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Abstract

The longest increasing subsequence problem for permutations has been studied extensively in the last fifty years. The
interpretation of the longest increasing subsequence as the longest 21-avoiding subsequence in the context of permutation
patterns leads to many interesting research directions. We introduce and study the statistical properties of Hammersley-
type interacting particle processes related to these generalizations and explore the finer structures of their distributions. We
also propose three different interacting particle systems in the plane analogous to the Hammersley process in one dimension
and obtain estimates for the asymptotic orders of the mean and variance of the number of particles in the systems.
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1. Introduction

The longest increasing subsequence problem for permutations, also called Ulam’s problem [18], has motivated an interest-
ing research program at the intersection of different branches of mathematics such as probability theory, random matrix
theory, operator theory, and statistical physics [2, 5, 9, 14, 16]. Any arrangements of the elements in [n] := {1, 2, · · · , n} is
called a permutation that can also be considered a one-to-one and onto function from [n] to itself. We use Sn to denote
the set of all permutations of length n. For σ = σ1σ2 · · ·σn ∈ Sn, we define `isn(σ) as the length of the longest increasing
subsequence in σ, that is, the maximum k ∈ [n] for which the conditions 1 ≤ i1 < i2 < · · · < ik ≤ n and σi1 < σi2 < · · · < σik
hold. A well-known result in combinatorics, called Erdős-Szekeres’s lemma, states that any sequence of n2 + 1 distinct
numbers has either an increasing or decreasing subsequence of length at least n + 1. It follows from this fact that the
expected value of `isn, E(`isn), grows asymptotically proportional to c

√
n for some positive constant c as n tends to infinity.

In a seminal paper in 1972 [7], Hammersley introduced a Poissonized version of the problem and proved the existence
of the limit for the sequence E(`isn)/

√
n; later it was shown that c = 2, for the details, see [2]. A complete solution for

the problem was provided in 1999 [3] by determining the order of the fluctuations around the mean as n1/6 and limiting
distribution as the Tracy-Widom GUE distribution, that is,

lim
n→∞

P

(
`isn−2

√
n

n1/6
≤ x

)
= F2(x)

for all x. The Tracy-Widom distribution first appeared as the limiting distribution for the rescaled largest eigenvalue of the
Gaussian unitary ensemble (GUE) from the random matrix theory [17]. Other Tracy-Widom distributions from orthogonal
(GOE) and symplectic (GSE) matrix ensembles also appear as a limiting distribution for some specific permutations classes,
see the introduction of [4].

It also follows from the Hammersley’s work [2,7] that a simple interacting particle process on the unit interval in which
the macroscopic quantity defined as the number of particles in the system has the same statistical distribution with the
random variable `isn. The particle process approach also gives a very efficient and elegant algorithm for simulating `isn
and described as follows: Initially, there are zero particles in the system. At each step, a particle appears at a uniform
random point u in the interval [0, 1]; simultaneously the nearest particle (if any) to the right of u disappears. If phn denotes
the number of particles in the system after n steps, then phn and `isn have the same probability distribution hence the large
time behavior of the particle system follows the Tracy-Widom GUE distribution.
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Figure 1: Log-Log plots of the best fits for the mean and standard deviation of the number of particles in two-aligned
segments. The data indicate that E(pIn) ≈ 4n1/2 + an1/6 and SD(pIn) ≈ b n1/6 with 95% confidence intervals for a ∈
[−5.222,−5.057] and b ∈ [1.392, 1.417] with corresponding MSEs 1.054 and 0.024, respectively.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

(4n
1
2 −mean(p321n ))n−

1
6 4.790 4.869 4.940 4.997 5.056 5.098 5.147 5.175 5.201 5.240

(st. dev. (p321n ))n−
1
6 1.345 1.358 1.380 1.387 1.388 1.401 1.411 1.410 1.412 1.418

skewness 0.131 0.116 0.130 0.129 0.098 0.102 0.116 0.120 0.115 0.106
kurtosis 3.024 3.027 3.040 3.030 2.992 3.047 3.033 3.006 3.011 3.017

Table 1: Monte Carlo simulation results for two-aligned segments for 10 logarithmically spaced n values from 104 to 107.

1.1. Pattern avoidance and generalization of the Ulam’s problem
For τ = τ1τ2 · · · τk ∈ Sk and σ = σ1σ2 · · ·σn ∈ Sn, it is said that τ appears as a pattern in σ if there exists a subset of indices
1 ≤ i1 < i2 < · · · < ik ≤ n such that σis < σit if and only if τs < τt for all 1 ≤ s, t ≤ k. If τ does not appear as a pattern
in σ, then σ is called a τ -avoiding permutation. For example, 132 ∈ S3 appears as a pattern in 246513 because it has the
subsequences 24−−− 3, 2− 6−−3, 2− 65−−, 2−−5− 3 or −465−−. On the other hand, 4213 ∈ S4 does not appear as
a pattern in 246513. We denote by Sn(τ) the set of all τ -avoiding permutations of length n. More generally, for a set T of
patterns, we use the notation Sn(T ) =

⋂
τ∈T Sn(τ). It is known that for any pattern τ ∈ Sk, f(τ) := limn→∞ |Sn(τ)|1/n exists

as a finite number [12]. For some specific cases, it is possible to calculate the limiting value explicitly such as f(τ) = 4 for
any τ ∈ S3 and f(12 . . . k) = (k − 1)2. Albert introduced an interesting generalization and reinterpretation of the longest
increasing subsequence problem in the context of pattern avoidance [1]. For a given pattern τ ∈ Sk and σ ∈ Sn, let `τn(σ)
be the length of the longest τ -avoiding subsequence in σ. Note that the longest increasing subsequence corresponds to the
longest 21-avoiding subsequence, that is, `21n (σ) = `isn(σ). A set T of patterns is called proper if T does not contain both
patterns 12 . . . k and j . . . 21 for some k and j. The following conjecture was proposed in [1]:

Conjecture: Let T be a proper set of patterns. Then

lim
n→∞

E(`Tn )√
n

= 2
√

lim sup
n→∞

|Sn(T )|1/n .

This conjecture was proven in [1] for monotone patterns of length k, that is,

lim
n→∞

E(`
k(k−1)···21
n )√

n
= 2(k − 1).

In this note, we propose Hammersley-type particle processes corresponding to the pattern τ = k . . . 21, and numerically
study the finer structures of the distribution of the rescaled random variables `τn for τ = 4321 and τ = 321. Our particle
processes give also an efficient algorithm for simulating `τn for any monotone pattern τ .

2. Numerical Results

2.1. Hammersley-type processes corresponding to the monotone pattern τ = k(k−1) . . . 21

Consider k − 1 unit intervals [0, 1] in parallel and label them from top to bottom as l1, l2, . . . , lk−1. Initially, there are zero
particles in the system. At each step, a particle appears at a uniform random point u1o in the interval l1; simultaneously the
nearest particle u1r (if any) to the right of u1o disappears from l1 and a particle appears in l2 at u2o = u1r; simultaneously the
nearest particle u2r (if any) to the right of u2o disappears from l2 and a particle appears in l3 at u3o = u2r;.... ; simultaneously
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Figure 2: Log-Log plots of the best fits for the mean and standard deviation of the number of particles in three-aligned
segments. The data indicate that E(pIn) ≈ 6n1/2 + an1/6 and SD(pIn) ≈ b n1/6 with 95% confidence intervals for a ∈
[−10.140,−9.774] and b ∈ [1.809, 1.850] with corresponding MSEs 5.056 and 0.065, respectively.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

(6n
1
2 −mean(p4321n ))n−

1
6 9.188 9.363 9.519 9.647 9.767 9.866 9.963 10.034 10.093 10.172

(st. dev. (p4321n ))n−
1
6 1.727 1.755 1.786 1.800 1.810 1.825 1.840 1.836 1.844 1.849

skewness 0.087 0.077 0.084 0.089 0.069 0.072 0.078 0.084 0.079 0.074
kurtosis 2.998 3.002 3.020 3.020 2.979 3.039 3.027 3.005 3.006 3.020

Table 2: Monte Carlo simulation results for three-aligned segments for 10 logarithmically spaced n values from 104 to 107.

the nearest particle uk−1r (if any) to the right of uk−1o = uk−2r disappears from lk−1 and leaves the system. Let pτn denotes
the number of particles in the system after n steps.

Theorem 2.1. Under the uniform probability distribution, the random variables `τn and pτn have the same distribution.

Proof. The proof follows from the main result of [6], which is a generalization of Robinson-Schensted [15] correspondence,
and the patience sorting algorithm [2]. Recall that a partition of integer n is a collection of integers λ = (λ1, λ2, . . . , λl)

such that λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 1 and
∑l
i=1 λi = n. A given partition λ of n can be represented by a Young diagram, a finite

collection of boxes, or cells, arranged in left-justified rows, with the ith row having λi boxes. A standard Young tableau is a
filling of the diagram λ by integers 1, 2, · · · , n such that the numbers are in increasing order along each row and each column.
The Robinson-Schensted correspondence uniquely associates a pair (Q,R) of Young tableaux of the same shape of size n to
each σ ∈ Sn. Moreover, `isn(σ) = λ1. Then the result follows from Greene’s theorem, `k(k−1)···21n (σ) = λ1 + λ2 + · · ·+ λk−1,
and the patience sorting algorithm.

For the patterns τ = 4321 and τ = 321, we carried out Monte Carlo simulations for the corresponding particle systems
for each of the 10 logarithmically spaced n values from n1 = 104 to n10 = 107. We obtained 105 samples for each case
and analyzed various statistical properties of pτn, the number of particles in the system after n steps. We summarized the
numerical results for τ = 321, in Figure 1 and Table 1; for τ = 4321, in Figure 2 and Table 2. The results are consistent
with the verified cases of the conjecture for the order of the mean; they also indicate that the variance is of order n1/6.

2.2. Hammersley-type processes in the plane
In this section, we introduce three Hammersley-type interacting particle processes in the plane and numerically study
their statistical properties. We summarize our results in Tables 3, 4, and 5. We use K to denote the unit square in the
Cartesian plane with corners at the points (0, 0), (1, 0), (0, 1), and (1, 1). The illustrations of the models are given in Figure
6.

Model-I For (u, v) ∈ K and a real number m, let Km(u, v) denote the part of the unit square K above the line through
(u, v) with slope m. That is, Km(u, v) = {(x, y) ∈ K : y > m(x − u) + v}. Fix a slope m. Initially, there are zero particles
in the system. At each step, a particle appears at a uniform random point (u, v) in the unit square K; simultaneously the
closest particle in Km(u, v) to the point (u, v) (if any) disappears. Let pIn denote the number of particles in the system after
n steps.

36



A. Atalik, H. S. M. Erol, G. Yıldırım, and M. Yilmaz / Discrete Math. Lett. 7 (2021) 34–39 37

104 105 106 107

n

103

104

M
ea
n

Data Points

0.567 (log n)0.327 n0.659

104 105 106 107

n

101

2× 101

3× 101

4× 101

S
ta
n
d
ar
d
D
ev
ia
ti
on Data Points

0.588n0.267

Figure 3: Log-Log plots of the best fits for the mean and standard deviation of the number of particles in model-I. The data
indicate that E(pIn) ≈ a (log n)b nc and SD(pIn) ≈ dnf with 95% confidence intervals for a ∈ [0.538, 0.595], b ∈ [0.297, 0.357],
c ∈ [0.657, 0.661], and d ∈ [0.555, 0.621], f ∈ [0.263, 0.271] with corresponding MSEs 3.226 and 0.029, respectively.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

mean(pIn) (log n)−0.327 n−0.659 0.570 0.568 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.567
(st. dev. (pIn))n−0.267 0.565 0.578 0.580 0.586 0.595 0.596 0.588 0.586 0.591 0.585

skewness 0.082 0.066 0.059 0.033 0.027 0.047 0.068 0.025 0.015 0.007
kurtosis 3.045 3.016 3.009 3.018 3.008 3.045 2.900 2.902 3.002 3.036

Table 3: Monte Carlo simulation results for the model-I.

Model-II For (u, v) ∈ K, let C(u, v) denote the part of the unit square K outside the circle through (u, v) with center (0, 0).
That is, C(u, v) = {(x, y) ∈ K : x2 + y2 > u2 + v2}. Initially, there are zero particles in the system. At each step, a particle
appears at a uniform random point (u, v) in the unit square K; simultaneously the closest particle in C(u, v) to the point
(u, v) (if any) disappears. Let pIIn denote the number of particles in the system after n steps.
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Figure 4: Log-Log plots of the best fits for the mean and standard deviation of the number of particles in model-II. The data
indicate that E(pIIn ) ≈ a (log n)b nc and SD(pIIn ) ≈ dnf with 95% confidence intervals for a ∈ [0.650, 0.689], b ∈ [0.217, 0.251],
c ∈ [0.661, 0.664], and d ∈ [0.550, 0.641], f ∈ [0.258, 0.268] with corresponding MSEs 1.040 and 0.050, respectively.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

mean(pIIn ) (log n)−0.234 n−0.662 0.671 0.671 0.670 0.670 0.670 0.670 0.670 0.670 0.670 0.670
(st. dev. (pIIn ))n−0.263 0.583 0.596 0.594 0.598 0.600 0.590 0.591 0.609 0.593 0.594

skewness 0.101 0.087 0.061 0.042 0.040 0.099 0.069 0.092 0.065 0.003
kurtosis 3.031 3.051 2.992 3.038 2.954 3.099 3.005 3.015 3.003 2.943

Table 4: Monte Carlo simulation results for the model-II.

Model-III For (u, v) ∈ K, let D(u, v) denote rectangle whose sides are parallel to x and y axes with vertices (u, v), (1, v),
(1, 1), (u, 1). Initially, there are zero particles in the system. At each step, a particle appears at a uniform random point
(u, v) in the unit square K; simultaneously the closest particle in D(u, v) to the point (u, v) (if any) disappears. Let pIIIn

denote the number of particles in the system after n steps.
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Figure 5: Log-Log plots of the best fits for the mean and standard deviation of the number of particles in model-III. The data
indicate thatE(pIIIn ) ≈ a (log n)b nc and SD(pIIIn ) ≈ dnf with 95% confidence intervals for a ∈ [1.014, 1.027], b ∈ [0.360, 0.367],
c ∈ [0.6497, 0.6502], and d ∈ [0.978, 1.197], f ∈ [0.258, 0.272] with corresponding MSEs 0.177 and 0.306, respectively.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

mean(pIIIn ) (log n)−0.363 n−0.650 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020
(st. dev. (pIIIn ))n−0.265 1.045 1.058 1.073 1.083 1.098 1.099 1.088 1.111 1.070 1.088

skewness 0.095 0.087 0.080 0.058 0.061 0.021 0.073 0.036 0.065 0.019
kurtosis 3.018 3.036 3.056 2.999 3.017 3.008 3.025 2.944 3.030 3.090

Table 5: Monte Carlo simulation results for the model-III.

3. Conclusion

The longest increasing subsequence for uniformly random permutations is an example of a model from the Kardar-Parisi-
Zhang universality class [5]. Its study has provided a rich research program for mathematicians and physicists for the
last fifty years and produced profound results in mathematics and physics, see [5,10] and references therein. Three Tracy-
Widom distributions (GUE, GOE, GSE) from random matrix ensembles also appear as the limiting distributions for various
subsequence problems for permutations [4,8]. For a given pattern τ ∈ Sk, the length of the longest τ -avoiding subsequence
problem vastly generalizes the longest increasing subsequence problem and leads to many interesting research directions,
see [1,11] for a review of the recent results. This paper will motivate further research in this direction and provide insights
on the limiting distribution of the proposed models. It would be interesting to find particle processes corresponding to `τn
for general patterns τ that provide an efficient algorithm for numerical studies to understand better the limiting behaviour
of the random variables.

We also studied three interacting particle systems in the plane analogous to the one-dimensional Hammersley process
[2, 13]. The results indicate that, in each model, the mean value and variance of the number of particles in the system
after n steps grows proportional to a (log n)b nc and dnf respectively. We also provided estimates for the corresponding
exponents and coefficients. Determining the limiting distributions requires more numerical and theoretical works.

Figure 6: Illustrations of the models.
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