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Abstract

Let dG(v) be the degree of the vertex v in a graphG. The Sombor index ofG is defined asSO(G) =
∑

uv∈E(G)

√
d2
G(u) + d2

G(v),
which is a new vertex-degree-based topological index introduced by Gutman. Let Tn, ∆ and Un, ∆ be the sets of trees and
unicyclic graphs, respectively, with n vertices and maximum degree ∆. In this paper, the tree and the unicyclic graph with
the minimum Sombor index from the sets Tn, ∆ and Un, ∆, respectively, are characterized.
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1. Introduction

Let G be a simple undirected graph with vertex set V (G) and edge set E(G). For v ∈ V (G), NG(v) denotes the set of all
neighbors of v, and dG(v) = |NG(v)| denotes the degree of the vertex v in G. Denote by ∆(G) (or ∆) the maximum degree
of G. A d-vertex of G is a vertex of degree d. In particular, 1-vertex is called the pendant vertex or the leaf. Denote by Sn,
Pn and Cn the star, path and cycle with n vertices, respectively. Let l(Pn) = |E(Pn)| and l(Cn) = |E(Cn)| be the lengths of
Pn and Cn, respectively. Let Tn,∆, shown in Figure 1, be the tree obtained by attaching a pendant edge to each of certain
n−∆−1 non-central vertices of S∆, and let Un,∆, shown in Figure 1, be the unicyclic graph obtained by attaching 2∆−n+1

pendant vertices and n−∆− 1 paths P2 to one vertex of the cycle C3.
A spider is a tree with at most one vertex of degree more than two and the unique vertex of degree more than two is

called the hub of the spider. A leg of a spider is a path from the hub to one of the leaves. Let S(a1, a2, . . . , ak) be a spider
with k legs P 1, P 2, . . . , P k for which the lengths l(P i) = ai for 1 ≤ i ≤ k. Note that Tn,∆ is also a spider. For convenience,
denote by T∆ the spider whose lengths of all ∆ legs are greater than 2 (see Figure 1). Let U∆ be a unicyclic graph obtained
by attaching ∆− 2 paths of length at least 2 to a cycle (see Figure 1).

Figure 1: The graphs Tn,∆, Un,∆, T∆, and U∆.

The Sombor index of a graph G is defined as

SO(G) =
∑

uv∈E(G)

√
d2
G(u) + d2

G(v),

which is a novel vertex-degree-based topological index proposed by Gutman [6]. This new topological index immediately
arises scholars’ extensive attention. Deng et al. [4] showed that the Sombor index can help to predict these physico-chemical
properties of octane isomers and confirmed suitability of the Sombor index in QSPR analysis. Redžepović [15] showed that
the Sombor index may be used successfully on modeling thermodynamic properties of compounds due to the fact that the
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Sombor index has satisfactory prediction potential in modeling entropy and enthalpy of vaporization of alkanes. Das et
al. [2] and Wang et al. [17] obtained the relations between the Sombor index and some other well-known vertex-degree-
based topological index, such as the first Zagreb index, the second Zagreb index, the forgotten topological index and so on.
For other related results, one may refer to [5,7,8,10,11,14] and the references therein.

The extremal value problem of the topological index is of interest in graph theory and mathematical chemistry. The
study of extremal value of the Sombor index of graphs has received much attention. Gutman [6] obtained extremal values
of the Sombor index among the set of (connected) graphs and the set of trees. Cruz et al. [1] studied the Sombor index
of chemical graphs, and characterized the graphs extremal with respect to the Sombor index over the following sets:
chemical graphs, chemical trees, and hexagonal systems. Deng et al. [4] obtained a sharp upper bound for the Sombor
index among all molecular trees with fixed numbers of vertices, and characterized those molecular trees achieving the
extremal value. Liu [13] determined the first fourteen minimum chemical trees, the first four minimum chemical unicyclic
graphs, the first three minimum chemical bicyclic graphs, the first seven minimum chemical tricyclic graphs. Réti et
al. [16] characterized graphs with the maximum Sombor index in the classes of all connected unicyclic, bicyclic, tricyclic,
tetracyclic, and pentacyclic graphs of a fixed order. Das et al. [3] showed that the graph constructed from the star Sn by
adding c edge(s) has the maximum Sombor index among all connected c-cyclic graphs of order n for 5 ≤ c ≤ n − 2, which
confirms that the conjecture of Réti et al. [16] is true. Zhou et al. [18] determined the tree and the unicyclic graph with the
maximum Sombor index among the set of trees and the set of unicyclic graphs with given matching number. Lin et al. [12]
obtained lower and upper bounds on the spectral radius, energy and Estrada index of the Sombor matrix of graphs, and
characterized the respective extremal graphs.

The purpose of this paper is to study the extremal value problem of Sombor index of trees and unicyclic graphs with
given maximum degree. The following theorems are shown.

Theorem 1.1. Let n ≥ 7 and T ∈ Tn,∆, where 3 ≤ ∆ ≤ n− 2.

(i). If 3 ≤ ∆ ≤ bn−1
2 c, then

SO(T ) ≥ ∆
√

∆2 + 4 + 2
√

2(n− 2∆− 1) +
√

5∆

with equality if and only if T ∼= T∆.

(ii). If bn−1
2 c < ∆ ≤ n− 2, then

SO(T ) ≥ (n−∆− 1)
√

∆2 + 4 + (2∆− n + 1)
√

∆2 + 1 +
√

5(n−∆− 1)

with equality if and only if T ∼= Tn,∆.

Corollary 1.1. Let T be a chemical tree with n ≥ 9 vertices. If ∆ = 3 or 4, then

SO(T ) ≥ 2
√

2n + 3
√

13 + 3
√

5− 14
√

2 or SO(T ) ≥ 2
√

2n + 12
√

5− 18
√

2

with equality if and only if T ∼= T3 or T ∼= T4.

Theorem 1.2. Let n ≥ 5 and U ∈ Un,∆, where 3 ≤ ∆ ≤ n− 2.

(i). If 3 ≤ ∆ ≤ bn+1
2 c, then

SO(U) ≥ ∆
√

∆2 + 4 + 2
√

2(n− 2∆ + 2) +
√

5(∆− 2)

with equality if and only if U ∼= U∆.

(ii). If bn+1
2 c < ∆ ≤ n− 2, then

SO(U) ≥ (n−∆ + 1)
√

∆2 + 4 + (2∆− n− 1)
√

∆2 + 1 +
√

5(n−∆− 1) + 2
√

2

with equality if and only if U ∼= Un,∆.

Corollary 1.2. Let U be a chemical unicyclic graph with n ≥ 7 vertices. If ∆ = 3 or 4, then

SO(U) ≥ 2
√

2n + 3
√

13 +
√

5− 8
√

2 or SO(U) ≥ 2
√

2n + 10
√

5− 12
√

2

with equality if and only if U ∼= U3 or U ∼= U4.
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2. Preliminaries

The distance between two vertices u, v ∈ V (G), denoted by dG(u, v), is defined as the length of a shortest path between u

and v. Denote by G the complement of G and by Puv the path between vertices u and v. Let G − u denote the graph that
arises from a graph G by deleting the vertex u ∈ V (G) and all the edges incident with u. Let G − uv denote the graph
that arises from G by deleting the edge uv ∈ E(G). Similarly, G + uv is the graph that arises from G by adding an edge
uv /∈ E(G), where u, v ∈ V (G).

Lemma 2.1. [9] Let U ⊆ R be an open interval and f : U → U a convex function. Let a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥
bn be such elements in U that inequalities a1 + a2 + . . . + an ≥ b1 + b2 + . . . + bi hold for every i ∈ {1, 2, . . . , n} and equality
holds for i = n. Then

f(a1) + f(a2) + · · ·+ f(an) ≥ f(b1) + f(b2) + · · ·+ f(bn).

Lemma 2.2. For w0, x0 ∈ V (G) (where w0, x0 are not necessarily distinct), suppose that w1w2 . . . wk, x1x2 . . . xh are two
path components in G− w0 and G− x0, respectively, where k, h ≥ 1 and wk, xh are pendant vertices of G. If dG(x0) = s ≥ 3,
NG(x0) = {x1, v1, v2, . . . , vs−1}, dG(vi) ≥ 1 for 1 ≤ i ≤ s− 1, let G′ be a new graph with vertex set V (G′) = V (G) and edge set
E(G′) = G− x0x1 + wkx1, see Figure 2. When w0 = x0, G′ is said to be obtained by running graph transformation A1 of G;
when w0 6= x0, G′ is said to be obtained by running graph transformation A2 of G. Then SO(G) > SO(G′).

Figure 2: An illustration of Lemma 2.2.

Proof. From given conditions, dG(x0) = s, dG′(x0) = s − 1, dG(wk) = 1, dG′(wk) = 2 and for any v ∈ V (G) \ {x0, wk},
dG(v) = dG′(v). Since dG(x0) = s ≥ 3, by Lemma 2.1, we have

SO(G)− SO(G′) =
∑

uv∈E(G)

√
d2
G(u) + d2

G(v)−
∑

uv∈E(G′)

√
d2
G′(u) + d2

G′(v)

=

s−1∑
i=1

[√
d2
G(x0) + d2

G(vi)−
√

d2
G′(x0) + d2

G(vi)
]

+
√
d2
G(x0) + d2

G(x1)

+
√
d2
G(wk−1) + d2

G(wk)−
√
d2
G′(wk−1) + d2

G′(wk)−
√

d2
G′(wk) + d2

G′(x1).

(i) If w0 = x0, k = h = 1, and x1 = vs−1, then

SO(G)− SO(G′) =

s−2∑
i=1

[√
s2 + d2

G(vi)−
√

(s− 1)2 + d2
G(vi)

]
+ 2

√
s2 + 1−

√
(s− 1)2 + 4−

√
5

> 2
√
s2 + 1−

√
(s− 1)2 + 4−

√
5

> 0.

(ii) If w0 6= x0 and k = h = 1, then

SO(G)− SO(G′) =

s−1∑
i=1

[√
s2 + d2

G(vi)−
√

(s− 1)2 + d2
G(vi)

]
+

√
s2 + 1 +

√
d2
G(w0) + 1−

√
d2
G(w0) + 4−

√
5

>
√

s2 + 1 +
√
d2
G(w0) + 1−

√
d2
G(w0) + 4−

√
5

> 0.

(iii) If k ≥ 2, h = 1, then

SO(G)− SO(G′) =

s−1∑
i=1

[√
s2 + d2

G(vi)−
√

(s− 1)2 + d2
G(vi)

]
+

√
s2 + 1 +

√
5−
√

8−
√

5 >
√

s2 + 1−
√

8 > 0.
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(iv) If k, h ≥ 2, then

SO(G)− SO(G′) =

s−1∑
i=1

[√
s2 + d2

G(vi)−
√

(s− 1)2 + d2
G(vi)

]
+

√
s2 + 4 +

√
5− 2

√
8

>
√
s2 + 4 +

√
5− 2

√
8

>
√

13 +
√

5− 2
√

8

> 0.

Combining the above arguments, we have the proof.

3. The proof of Theorem 1.1

In this section, we determine the tree with the minimum Sombor index among trees with n vertices and maximum degree
∆. If ∆ = 2, then Tn,∆ = {Pn}. If ∆ = n− 1, then Tn,∆ = {Sn}. From now on, we assume that 3 ≤ ∆ ≤ n− 2.

Proof of Theorem 1.1. Let T be a tree with n vertices and maximum degree ∆ that minimize the Sombor index and let
v0 be a ∆-vertex of T . We will show the following Claims 1-3, which, put together, will get our proof.

Claim 1. T is a spider.

Proof. Suppose T is not a spider. There exists v ∈ V (T ) \ {v0}, such that dT (v) ≥ 3. Then we can get a new tree T1 ∈ Tn,∆

by running graph transformation A1 on v. By Lemma 2.2, SO(T1) < SO(T ), which contradicts the choice of T . Thus T is
a spider.

Let T = S(a1, a2, . . . , a∆) with ∆ legs P 1, P 2, . . . , P∆, and the lengths l(P i) = ai for 1 ≤ i ≤ ∆. Without loss of generality,
we assume that a1 ≥ a2 ≥ . . . ≥ a∆.

Claim 2. If 3 ≤ ∆ ≤ bn−1
2 c, then a∆ ≥ 2.

Proof. Suppose a∆ = 1. Since n − 1 ≥ 2∆, we have a1 ≥ 3. Let P 1 = v0v
1
1v

1
2 . . . v

1
s where s ≥ 3 and P∆ = v0v∆. Let

T2 = T − v1
s−1v

1
s + v∆v1

s , by Lemma 2.2, we have SO(T )− SO(T2) =
√

∆2 + 1 +
√

8−
√

∆2 + 4−
√

5 > 0, which contradicts
the choice of T . Thus a∆ ≥ 2, that is, T ∼= T∆.

Claim 3. If bn−1
2 c < ∆ ≤ n− 2, then a1 ≤ 2.

Proof. Suppose a1 ≥ 3. Since n − 1 < 2∆, we have a∆ = 1. Let P 1 = v0v
1
1v

1
2 . . . v

1
s where s ≥ 3 and P∆ = v0v∆. Similar to

the proof of Claim 2, let T3 = T − v1
s−1v

1
s + v∆v1

s , then SO(T ) > SO(T3), which contradicts the choice of T . Thus a1 ≤ 2, that
is, T ∼= Tn,∆.

By direct calculations, we get SO(T∆) = ∆
√

∆2 + 4 +
√

8(n− 2∆− 1) +
√

5∆ and

SO(Tn,∆) = (n−∆− 1)
√

∆2 + 4 + (2∆− n + 1)
√

∆2 + 1 +
√

5(n−∆− 1).

This completes the proof of Theorem 1.1. �

4. The proof of Theorem 1.2

In this section, we determine the unicyclic graph with the minimum Sombor index among unicyclic graphs with n vertices
and maximum degree ∆. If ∆ = 2, then Un,∆ = {Cn}. If ∆ = n− 1, then Un,∆ = {Sn + e}, where e is a edge in Sn. Next,
we assume that 3 ≤ ∆ ≤ n− 2.

Proof of Theorem 1.2. Let U be a unicyclic graph with n vertices and maximum degree ∆ that minimize the Sombor
index. Suppose C is the unique cycle of U . If there exist a ∆-vertex on C, then we chose it and denote by v0; otherwise,
chose any ∆-vertex, also denote by v0. First, we assume that v0 /∈ V (C). Then there is a vertex v ∈ V (C) such that
dU (v, v0) = min{dU (u, v0) | u ∈ V (C)}, clearly, dU (v) ≥ 3. We will show the following Claims 1-5, which, put together, will
get our proof.

Claim 1. For any u ∈ V (U) \ {v0, v}, dU (u) ≤ 2.
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Proof. If the claim is not true, there are three cases:

Case i. there exists u ∈ V (U) \ (V (C) ∪ Pvv0) such that dU (u) ≥ 3. Then we can get a new unicyclic graph U1 ∈ Un,∆ by
running graph transformation A1 on u. By Lemma 2.2, SO(U) > SO(U1), which contradicts the choice of U .

Case ii. there exists u ∈ (V (C)∪Pvv0)\{v, v0} such that dU (u) ≥ 4. There are at least two paths starting from u to pendant
vertices of U , then by running transformation A1 on u, we can get a contradiction.

Case iii. there exists u ∈ (V (C)∪ Pvv0) \ {v, v0} such that dU (u) = 3. Let uu1u2 . . . us be the path from u to pendant vertex
us, where s ≥ 1 and dU (ui) = 2 for 1 ≤ i ≤ s − 1. And let v0v1v2 . . . vt be one of the paths from v0 to a pendant vertex vt,
where t ≥ 1 and dU (vi) = 2 for 1 ≤ i ≤ t − 1. Let U2 = U − uu1 + vsu1, then U2 is obtained by running transformation A2

from U and U2 ∈ Un,∆. By Lemma 2.2, we have SO(U) > SO(U2), which contradicts the choice of U .
Combining the above cases, we have dU (u) ≤ 2 for any u ∈ V (U) \ {v0, v}.

Claim 2. dU (v) ≤ 3.

Proof. If dU (v) ≥ 5, there are at least two paths starting from v to pendant vertices of U , similarly, by running transfor-
mation A1, we can get a contradiction. If dU (v) = 4, by running transformation A2, we can also get a contradiction.

Denote by v1, v2, . . . , v∆ the neighbors of v0, where v1 ∈ V (Pvv0).

Claim 3. v = v0, that is to say, there must be v0 ∈ V (C).

Proof. For otherwise, we can get a new unicyclic graph U3 = U−{v0vi | 2 ≤ i ≤ ∆−2}+{vvi | 2 ≤ i ≤ ∆−2} and U3 ∈ Un,∆.
For ∆− 1 ≤ i ≤ ∆, dU (vi) ≤ 2, we have

SO(U)− SO(U3) = 2
√

32 + 22 +

∆∑
i=∆−1

√
∆2 + d2

U (vi)− 2
√

∆2 + 22 −
∆∑

i=∆−1

√
32 + d2

U (vi)

=
[
2
√

32 + 22 −
∆∑

i=∆−1

√
32 + d2

U (vi)
]
−
[
2
√

∆2 + 22 −
∆∑

i=∆−1

√
∆2 + d2

U (vi)
]

≥ 0.

We have now in U3, dU3
(v) = ∆ and dU3

(v0) = 3, then there are at least two paths starting from v0 to pendant vertices
of U3, similarly, by running transformation A1 on v0, we can get a contradiction, which contradicts the choice of U . Thus
v0 ∈ V (C).

By Claims 1-3, U is a unicyclic graph obtained by attaching ∆ − 2 paths to the vertex v0 of cycle C. Let v1, v2 ∈ V (C).
Similar to the proof of Theorem 1.1, denote by P i the path from v0 to a pendant vertex of U and vi ∈ P i, where 3 ≤ i ≤ ∆.
Without loss of generality, we can assume that l(P 3) ≥ l(P 4) ≥ . . . ≥ l(P∆).

Claim 4. If 3 ≤ ∆ ≤ bn+1
2 c, then l(P∆) ≥ 2.

Proof. Suppose that l(P∆) = 1. Since n− 3 ≥ 2(∆− 2), we have the following two cases:

Case i. l(P 3) ≥ 3. Let P∆ = v0v∆ and P 3 = v0v3v
3
2 . . . v

3
s , where s ≥ 3. Let U4 = U − v3

s−1v
3
s + v∆v3

s , by Lemma 2.2, we have
SO(U)− SO(U4) =

√
∆2 + 1 +

√
8−
√

∆2 + 4−
√

5 > 0, which contradicts the choice of U .

Case ii. l(P 3) = 2 and |E(C)| ≥ 4. Let x, y, z be three vertices on C different from v0 such that xy, yz ∈ E(C). Let
U5 = U − xy − yz + xz + v∆y, we have SO(U)− SO(U5) =

√
∆2 + 1 +

√
8−
√

∆2 + 4−
√

5 > 0, which contradicts the choice
of U .

Thus, l(P∆) ≥ 2, that is, U ∼= U∆.

Claim 5. If bn+1
2 c < ∆ ≤ n− 2, then l(P 3) ≤ 2 and |E(C)| = 3.

Proof. Note that n− 3 < 2(∆− 2). If l(P 3) ≥ 3 or |E(C)| ≥ 4, then l(P∆) = 1. Similar to the proof of Claim 4, we can get a
contradiction. Thus l(P 3) ≤ 2 and |E(C)| = 3, that is, U ∼= Un,∆.

By direct calculations, we get SO(U∆) = ∆
√

∆2 + 4 +
√

8(n− 2∆ + 2) +
√

5(∆− 2) and

SO(Un,∆) = (n−∆ + 1)
√

∆2 + 4 + (2∆− n− 1)
√

∆2 + 1 +
√

5(n−∆− 1) +
√

8.

This completes the proof of Theorem 1.2. �
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[2] K. C. Das, A. S. Çevik, I. N. Cangul, Y. Shang, On Sombor index, Symmetry 13 (2021) Art# 140.
[3] K. C. Das, A. Ghalavand, A.R. Ashrafi, On a conjecture about the Sombor Index of graphs, arXiv:2103.17147 [math.CO], (2021).
[4] H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem., DOI: 10.1002/qua.26622, In press.
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