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Abstract

A directed graph G = (V, E) is strongly biconnected if G is strongly connected and its underlying graph is biconnected. A
strongly biconnected directed graph G = (V, E) is called 2-vertex-strongly biconnected if |V| > 3 and the induced subgraph
on V' \ {w} is strongly biconnected for every vertex w € V. In this paper, the following problem is studied: Given a 2-vertex-
strongly biconnected directed graph G = (V, E), compute an edge subset £?** C F of minimum size such that the subgraph
(V, E?%%) is 2-vertex-strongly biconnected.
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1. Introduction

The underlying graph of a directed graph G = (V, E) is the undirected graph G; = (V4, E;), where V; = V and E; =
{(v,w) | (v,w) € For (w,v) € E}. A directed graph G = (V| E) is strongly biconnected if G is strongly connected and its
underlying graph is biconnected. A strongly biconnected directed graph G = (V, E) is called k-vertex-strongly biconnected
if |V]| > k and for each L C V with |L| < k, the induced subgraph on V' \ L is strongly biconnected. The minimum
k-vertex-strongly biconnected spanning subgraph problem (denoted by MKVSBSS) is formulated as follows. Given a k-
vertex-strongly biconnected directed graph G = (V, E), compute an edge subset E*** C E of minimum size such that the
subgraph (V, E¥*) is k-vertex-strongly biconnected. In this paper, we consider the MKVSBSS problem for k = 2. Note that
each 2-vertex-strongly-biconnected directed graph is 2-vertex-connected, but the converse is not necessarily true.

Thus, optimal solutions for minimum 2-vertex-connected spanning subgraph (M2VCSS) problem are not necessarily
feasible solutions for the 2-vertex strongly biconnnected spanning subgraph problem, as shown in Figure 1.

The problem of finding a k-vertex-connected spanning subgraph of a k-vertex-connected directed graph is NP-hard
for k > 1 [4]. Results of Edmonds [2] and Mader [16] imply that the number of edges in each minimal k-vertex-connected
directed graph is at most 2kn [1]. Cheriyan and Thurimella[1] gave a (1+1/k)-approximation algorithm for the minimum k-
vertex-connected spanning subgraph problem. Georgiadis [6] improved the running time of this algorithm for the M2VCSS
problem and presented a linear time approximation algorithm that achieves an approximation factor of 3 for the M2VCSS
problem. Georgiadis et al. [7] provided efficient approximation algorithms based on the results of[3,5,9,10] for the M2VCSS
problem. Strongly connected components of a directed graph and blocks of an undirected graphs can be found in linear
time using Tarjan’s algorithm [17,18]. Wu and Grumbach [19] introduced the concept of strongly biconnected directed
graph and strongly biconnected components. Clearly, the MKVSBSS problem is NP-hard for £ > 1. In this paper, we study
the MKVSBSS problem when k& = 2 (denoted by M2VSBSS).

2. Approximation algorithms for the M2VSBSS problem

In this section, we present approximation algorithms for the M2VSBSS Problem. A vertex w in a strongly biconnected
directed graph G = (V, E) is a b-articulation point if G\ {w} is not strongly biconnected. Algorithm 2.1 is based on b-
articulation points, minimal 2-vertex-connected subgraphs, and Lemma 2.1.

Lemma 2.1. Let G, = (V, E;) be a subgraph of a strongly biconnected directed graph G = (V, E) such that G is strongly
connected and G has t > 0 strongly biconnected components. Let (u,w) be an edge in E \ E such that u,w are not in the
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Figure 1: (a) A 2-vertex strongly biconnected graph. (b) An optimal solution for the minimum 2-vertex-connected spanning
subgraph problem. But note that this subgraph is not 2-vertex strongly biconnected because the underlying graph of the
subgraph obtained by removing vertex 1 is not biconnected. (c) An optimal solution for the minimum 2-vertex strongly
biconnected spanning subgraph problem.

same strongly biconnected component of G,. Then the directed subgraph (V, Es U {(u,w)}) contains at most t — 1 strongly
biconnected components.

Proof. Since G, is strongly connected, there exists a simple path p from w to v in G,. Since the edge (u, w) does not belong
to the path p, the path p and edge (u, w) form a simple directed cycle c in the directed subgraph (V, E;U{(u,w)}). Moreover,
the cycle ¢ is also a simple undirected cycle in the underlying undirected graph of the directed graph (V, Es U {(u,w)}).
Consequently, the vertices u, w are in the same strongly biconnected component of the subgraph (V, E, U {(u, w)}). O

Lemma 2.2. Algorithm 2.1 returns a 2-vertex strongly biconnected directed subgraph.
Proof. It follows from Lemma 2.1. O

The following lemma shows that each optimal solution for the M2VSBSS problem has at least 2n edges.

Lemma 2.3. Let G = (V, E) be a 2-vertex-strongly biconnected directed graph. Let O C E be an optimal solution for the
M2VSBSS problem. Then |O] > 2n.
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Algorithm 2.1.
Input: A 2-vertex strongly biconnected directed graph G = (V, E)
Output: a 2-vertex strongly biconnected subgraph Gos = (V, Es;)
1 find a minimal 2-vertex-connected subgraph G; = (V, E;) of G
if GG, is 2-vertex strongly biconnected then
output G,
else
Ess <+ By
GQs — (‘/7 EQS)
identify the b-articulation points of G,
for every b-articulation point b € V do
while G, \ {b} is not strongly biconnected do
calculate the strongly biconnected components of G, \ {b}
find an edge (u,w) € E \ E2s such that u,w are not in
12 the same strongly biconnected component of Gy, \ {b}.
FEos + FEos U {(U,’(U)}
output Go;.
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Proof. for any vertex x € V, the removal of = from the subgraph (V, O) leaves a strongly biconnected directed subgraph.
Since each strongly biconnected directed graph is strongly connected, the subgraph (V, O) has no strong articulation points.
Therefore, the directed subgraph (V, O) is 2-vertex-connected. O

Let [ be the number of b-articulation points in GG;. The following lemma shows that Algorithm 2.1 has an approximation
factor of (2 +1/2).

Theorem 2.1. Let | be the number of b-articulation points in Gy. Then, |Es| < l(n — 1) + 4n.

Proof. Results of Edmonds [2] and Mader [16] imply that | F;| < 4n [1,6]. Moreover, by Lemma 2.3, every optimal solution
for the M2VSBSS problem has size at least 2n. For every b-articulation point in line 8, Algorithm 2.1 adds at most n — 1
edges to Es, in while loop. Therefore, |Fos| < i(n —1) +4n O

Theorem 2.1. The running time of Algorithm 2.1 is O(n?m).

Proof. A minimal 2-vertex-connected subgraph can be found in time O(n?) [6,7]. B-articulation points can be computed in
O(nm) time. The strongly biconnected components of a directed graph can be identified in linear time [19]. Furthermore,
by Lemma 2.1, lines 9-13 take O(nm) time. O

Results of Mader [14, 15] imply that the number of edges in each minimal k-vertex-connected undirected graph is at
most kn [1]. Results of Edmonds [2] and Mader [16] imply that the number of edges in each minimal k-vertex-connected
directed graph is at most 2kn [1]. These results imply a 2-approximation algorithm [1] for minimum k-vertex-connected
spanning subgraph problem for undirected and directed graphs [1] because every vertex in a k-vertex-connected undirected
graphs has degree at least k and every vertex in a k-vertex-connected directed graph has outdegree at least k£ [1]. Note
that these results imply a 7/2 approximation algorithm for the M2VSBSS problem by calculating a minimal 2-vertex-
connected directed subgraph of a 2-vertex strongly biconnected directed graph G = (V, F) and a minimal 3-vertex connected
undirected subgraph of the underlying graph of G. The running time of this algorithm is O(m?).

Lemma 2.4. Let G = (V,E) be a 2-vertex strongly biconnected directed graph. Let G; = (V,L) be a minimal 2-vertex-
connected subgraph of G and let Gy = (V,U) be a minimal 3-vertex-connected subgraph of the underlying graph of G.
Then the directed subgraph G, = (V,L U A) is 2-vertex strongly biconnected, where A = {(v,w) | (v,w) € E and (v,w) € U}.
Moreover, |L U A| < Tn

Proof. Let w be any vertex of the subgraph G;. Since the G; = (V, L) is 2-vertex-connected, the directed subgraph G, has
no strong articulation points. Therefore, G \ {w} is strongly connected. Moreover, the underlying graph of G, \ {w} is
biconnected because G, is 3-vertex-connected and Gs is a subgraph of the underlying graph of G,;. Results of Edmonds [2]
and Mader [16] imply that |L| < 4n. Furthermore, Results of Mader [14, 15] imply that |U| < 3n. O

3. Open problems

We leave as an open problem whether each minimal k-vertex strongly biconnected directed graph has at most 2kn edges.
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Cheriyan and Thurimella [1] presented a (1+ 1/k)-approximation algorithm for the minimum k-vertex-connected span-
ning subgraph problem for directed and undirected graphs. The algorithm of Cheriyan and Thurimella [1] has an approxi-
mation factor of 3/2 for the minimum 2-vertex-connected directed subgraph problem. Let G = (V, F) be a 2-vertex strongly
biconnected directed graph and let ET be the output of the algorithm of Cheriyan and Thurimella [1]. The directed
subgraph (V, ET) is not necessarily 2-vertex strongly biconnected. But a 2-vertex strongly biconnected subgraph can be
obtained by performing the following third phase. For each edge ¢ € E\ E¢7, if the underlying graph of G \ {e} is 3-vertex-
connected, delete e from G. We leave as as open problem whether this algorithm has an approximation factor of 3/2 for the
M2VSBSS problem.

The present author [11-13] studied twinless articulation points and some related problems. Georgiadis and Kosinas [8]
presented linear time algorithms for computing twinless articulation points and twinless bridges. An important question
is whether there is a connection between twinless articulation points and the M2VSBSS problem.
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