−2.
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Let A∗(x) be the generating function for the cardinality of A∗2n (with respect to the semilength). We obtain the following
functional equations

A∗(x) = 1 +
x2A∗(x)

1− x2A∗(x)
which implies that A∗2n is counted by the nth Catalan number. Therefore φ : Dn → A∗2n is a bijection.

Remark 2.1. In [10], it is proven that the set An is a representative set of the equivalence classes modulo the pattern DUU
on Dyck paths, i.e. two Dyck paths P and Q are equivalent if and only if the positions of the occurrences DUU are the same
in P and Q (see also [3]). So, the bijection φ establishes a direct correspondence between these classes and Dyck meanders
with catastrophes.

Let A′n be the subset of An consisting of paths P such that any occurrence UD on the x-axis in P appears before an
occurrence of UUU (not necessarily contiguous to the occurrence UD). The next theorem gives a bijection between A′n and
the set En of length n Dyck excursions with catastrophes.

Theorem 2.2. For n ≥ 0, we have φ(En) = A′n.

Proof. Thanks to Theorem 2.1, it suffices to check that for any P ∈ En, φ(P ) ∈ A′n, and |A′n| = |En|. Any P ∈ En satisfies
one of the cases (i), (iii), (iv) and (v) with β ∈ E . We proceed by induction on the length in order to prove that φ(P ) ∈ A′n.
The case (i) is obvious. Whenever P satisfies the cases (iii) or (iv), the only possibility for an occurrence of UD to appear
at height zero in φ(P ) = UUDφ(α)Dφ(β) (respectively φ(P ) = Uφ(αD)Dφ(β)) is to be inside φ(β). Applying the recurrence
hypothesis on β, φ(P ) ∈ A′n. For a path P satisfying the case (v), we have seen in the proof of Theorem 2.1 that φ(P ) starts
necessarily with (UD)k for k ≥ 1 followed by UUU . Using the recurrence hypothesis for β, we obtain φ(P ) ∈ A′n. The
induction is completed.

Now, let us prove that |A′n| = |En|. Any path P ∈ A′n satisfies one of the following two cases: (a) P ∈ An does not contain
any occurrence UD on the x-axis, and (b) P = QUDR where Q ∈ A and R ∈ A such that R contains at least one occurrence
of UUU and avoids any occurrence UD on the x-axis. Let K (respectively K) be the set of Dyck paths in A satisfying (a)
(respectively (b)), and let K(x) and K(x) be the corresponding generating functions for their cardinalities with respect to
the semilength. Obviously, the generating function A′(x) for A′ = ∪n≥0An satisfies

A′(x) = K(x) +K(x).

A nonempty path P ∈ K can be decomposed P = UαDβ where β ∈ K and α is a nonempty Dyck path avoiding UUU and
DUD. Then either α ∈ A?\{ε} or α = UDα′ with α′ ∈ A?. Thus the generating function for K is given by

K(x) = 1 + x(A?(x)− 1 + xA?(x)) ·K(x).

Due to the form of a path P ∈ K, we deduce the functional equation

K(x) = A(x)xR(x)

where A(x) is the generating function for A and R(x) is the generating function for the paths in A avoiding any occurrence
UD on the x-axis and containing at least one occurrence of UUU . Due to Theorem 2.1, A(x) is also the o.g.f. for Dyck
meanders with catastrophes that is

A(x) =M(x) =
2x

2x+ (x+ 1)
(√

1− 4x2 − 1
) .

Then, we have R(x) = K(x)−L(x) where L(x) is the generating function for the set L of Dyck paths in A avoiding UD and
UUU on the x-axis. Note that L is exactly the set A?, then

R(x) = K(x)−A?(x).

Combining the previous equations, we obtain

A′(x) =
2− 3x− 2x2 + x

√
1− 4x2

2− 2x− 4x2 − 2x3

which is exactly the generating function of En found by [1].
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3. Motzkin meanders with catastrophes

In this section we exhibit a constructive bijection between the set M′n of length n Motzkin meanders with catastrophes
and the set Bn+1 of semilength n+1 Dyck paths avoiding the patterns UUU at height h ≥ 2. Before defining this bijection
we recall that there exists a one-to-one correspondence χ between length n Motzkin paths and semilength n Dyck paths
avoiding UUU . From a Dyck path avoiding UUU , we replace each UUD with U , and we replace each remaining UD with
F . For instance, the image by χ of UFUDD is UUDUDUUDDD (see [5,7]).

Now, let us use χ in order to define recursively the map ψ fromM′ to D as follows. For P ∈M′, we set

ψ(P ) =


UD if P = ε,

UDψ(α) if P = Fα,

UUχ(α1)DUχ(α2)D . . . Uχ(αk)DD if P = Uα1Uα2 . . . Uαk,

UUχ(α1)DUχ(α2)D . . . Uχ(αk)DDψ(β) if P = Uα1Uα2 . . . UαkDkβ,

where k ≥ 1, α, β ∈M′, and α1, α2, . . . , αk are some possibly empty Motzkin paths (considering that D1 is defined to be D).
Clearly, the image by ψ of a length n Motzkin meander with catastrophes is a Dyck path of semilength n + 1. For

instance, the images by ψ of ε, F , UD, UUD2, UUDUUD3 are respectively

UD, UDUD, UUDDUD, UUDUDDUD, UUUUDDUDUDDUD.

We refer to Figure 3 for an illustration of this mapping.

α ψ−→ ψ(α) (ii)

α1
α2

αk

ψ−→

χ(α1) χ(α2) χ(αk)

(iii)

α1
α2

αk

β
ψ−→

χ(α1) χ(α2) χ(αk)
ψ(β)

(iv)

Figure 3: Illustration of the bijection ψ betweenM′n and Bn+1.

A simple observation provides the following results.

Theorem 3.1. For n ≥ 0, the map ψ, defined above, induces a bijection fromM′n to Bn+1. Moreover, the image of the set of
length nMotzkin paths is the set of semilength n+1 Dyck paths avoiding UUU at height h ≥ 2 and the patternDU at height
one.

Corollary 3.1. For n ≥ 0, ψ(E ′n) is the set of Dyck paths in Bn+1 ending with UD, which implies that ψ induces a one-to-one
correspondence from paths P ∈ E ′n to Bn after deleting the last two steps UD from ψ(P ).

Acknowledgment

We would like to thank Cyril Banderier for suggesting us to explore constructive bijections between meanders with catas-
trophes and Dyck paths avoiding some patterns.

References
[1] C. Banderier, M. Wallner, Lattice paths with catastrophes, Discrete Math. Theor. Comput. Sci. 19 (2017) Art# 23.
[2] E. Barcucci, A. Del Lungo, S. Fezzi, R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math. 170 (1997) 211–217.
[3] J.-L. Baril, A. Petrossian, Equivalence classes of Dyck paths modulo some statistics, Discrete Math. 338 (2015) 655–660.
[4] J.-L. Baril, D. Bevan, S. Kirgizov, Bijections between directed animals, multisets and Grand-Dyck paths, Electron. J. Combin. 27 (2020) Art# P2.10.
[5] D. Callan, Two bijections for Dyck path parameters, arXiv:math/0406381v2 [math.CO], (2004).
[6] E. Deutsch, Dyck path enumeration, Discrete Math. 204 (1999) 167–202.
[7] S. Elizalde, T. Mansour, Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials, Discrete Math. 305

(2005) 170–189.
[8] D. E. Knuth, The Art of Computer Programming, Volume 1. Fundamental Algorithms, Addison-Wesley, Reading, 1973.
[9] A. Krinik, G. Rubino, D. Marcus, R. J. Swift, H. Kasfy, H. Lam, Dual processes to solve single server systems, J. Statist. Plann. Inference 135 (2005)

121–147.

9



J.-L. Baril and S. Kirgizov / Discrete Math. Lett. 7 (2021) 5–10 10

[10] K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, Discrete Math. 339 (2016)
2557–2572.

[11] T. Mansour, Statistics on Dyck paths, J. Integer Seq. 9 (2006) Art# 06.1.5.
[12] D. Merlini, R. Sprugnoli, M. C. Verri, Some statistics on Dyck paths, J. Statist. Plann. Inference 101 (2002) 211–227.
[13] A. Panayotopoulos, A. Sapounakis, On the prime decomposition of Dyck paths, J. Combin. Math. Combin. Comput. 40 (2002) 33–39.
[14] A. Sapounakis, I. Tasoulas, P. Tsikouras, Counting strings in Dyck paths, Discrete Math. 307 (2007) 2909–2924.
[15] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, http://oeis.org
[16] Y. Sun, The statistic “number of udu’s” in Dyck paths, Discrete Math. 287 (2004) 177–186.
[17] R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, Cambridge, 1999.

10

http://oeis.org

	Introduction and notations
	Dyck meanders with catastrophes
	Motzkin meanders with catastrophes

