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Abstract

If Tr(G) and D(G) are respectively the diagonal matrix of vertex transmission degrees and distance matrix of a connected
graphG, the generalized distance matrixDα(G) is defined asDα(G) = α Tr(G)+(1−α)D(G), where 0 ≤ α ≤ 1. We obtain
an upper bound for the spectral radius ∂(G) (largest eigenvalue) of Dα(G) as

∂(G) ≤ max
1≤i, j≤n

1

2

[
αti + tj − (1− α)dij +

√
(αti − tj)2 + (1− α)(1− α− 2tj − 4ti − 2αti)dij

]
,

where tmax = t1 ≥ t2 ≥ · · · ≥ tn = tmin are the vertex transmission degrees ofG and dij is the distance between the vertices
vi, vj ∈ G. Further, we show the existence of graphs for which equality holds.
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1. Introduction

Let G(V (G), E(G)) be a simple connected graph with vertex set V (G) = {v1, v2, . . . , vn} and order |V (G)| = n. The degree
d(vi) or di of a vertex vi is the number of edges incident on vi. The set of vertices adjacent to v ∈ V (G), denoted by N(v),
refers to the neighborhood of v. A graph is regular if each of its vertices has the same degree. A graph is said to be
(r, s)-semi-regular, denoted by G(r, s), if degree of each vertex is either r or s. In G, the distance between two vertices
u, v ∈ V (G), denoted by duv, is defined as the length of a shortest path between u and v. The distance matrix of G is
denoted by D(G) and is defined as D(G) = (duv)u,v∈V (G). The transmission tG(v) of a vertex v is defined as the sum of the
distances from v to all other vertices in G, that is, tG(v) =

∑
u∈V (G) duv. A graph G is said to be k-transmission regular

if tG(v) = k, for each v ∈ V (G). For any vertex vi ∈ V (G), the transmission tG(vi) is also called the transmission degree,
shortly denoted by ti and the sequence {t1, t2, . . . , tn} is called the transmission degree sequence of the graph G. The matrix
Tr(G) = diag (t1, t2, . . . , tn is the diagonal matrix of vertex transmissions. The generalized distance matrix [3] is defined
as Dα(G) = αTr(G) + (1 − α)D(G), for 0 ≤ α ≤ 1. Let ∂1 ≥ ∂2 ≥ · · · ≥ ∂n be the eigenvalues of Dα(G). We will denote
the largest eigenvalue (generalized distance spectral radius) ∂1 by ∂(G). As Dα(G) is non-negative and irreducible, by the
Perron-Frobenius theorem, ∂(G) is unique and there is a unique positive unit eigenvector X corresponding to ∂(G), which
is called the generalized distance Perron vector of G. For some recent results, we refer to [1, 3–7, 9] and the references
therein. For standard definitions, we refer to [2,8].

Consider a graph in which there is a vertex vi having transmission degree equal to t1 = tmax, transmission degree of
every neighbor of vi equal to t2 and transmission degree of every vertex non-adjacent to vi equal to tmin. We name such a
graph as H.

The following is the main result.

Theorem 1.1. If ∂(G) is the spectral radius of Dα(G), then

∂(G) ≤ max
1≤i, j≤n

1

2

[
αti + tj − (1− α)dij +

√
(αti − tj)2 + (1− α)(1− α− 2tj − 4ti − 2αti)dij

]
, (1)

where tmax = t1 ≥ t2 ≥ · · · ≥ tn = tmin are the vertex transmission degrees of G. Further, equality holds if and only if G is a
transmission regular graph or G is a semi-regular graph G(n− 1, s) or G is isomorphic to H, where H is defined above.
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2. Proof of the main theorem

We consider a column vector X = [x1, x2, . . . , xn]
T ∈ Rn to be a function defined on V (G) which maps vertex vi to xi, that

is, X(vi) = xi for i, 1 ≤ i ≤ n. The quadratic form XTDα(G)X can be described as

XTDα(G)X = α

n∑
i=1

t(vi)x
2
i + 2(1− α)

∑
1≤i<j≤n

d(vi, vj)xixj ,

and

XTDα(G)X = (2α− 1)

n∑
i=1

t(vi)x
2
i + (1− α)

∑
1≤i<j≤n

d(vi, vj)(xi + xj)
2.

Also, ∂ is an eigenvalue of Dα(G) corresponding to the eigenvector X if and only if X 6= 0 and

∂xv = αTr(vi)xi + (1− α)
n∑
j=1

d(vi, vj)xj .

These equations are called the (∂, x)-eigenequations of G. For a normalized column vector X ∈ Rn with at least one
non-negative component, by the Rayleigh’s principle, we have

∂(G) ≥ XTDα(G)X,

with equality if and only if X is the generalized distance Perron vector of G.

Proof of Theorem 1.1. Corresponding to the eigenvalue ∂ of Dα(G), let X = [x1, x2, . . . , xn]
T be the eigenvector, with

xi = 1 and xt ≥ 1 for all t 6= i. Let xj = max{xt : 1 ≤ t ≤ n and t 6= i}. Therefore, from the i-th and j-th equations of
∂ X = Dα(G) X, we have

∂ xi = αtixi + (1− α)
n∑

t=1,t6=i

ditxt (2)

and
∂ xj = αtjxj + (1− α)

n∑
t=1,t6=j

djtxt. (3)

(2) implies that ∂ ≤ αti + (1− α)tixj , so that
∂ − αti ≤ (1− α)tixj (4)

Also, (3) implies that ∂ xj ≤ αtjxj + (1− α)dij + (1− α)(tj − dij)xj , which on simplification gives

[∂ − tj + (1− α)dij ]xj ≤ (1− α)dij . (5)

Combining (4) and (5), we get

(∂ − αti)[∂ − tj + (1− α)dij ]xj ≤ [(1− α)tixj ][(1− α)dij ].

Since xj > 0, therefore we have
(∂ − αti)[∂ − tj + (1− α)dij ] ≤ (1− α)2tidij ,

which on simplification yields
∂2 − [αti + tj − (1− α)dij ] ∂ + αtitj − (1− α)tidij ≤ 0. (6)

The solution of (6) is given by

∂ ≤ 1

2

[
αti + tj − (1− α)dij +

√
[αti + tj − (1− α)dij ]2 − 4ti [αtj + (1− α)dij ]

]
and

∂ ≥ 1

2

[
αti + tj − (1− α)dij −

√
[αti + tj − (1− α)dij ]2 − 4ti [αtj + (1− α)dij ]

]
.

Therefore, in all cases, it follows that

∂(G) ≤ max
1≤i, j≤n

1

2

[
αti + tj − (1− α)dij +

√
[αti + tj − (1− α)dij ]2 − 4ti [αtj + (1− α)dij ]

]
.
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Now, we characterize the graphs for which equality holds in (1). In this regard, first assume that equality holds in (1).
Therefore, equality cases in (4) and (5) imply that xt = xj for all t, with t 6= i. As xj ≤ xi = 1, we have the following two
possibilities to consider.

Case 1. xj = xi = 1. Here, ∂ = ti for all i, 1 ≤ i ≤ n. So G is a transmission regular graph.

Case 2. xj < xi = 1. Therefore, either di = n− 1 or di < n− 1. We look at these two cases separately as follows.

Case 2.1. If di = n− 1, then clearly vt ∈ N(vi) for all those vt which are in V (G)− {vi}. Now, for any vt ∈ V (G)− {vi}, we
have ∂xj = (tt+α− 1)xj +(1−α). This clearly indicates that transmission degree of every vertex vt ∈ V (G)−{vi} is equal
to tt, with of course tt > n − 1. So, evidently t2 = t3 = · · · = tn = tmin. Further, di = n − 1 implies that G is of diameter 2
and thus ti = 2n− 2− di. Therefore, the vertex degrees of G are n− 1, d2 = d3 = · · · = dn = s (say) with clearly n− 1 > s.
Hence G is isomorphic to G(n− 1, s).

Case 2.2. Now, for the case di < n−1, we consider the vertex partition of V (G)−{vi} asU = N(vi) andW = V (G)−(U∪{vi}).
Then

∂ = ti [α+ (1− α)xj ] for vi, (7)

∂xj = [tt − (1− α)]xj + (1− α) for vt ∈ N(vi), (8)

∂ = tk for vk /∈ [N(vi) ∪ {vi}] . (9)

Simplifying (8) implies that tt = ∂ + (1− α)(xj − 1) 1
xj

, for all vt ∈ N(vi). Therefore, transmission degree of every vertex in
N(vi) is equal to tt, and transmission degree of every vertex outside N(vi)∪{vi} is equal to ti. Since α+(1−α)xj ≤ 1, from
(7) and (9), we have tk > ti. In a similar way, tk > tt follows from (8) and (9). Thus, ti = tmax, and tk = t2 for all vk ∈ W .
Also, tt = tmin for all vertices in U .

From the arguments given above, we conclude that the given connected graph contains a vertex vi with transmission
degree t1 = tmax, transmission degree of every neighbor of vi is equal to t2 and transmission degree of every vertex non-
adjacent to vi is equal to tmin. This is clearly the graph H defined above.

Conversely, for the regular graph, or the graph isomorphic to G(n − 1, s), or graph H, it is easy to verify that equality
holds.
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