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Abstract

If Tr(G) and D(QG) are respectively the diagonal matrix of vertex transmission degrees and distance matrix of a connected
graph G, the generalized distance matrix D, (G) is defined as D (G) = a Tr(G) + (1 —a) D(G), where 0 < a < 1. We obtain
an upper bound for the spectral radius 9(G) (largest eigenvalue) of D, (G) as

A(C) < max * [ot: +t; — (1~ )iy + /ot — )7 + (1~ a)(1 —a— 21, — 4 — Zat)dy) .

 1<i, j<n 2

where tmaz = t1 > ta > - -+ >t = tmin are the vertex transmission degrees of G and d;; is the distance between the vertices
vi,v; € G. Further, we show the existence of graphs for which equality holds.
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1. Introduction

Let G(V(G), E(G)) be a simple connected graph with vertex set V(G) = {v1,vs,...,v,} and order |V (G)| = n. The degree
d(v;) or d; of a vertex v; is the number of edges incident on v;. The set of vertices adjacent to v € V(G), denoted by N(v),
refers to the neighborhood of v. A graph is regular if each of its vertices has the same degree. A graph is said to be
(r, s)-semi-regular, denoted by G(r,s), if degree of each vertex is either r or s. In G, the distance between two vertices
u,v € V(G), denoted by d,., is defined as the length of a shortest path between v and v. The distance matrix of G is
denoted by D(G) and is defined as D(G) = (duy)uvev (). The transmission tc(v) of a vertex v is defined as the sum of the
distances from v to all other vertices in G, that is, tg(v) = Zuev(G) dyy- A graph G is said to be k-transmission regular
if tg(v) = k, for each v € V(G). For any vertex v; € V(G), the transmission ¢ (v;) is also called the transmission degree,
shortly denoted by ¢; and the sequence {¢1, ¢, ..., t,} is called the transmission degree sequence of the graph G. The matrix
Tr(G) = diag (t1,ts,...,t, is the diagonal matrix of vertex transmissions. The generalized distance matrix [3] is defined
as D, (G) = aTr(G) + (1 — a)D(G), for 0 < o < 1. Let 9, > 92 > --- > 9, be the eigenvalues of D, (G). We will denote
the largest eigenvalue (generalized distance spectral radius) 9, by 9(G). As D, (G) is non-negative and irreducible, by the
Perron-Frobenius theorem, 9(G) is unique and there is a unique positive unit eigenvector X corresponding to 9(G), which
is called the generalized distance Perron vector of G. For some recent results, we refer to [1,3-7,9] and the references
therein. For standard definitions, we refer to [2, 8].

Consider a graph in which there is a vertex v; having transmission degree equal to t; = ¢,,4., transmission degree of
every neighbor of v; equal to ¢ and transmission degree of every vertex non-adjacent to v; equal to ¢,,;,. We name such a
graph as H.

The following is the main result.

Theorem 1.1. If 9(G) is the spectral radius of D, (G), then

1
8((}') < max 5 at; + tj - (1 — Oé)dij + \/(Oélfi - tj)2 + (1 — Oé)(l - — Qtj —4t; — 2ati)dij} R 1)

1<, j<n

where t,,q, =t > to > -+ > t, = tmin are the vertex transmission degrees of G. Further, equality holds if and only if G is a
transmission regular graph or G is a semi-regular graph G(n — 1, s) or G is isomorphic to H, where H is defined above.
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2. Proof of the main theorem

We consider a column vector X = [z1,22,...,7,]T € R" to be a function defined on V(G) which maps vertex v; to x;, that
is, X (v;) = @, for i, 1 < i < n. The quadratic form X D,(G)X can be described as

XTD,( Z v)z? +2(1 — «) Z d(vi, vy)ziz;,
i=1 1<i<j<n
and
X"Do(@)X = 20— 1) tw)al +(1—a) D d(vi,v)) (@i +z;)°.
i=1 1<i<j<n

Also, 0 is an eigenvalue of D, (G) corresponding to the eigenvector X if and only if X # 0 and
Oz, = aTr(v)x; + (1 — « Zd Vi, U)X
These equations are called the (0, z)-eigenequations of G. For a normalized column vector X € R"™ with at least one
non-negative component, by the Rayleigh’s principle, we have
9(G) > X" D (G)X,

with equality if and only if X is the generalized distance Perron vector of G.

Proof of Theorem 1.1. Corresponding to the eigenvalue 0 of D,(G), let X = [x1,z2,...,2,]T be the eigenvector, with
z; =1land z, > 1for all t # i. Let z; = max{z; : 1 <t < nandt # i}. Therefore, from the i-th and j-th equations of
0 X = D,(G) X, we have

0 x; = atiz; + (1 — a) Z dirxs (2)
t=1,t#1
and
drz;=atjz;+ (1 —a) Z djixy. 3)
t=1,t#j

(2) implies that 0 < at; + (1 — a)t;x;, so that
8 — Oéti S (1 — Oé)ti.fﬂj (4)

Also, (3) implies that 0 z; < at;z; + (1 — a)d;; + (1 — a)(t; — d;j)x;, which on simplification gives
[0—t;+ (1 —a)dij]lz; < (1 - a)d;. )
Combining (4) and (5), we get
(0 = ati)[0 = t; + (1 = a)dyj]w; < [(1 = a)tiz;][(1 — a)di;).

Since z; > 0, therefore we have
(8 - atz)[ﬁ - t]' + (]. - O[)dij] S (]. - Oé)Ztidij,

which on simplification yields
9% — [Oéti +1t; — (1 - Oé)dij] 0+ Oztitj - (1 — a)tidij <0. (6)

The solution of (6) is given by

5‘ S % |:Oét1' + tj — (]. — Oé)dij + \/[ati + tj — (1 — a)dijP — 4ti [Oztj + (1 — Oé)d”}:|

and

o> % [ati + tj — (1 — Oz)dij — \/[Oﬂfi + tj — (1 — Ot)dij]Q — 4t [Oétj + (1 — Oz)dij]:| .

Therefore, in all cases, it follows that

1<i, j<n

3(G) S max % |:Olti + tj — (1 — Oz)dij + \/[atl + tj — (]. — Oé)dij]2 — 4t1 [Ottj + (]. — Oé)d”]:| .
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Now, we characterize the graphs for which equality holds in (1). In this regard, first assume that equality holds in (1).
Therefore, equality cases in (4) and (5) imply that =, = z; for all ¢, with t # i. As z; < z; = 1, we have the following two
possibilities to consider.

Case 1. z; = z; = 1. Here, 0 =t¢; for all 4, 1 <i <n. So G is a transmission regular graph.
Case 2. z; < z; = 1. Therefore, either d; =n — 1 or d; < n — 1. We look at these two cases separately as follows.

Case 2.1. If d; = n — 1, then clearly v; € N(v;) for all those v; which are in V(G) — {v;}. Now, for any v; € V(G) — {v;}, we
have 0z; = (t;+ a—1)x; + (1 — «). This clearly indicates that transmission degree of every vertex v; € V(G) — {v;} is equal
to t;, with of course t; > n — 1. So, evidently ¢, = t3 = --- = t,, = t;in. Further, d; = n — 1 implies that G is of diameter 2
and thus ¢; = 2n — 2 — d;. Therefore, the vertex degrees of G aren — 1, ds = d3 = --- = d,, = s (say) with clearly n — 1 > s.
Hence G is isomorphic to G(n — 1, s).

Case 2.2. Now, for the case d; < n—1, we consider the vertex partition of V(G)—{v;} asU = N(v;) and W = V(G)—(UU{w;}).
Then

d=tila+(1—a)z;] for v, (7
Or;=[t:—(1—a)zj+(1—a) for vy € N(vy), ®
0=ty for v, é|[N(v;)U{v;}]. 9

Simplifying (8) implies that ¢, = 0 + (1 — a)(z; — 1), for all v; € N(v;). Therefore, transmission degree of every vertex in
N(v;) is equal to t;, and transmission degree of everyJ vertex outside N (v;) U{v;} is equal to ¢;. Since a+ (1 — a)z; < 1, from
(7) and (9), we have t;, > t;. In a similar way, t; > t; follows from (8) and (9). Thus, t; = 42, and t; = t5 for all v, € W.
Also, t; = t,,;,, for all vertices in U.

From the arguments given above, we conclude that the given connected graph contains a vertex v; with transmission
degree t| = t,,44, transmission degree of every neighbor of v; is equal to ¢; and transmission degree of every vertex non-
adjacent to v; is equal to t,,;,. This is clearly the graph H defined above.

Conversely, for the regular graph, or the graph isomorphic to G(n — 1, s), or graph H, it is easy to verify that equality
holds. O
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