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Abstract

The energy of a graph is the sum of absolute values of its eigenvalues. The nullity of a graph is the algebraic multiplicity of
number zero in its spectrum. The dependence of graph energy on nullity is of importance in chemical applications. In this
paper we present a method by means of which this dependence can be calculated.
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1. Introduction

Let G be a simple graph, possessing n vertices, and let A(G) be its (0, 1)-adjacency matrix of G (a symmetric matrix of
order n). The eigenvalues of A(G), denoted by A1 > Ay > --- > A, form the spectrum of G [2]. The number of eigenvalues
of G that are equal to zero, i.e., the algebraic multiplicity of the number zero, is the nullity of G, denoted by n = n(G).

A graph with n(G) > 0 is said to be singular. Otherwise, G is non-singular.

The characteristic polynomial of the graph G is defined as [2]

¢(G,z) = det (zI, — A(GQ))

where I,, is the unit matrix of order n. In coefficient-form this polynomial is written as
n
$(Gx) =Y cpa" . 1)
k=0

Note that all zeros of ¢(G, x) are real-valued numbers (equal to the graph eigenvalues). In addition, if G is singular, then
¢, = 0, whereas otherwise ¢, # 0.
The energy of the graph G is defined as [15]:

E=E(G)=> |\l
i=1

As well known [11,15], the concept of graph energy is a generalization of the total m-electron energy [5,11]. In chemical
applications, the graph nullity is the number of non-bonding molecular orbitals, and is closely related to the stability and
chemical reactivity of the underlying molecule [3-5].

Already in the early days of the study of graph energy, it was observed that it somehow decreases with the increasing
nullity [5,7]. In particular, if G and G* are two structurally similar graphs, and if G is non-singular whereas G* is singular,
then one expects that F(G) > E(G*).

The problem is that the meaning of “structurally similar graphs” is not clear and — from a mathematical point of view —
cannot be satisfactorily defined. Earlier attempts to solve this problem were based on designing approximate expressions
for E(G), containing the term 7 [7,12,13].

In a recent paper [9], a pseudo-spectral formalism was proposed for computing the energy-effect of nullity. According
to it, the energy of the non-singular graph G is calculated from its characteristic polynomial ¢(G, =), which is the standard
procedure. On the other hand, a quasi-energy E*(G) is calculated from a polynomial ¢*(G, ), constructed to be as similar
as possible to ¢(G, z), but having nullity » > 0. This polynomial could be understood as the characteristic polynomial of a
pseudo-graph G*, which in the general case does not need to be a true graph.
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In [9], it was shown that the polynomial ¢*(G, x) should be defined as
?*(G,x) = ¢(G,x) — ¢y -

Then by applying the Coulson—Jacobs formula [1], one gets [9]

dz . (2)

™ G,Zl‘) —Cn

B(G) - B (@) =~ 71n ‘W

The hidden difficulty in formula (2) is that the pseudo-spectrum of G* (i.e., the solutions of ¢*(G,x) = 0), may be
complex—valued, and is anyway hard to be calculated. Consequently, in the general case, the evaluation of the right—-hand
side of Equation (2) is far from being straightforward.

In the next section, we show that there exists a special case in which the computation of the energy effect of nullity
becomes almost trivially easy.

2. Graph siblings

Definition 2.1. Let G be a non-singular simple graph and G* a singular simple graph. Let ¢(G,z) and ¢(G*,x) be their
characteristic polynomials. We say that G and G* are siblings (or, more precisely: spectral siblings) if the difference ¢(G,x)—
¢(G*, x) is independent of the variable .

In Figure 1 are depicted the smallest pairs of graph siblings.

o o o ._H4._<:
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Figure 1: The smallest pairs of graph siblings: disconnected, trees, and cycle-containing. For instance, the characteristic
polynomials of the 6-vertex siblings are 2° — 62* + 422 — 1 and 2% — 62* + 422.

Directly from Definition 2.1, it follows that graph siblings must have equal number of vertices and, with the exception
of the 2-vertex case, equal number of edges. In addition, we have:

Lemma 2.1. If the graphs G and G* are siblings, then in parallel to Equation (1), it holds
n—1
o(G*,x) = Z cp ™k
k=0

which means that ¢(G,x) — ¢(G*,x) = cp.
Combining Lemma 2.1 with Equation (2), we get:
Theorem 2.1. If the graphs G and G* are siblings, then the effect of nullity on the energy of G is equal to E(G) — E(G*).

Thus, in the case of siblings, the energy effect of nullity can be straightforwardly evaluated by calculating two ordinary
graph energies.

Graph siblings are relatively easy to construct. In what follows, we demonstrate this for two such families depicted in
Figure 2.

Lemma 2.2. The trees Ty (k) and T5(k), k =1,2,..., are siblings.

Proof. Denote by P, the path on n vertices.
If v is a pendent vertex of a tree T, adjacent to the vertex v, then [8,10,14]

gf)(T,I):I¢(T—U,I)—¢(T—U—U,I) (3)
which applied to P, yields the well known recursion relation

¢(Pn7$) :'r¢(Pn—17x)_¢(Pn—2)m) (4)



I. Gutman / Discrete Math. Lett. 7 (2021) 30-33 32

k k+1 k k+1

LK 1K

Figure 2: Two families of tree siblings. T} (k) and T5(k) are non-singular for k = 2,4,6,..., in which case Tx(k) and T4(k)
are singular. For k = 1,3,5,..., Ta(k) and Ty (k) are non-singular, whereas T} (k) and T3(k) are singular.

From (4) it follows

O(Pr,x) (P, ) — (Po1,2) ¢(Ppy1,x)
= [1‘ ¢(Pp—1,2) — ¢(Pp—2, .1?)] (P, x) — ¢(Pr—1,7) [Z‘ ¢(Ppyz) — ¢(Pp-1, 33)]
= ¢(Pn717$) ¢(Pn717x) _¢(Pn727$) ¢(Pn7x)

- QS(Pnvax) ¢(Pnfl7x> _¢(Pn717£u‘r) ¢(Pn+17€7x)

which for ¢/ = n — 1 gives

¢(Pnax)¢(Pn7m)_¢(Pn—1ax)¢(Pn+17x) = ¢(P1,$)¢(P1,£C)—¢(P0,.’L')(]5(P2,{E)

= z-x—1-(2*-1)

ie.,
¢(Pn7:r) ¢(Pn,$) _¢(Pn717x) ¢(Pn+1,$) =1. (5)

Applying (3) to T (k) and T5(k), we get

d(Ty(k),z) = x¢(Pory1,7) — (P, x) d(Pr,x)
T ¢(Pogr1,2) — ¢(Pr—1,7) ¢(Pry1, )

5N
3
2y
:_/
8
S—
I

from which, by identity (5),
P(Ti(k),x) — ¢(Ta(k), ) = = [¢(Pr, x) ¢(Pr, x) — ¢(Pr—1, %) ¢(Pry1,2)] = —1.

Therefore T} (k) and Tz (k) are siblings. O
Remark 2.1. From the above proof it follows that the forests P, U P, and P,_1 U P, 11 are siblings for all n > 1.
Lemma 2.3. The trees T5(k) and Ty(k), k =1,2,..., are siblings.
Proof. If e is an edge of a tree T', connecting the vertices u and v, then [8,10, 14]

(T z) = (T —e,2) = (T —u—wv,z). (6)

Applying (6) to the edges of T3(k) and T, (k), lying between the two branching vertices, we get

o(T3(k),r) = &(Pry2,7) ¢(Prya, ) — ¢(Pr,2) d(Pa, ) ¢(Pr, ) ¢(Pry1, )
o(Tu(k),x) = ¢(Prts; ) ¢(Prys, ) — ¢(Pr,x) ¢(Po, ) ¢(Pr, ) ¢(Pry1, )

from which, by identity (5),
o(T3(k), z) — ¢(Tu(k),z) = —[¢(Prts, ) Py, x) — ¢(Pry2, ) ¢(Prga, )] = —1.

Therefore T5(k) and T4(k) are siblings. O
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In Table 1 we give the effects of nullity on the energy of the sibling trees depicted in Figure 2.

Table 1. Effect of nullity on the energies of the non-singular trees 7T (k) and T5(k) for k = 2,4,...,10, and of the non-

singular trees T»(k) and Ty(k) for k = 1,3, ...,9, computed according to Theorem 2.1.

k| Thk)  Tsk) [ k| To(k)  Ta(k)

2 | 0.74361 0.61117 || 1 | 1.00803 0.74361
4 | 0.48809 0.42835 | 3 | 0.58083 0.49007
6 | 0.36737 0.33244 || 5 | 0.41641 0.36888
8 | 0.20566 0.27249 || 7 | 0.32635 0.29672
10 | 0.24780 0.23122 || 9 | 0.26892 0.24855
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