Review Article

New directions in Ramsey theory*

Gary Chartrand, Ping Zhang ${ }^{\dagger}$
Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5248, USA

(Received: 17 March 2020. Accepted: 19 June 2020. Published online: 11 March 2021.)
(C) 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

New developments in the study of Ramsey theory for graphs are described. In particular, it is discussed how Ramsey theory has evolved from classical Ramsey numbers to more general Ramsey numbers, bipartite Ramsey numbers, k-Ramsey numbers, s-bipartite Ramsey numbers, Ramsey sequences of graphs, and ascending Ramsey indices.

Keywords: Ramsey number; bipartite Ramsey number; k-Ramsey number; s-bipartite Ramsey number; Ramsey sequence; monochromatic ascending subgraph sequence; ascending Ramsey index.
2020 Mathematics Subject Classification: 05C35, 05C55.

1. Introduction

During the summer of 1980, Frank Harary was in England where he had arranged to visit Lettice Ramsey, who was perhaps best known for the photography studio Ramsey \& Muspratt that she operated with Helen Muspratt. The purpose of Harary's visit with Lettice Ramsey was not photography, however. Mrs. Ramsey had invited Harary to view the numerous papers and files of her late husband Frank Ramsey, who had died some 50 years earlier. Frank Ramsey, who passed away at age 26, had left a large collection of material he had been working on. Ramsey had numerous interests, including philosophy, economics, politics, and mathematics. Indeed, his brother Michael once said about Frank Ramsey: He was interested in almost everything. It was Ramsey's mathematical notes in which Frank Harary was primarily interested, however.

In 1930, the year that Ramsey died, a paper of his titled "On a Problem of Formal Logic" was published in the Proceedings of the London Mathematical Society [28]. This paper contained a result, a restricted version of which is stated below.

Theorem 1.1. (Ramsey's Theorem) For any $k+1 \geq 3$ positive integers $t, n_{1}, n_{2}, \ldots, n_{k}$, there exists a positive integer N such that if each of the t-element subsets of the set $\{1,2, \ldots, N\}$ is colored with one of the k colors $1,2, \ldots, k$, then for some integer i with $1 \leq i \leq k$, there is a subset S of $\{1,2, \ldots, N\}$ containing n_{i} elements such that every t-element subset of S is colored i.

Ramsey's Theorem can be looked at as a theorem in graph theory
(1) by interpreting the set $\{1,2, \ldots, N\}$ as the vertex set of the complete graph K_{N},
(2) by taking $t=2$, and
(3) by assigning one of the colors $1,2, \ldots, k$ to each 2 -element subset of $\{1,2, \ldots, N\}$.

Each 2-element subset of $\{1,2, \ldots, N\}$ can then be considered as an edge of the complete graph K_{N}. The most studied case of Ramsey's theorem is the one that occurs by taking $k=2$. In this case, only two colors are involved, usually taken to be red and blue. Here, each edge of K_{N} is colored either red or blue, resulting in a red-blue coloring of K_{N}. Now, writing s for n_{1} and t for n_{2}, Ramsey's theorem becomes the following result.
Theorem 1.2. (Ramsey's Theorem) For every two positive integers s and t, there exists a positive integer N such that for every red-blue coloring of K_{N}, there is a complete subgraph K_{s} all of whose edges are colored red (resulting in a red K_{s}) or a complete subgraph K_{t} all of whose edges are colored blue (resulting in a blue K_{t}).

Although Ramsey theory relates to many areas of mathematics, as described in the books [19, 23], for example, it is within graph theory that we are interested here.

[^0]
2. Classical Ramsey numbers

It is a consequence of Ramsey's Theorem 1.2 that for every two positive integers s and t, there is a smallest positive integer n for which every red-blue coloring of K_{n} results in a red K_{s} or a blue K_{t}. This positive integer n is called the Ramsey number of K_{s} and K_{t}, denoted by $R\left(K_{s}, K_{t}\right)$ or, often more simply, by $R(s, t)$. There is a familiar question associated with the Ramsey number $R(3,3)$.

What is the smallest number of people in a gathering, every two of whom are either friends or strangers, that will guarantee that there are either three mutual friends or three mutual strangers in the gathering?

The answer to this question is $R(3,3)$ and it turns out that $R(3,3)=6$. To see that $R(3,3)=6$ is quite easy, for in any red-blue coloring of the complete graph K_{6}, every vertex is incident with at least three edges of the same color, say $v v_{1}, v v_{2}$, and $v v_{3}$ are three red edges. If any edge joining two vertices of $\left\{v_{1}, v_{2}, v_{3}\right\}$ is red, there is a red K_{3}; otherwise, there is a blue K_{3}. This says that $R(3,3) \leq 6$. Because K_{5} can be decomposed into two 5 -cycles and one of these can be colored red and the other blue, there is neither a red K_{3} nor a blue K_{3} and so $R(3,3) \geq 6$. Therefore, $R(3,3)=6$.

Because $R(3,3)=6$, it therefore follows that (1) among any six people, every two of whom are friends or strangers, there are three mutual friends or three mutual strangers and (2) there exists some group of five people for which there is neither three mutual friends nor three mutual strangers.

The Ramsey number $R(3,3)$ came up (indirectly) in the 1953 Putnam exam. The William Lowell Putnam mathematical competition for undergraduates, first given in 1938, was designed to stimulate a healthy rivalry in colleges and universities in the United States and Canada. The 1953 exam contained the following problem (suggested by Frank Harary):

Problem A2. The complete graph with 6 points (vertices) and 15 edges has each edge colored red or blue. Show that we can find 3 points such that the 3 edges joining them are the same color.

Inspired by this problem, Robert Greenwood and Andrew Gleason [20] not only showed that $R(3,3)=6$, but showed as well that $R(3,4)=9, R(3,5)=14$, and $R(4,4)=18$. In fact, they established an upper bound for the Ramsey numbers $R(s, t)$ for any two positive integers s and t.

Theorem 2.1. [20] For every two positive integers s and t,

$$
R(s, t) \leq\binom{ s+t-2}{s-1}
$$

The only known Ramsey numbers $R(s, t)$ with $3 \leq s \leq t$ are those stated in the following table.

t	3	4	5	6	7	8	9
$R(3, t)$	6	9	14	18	23	28	36

t	4	5
$R(4, t)$	18	25

t	5
$R(5, t)$	$?$

In particular, the Ramsey number $R(5,5)$ is not known. All that is known about this Ramsey number is $43 \leq R(5,5) \leq 48$ (see [4,25]). This means that every red-blue coloring of K_{48} results in a red K_{5} or a blue K_{5} (that is, a monochromatic K_{5}) and there is a red-blue coloring of K_{42} for which there is neither a red K_{5} nor a blue K_{5}.

The Ramsey numbers $R(s, t)=R\left(K_{s}, K_{t}\right)$ have become known as the classical Ramsey numbers. Classical Ramsey numbers are not limited to two positive integers (and two colors), however. For example, for positive integers r, s, and t, the Ramsey number $R(r, s, t)$ is the smallest positive integer n for which every red-blue-green coloring of K_{n} results in either a red K_{r}, a blue K_{s}, or a green K_{t}. As expected, very few such Ramsey numbers $R(r, s, t)$ have been determined for $3 \leq r \leq s \leq t$. In fact, only two of these numbers have been found. In 2016, Michael Codish, Michael Frank, Avraham Itzhakov, and Alice Miller [13] showed that $R(3,3,4)=30$. The Ramsey number $R(3,3,3)$ was determined by Greenwood and Gleason in their 1955 paper [20]. The proof we present, however, is due to Sun and Cohen [31].

Theorem 2.2. [20] $R(3,3,3)=17$.
Proof. First, we show that $R(3,3,3) \leq 17$. Let there be given a red-blue-green coloring of K_{17}. Since the degree of every vertex of K_{17} is 16 , every vertex is incident with at least six edges of the same color, say the vertex v of K_{17} is incident with six green edges $v v_{1}, v v_{2}, \ldots, v v_{6}$. If any two vertices in the set $S=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$ are joined by a green edge, then K_{17} has a green K_{3}. On the other hand, if no edge joining two vertices of S is colored green, then every such edge is colored red or blue. Since $R(3,3)=6$, there is a red K_{3} or a blue K_{3}. Consequently, $R(3,3,3) \leq 17$.

Next, we show that $R(3,3,3) \geq 17$. Consider the complete graph $G=K_{16}$ whose 16 vertices are labeled with the 16 elements of the additive group $\mathbb{Z}_{2}^{4}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, every element of which is self-inverse. The 15 non-identity elements of \mathbb{Z}_{2}^{4} are partitioned into the following three sets

$$
\begin{aligned}
V_{r} & =\{0001,0010,0111,1011,1111\} \\
V_{b} & =\{0100,0110,0101,1010,1101\} \\
V_{g} & =\{1000,0011,1001,1100,1110\}
\end{aligned}
$$

where r, b, g represent the colors red, blue, green, respectively. These three sets have the property that the sum of any two distinct elements of $V_{x}, x \in\{r, b, g\}$, do not belong to V_{x}. Now, an edge $u v$ of G is colored x if $u+v \in V_{x}$. Clearly, there is no monochromatic K_{3} in G containing 0000. Suppose that there are three distinct non-identity vertices u, v, w that form a monochromatic K_{3} in G. Then $u+v, u+w, v+w \in V_{x}$ for some $x \in\{r, b, g\}$. Since $u+w, v+w \in V_{x}$, it follows that $(u+w)+(v+w)=u+v \notin V_{x}$, a contradiction. Hence, this red-blue-green coloring of K_{16} contains no monochromatic K_{3} and so $R(3,3,3) \geq 17$. Therefore, $R(3,3,3)=17$.

3. More general Ramsey numbers

Later, Ramsey numbers more general than the classical Ramsey numbers began to be investigated. For two graphs F and H, not necessarily complete, the Ramsey number $R(F, H)$ is defined as the minimum positive integer n for which every red-blue coloring of K_{n} results in either a subgraph isomorphic to F, all of whose edges are colored red (a red F) or a subgraph isomorphic to H, all of whose edges are colored blue (a blue H). Frank Harary always liked this notation! All such Ramsey numbers $R(F, H)$ exist as well, for if F has order s and H has order t, then $R(F, H) \leq R(s, t)$. The dynamic survey "Small Ramsey numbers" by Stanislaw Radziszowski [27] provides a host of information on such Ramsey numbers.

While determining $R(F, H)$ is challenging in most instances, in a paper appearing in the first volume of the Journal of Graph Theory (founded by Frank Harary), Vašek Chvátal [12] found the exact value of $R(F, H)$ whenever F is any tree of a fixed order and H is the complete graph of a fixed order. For the proof of this result, we first present the following known lemma (see [10], for example).

Lemma 3.1. Let T be a tree of order k. If G is a graph for which $\delta(G) \geq k-1$, then G contains a subgraph isomorphic to T.
Proof. We proceed by induction. The result is obvious for $k=1,2,3$. Assume for an integer k where $k \geq 4$ that for every tree T^{\prime} of order $k-1$ and every graph G^{\prime} with $\delta\left(G^{\prime}\right) \geq k-2$ that G^{\prime} contains a subgraph isomorphic to T^{\prime}. Now, let T be a tree of order k and let G be a graph with $\delta(G) \geq k-1$. Let v be an end-vertex of T where u is the neighbor of v. Then $T-v$ is a tree of order $k-1$. Let x be a vertex of G and let $H=G-x$. Since $\delta(G) \geq k-1$, we have $\delta(H) \geq k-2$. By the induction hypothesis, H contains a subgraph T^{\prime} isomorphic to $T-v$. Let u^{\prime} be the vertex of T^{\prime} corresponding to u in $T-v$ in an isomorphism. Since $\operatorname{deg}_{G} u^{\prime} \geq k-1$, the vertex u^{\prime} is adjacent to a vertex $y \in V(G)-V\left(T^{\prime}\right)$. Adding the vertex y and the edge $x y$ to T^{\prime} produces a tree in G isomorphic to T.

Theorem 3.1. [12] Let T be a tree of order $p \geq 2$. For every integer $n \geq 2$,

$$
R\left(T, K_{n}\right)=(p-1)(n-1)+1
$$

Proof. First, we show that $R\left(T, K_{n}\right) \geq(p-1)(n-1)+1$. Let there be given a red-blue coloring of the complete graph $K_{(p-1)(n-1)}$ such that the resulting red subgraph is $(n-1) K_{p-1}$; that is, the red subgraph consists of $n-1$ copies of K_{p-1}. Since each component of the red subgraph has order $p-1$, it contains no connected subgraph of order greater than $p-1$. In particular, there is no red tree of order p. The blue subgraph is then the complete ($n-1$)-partite graph $K_{p-1, p-1, \ldots, p-1,}$, where every partite set contains exactly $p-1$ vertices. Hence, there is no blue K_{n} either. Since this red-blue coloring avoids both a red tree T and a blue K_{n}, it follows that $R\left(T, K_{n}\right) \geq(p-1)(n-1)+1$.

We now show that $R\left(T, K_{n}\right) \leq(p-1)(n-1)+1$ for an arbitrary but fixed tree T of order $p \geq 2$ and an integer $n \geq 2$. We verify this inequality by induction on n. For $n=2$, we show that $R\left(T, K_{2}\right) \leq(p-1)(2-1)+1=p$. Let there be given a red-blue coloring of K_{p}. If any edge of K_{p} is colored blue, then a blue K_{2} is produced. Otherwise, every edge of K_{p} is colored red and a red T is produced. Thus, $R\left(T, K_{2}\right) \leq p$. Therefore, the inequality $R\left(T, K_{n}\right) \leq(p-1)(n-1)+1$ holds when $n=2$. Assume for an integer $k \geq 2$ that $R\left(T, K_{k}\right) \leq(p-1)(k-1)+1$. Consequently, every red-blue coloring of $K_{(p-1)(k-1)+1}$ contains either a red T or a blue K_{k}. We now show that $R\left(T, K_{k+1}\right) \leq(p-1) k+1$. Let there be given a red-blue coloring of $K_{(p-1) k+1}$. We show that there is either a red tree T or a blue K_{k+1}. We consider two cases.

Case 1. There exists a vertex v in $K_{(p-1) k+1}$ that is incident with at least $(p-1)(k-1)+1$ blue edges. Suppose that $v v_{i}$ is a blue edge for $1 \leq i \leq(p-1)(k-1)+1$. Consider the subgraph H induced by the set $\left\{v_{i}: 1 \leq i \leq(p-1)(k-1)+1\right\}$. Thus,
$H=K_{(p-1)(k-1)+1}$. By the induction hypothesis, H contains either a red T or a blue K_{k}. If H contains a red T, so does $K_{(p-1) k+1}$. On the other hand, if H contains a blue K_{k}, then, since v is joined to every vertex of H by a blue edge, there is a blue K_{k+1} in $K_{(p-1) k+1}$.

Case 2. Every vertex of $K_{(p-1) k+1}$ is incident with at most $(p-1)(k-1)$ blue edges. So, every vertex of $K_{(p-1) k+1}$ is incident with at least $p-1$ red edges. Thus, the red subgraph of $K_{(p-1) k+1}$ has minimum degree at least $p-1$. By Lemma 3.1, this red subgraph contains a red T. Therefore, $K_{(p-1) k+1}$ contains a red T as well.

Since $R(3,3)=R\left(K_{3}, K_{3}\right)=6$, it follows that $R\left(C_{3}, C_{3}\right)=6$, that is, the complete graphs K_{3} could be looked at in terms of 3 -cycles. This suggests investigating the Ramsey numbers of other cycles, say $R\left(C_{4}, C_{4}\right)$ for example. As we mentioned earlier, the complete graph K_{5} can be decomposed into two 5 -cycles. Once again, coloring one 5 -cycle red and the other blue shows that there is a red-blue coloring of K_{5} where there is neither a red C_{4} nor a blue C_{4} and so $R\left(C_{4}, C_{4}\right) \geq 6$. We now show that $R\left(C_{4}, C_{4}\right) \leq 6$ (and so $R\left(C_{4}, C_{4}\right)=6$).

Let there be given a red-blue coloring of K_{6}. Since $R(3,3)=6$, there is either a red C_{3} or a blue C_{3}, say the former. Let C be a red C_{3} in K_{6} with vertices u, v, w and let x, y, z be the remaining three vertices of K_{6}. If any of x, y, z is joined to C by two red edges, then a red C_{4} is produced. Thus, we may assume that each of x, y, z is joined to C by at least two blue edges. If any two of x, y, z are joined to the same two vertices of C by blue edges, then a blue C_{4} is produced. Thus, we may further assume that the red-blue coloring of K_{6} contains the red-blue subgraph shown in Figure 1, where bold edges represent red edges and dashed edges are blue edges.

Figure 1: A red-blue subgraph in K_{6}.
If any of the uncolored edges $x y, x z, y z$ is red, then a red C_{4} is produced; if any two of these edges are blue, then a blue C_{4} is produced. Hence, in any case, a monochromatic C_{4} is produced, which says that $R\left(C_{4}, C_{4}\right) \leq 6$. Consequently, $R\left(C_{4}, C_{4}\right)=6$.

The Ramsey number $R(F, H)$ has been determined when F and H are both paths and when F and H are both cycles. In the case of two paths, the Ramsey number was determined by Gerencsér and Gyárfás [17].

Theorem 3.2. [17] For integers r and s with $2 \leq r \leq s, R\left(P_{r}, P_{s}\right)=s+\left\lfloor\frac{r}{2}\right\rfloor-1$.
When F and H are both cycles, the Ramsey number was determined by Faudree and Schelp [16] and, independently, by Károlyi and Rosta (see [24, 29, 30]). When one of F and H is a path and the other a cycle, the Ramsey number was determined by Faudree et al. in [15].

Theorem 3.3. $[16,24,29,30]$ Let p and q be integers with $3 \leq p \leq q$.
(i) $R\left(C_{3}, C_{3}\right)=R\left(C_{4}, C_{4}\right)=6$;
(ii) If p is odd and $(p, q) \neq(3,3)$, then $R\left(C_{p}, C_{q}\right)=2 q-1$;
(iii) If p and q are even and $(p, q) \neq(4,4)$, then $R\left(C_{p}, C_{q}\right)=q+\frac{p}{2}-1$;
(iv) If p is even and q is odd, then $R\left(C_{p}, C_{q}\right)=\max \left\{q+\frac{p}{2}-1,2 p-1\right\}$.

Theorem 3.4. [15] Let m and n be integers with $m, n \geq 2$.

$$
R\left(P_{n}, C_{m}\right)= \begin{cases}2 n-1 & \text { if } 3 \leq m \leq n \text { and } m \text { is odd } \\ n-1+\frac{m}{2} & \text { if } 4 \leq m \leq n \text { and } m \text { is even } \\ \max \left\{m-1+\left\lfloor\frac{n}{2}\right\rfloor, 2 n-1\right\} & \text { if } 2 \leq n \leq m \text { and } m \text { is odd } \\ m-1+\left\lfloor\frac{n}{2}\right\rfloor & \text { if } 2 \leq n \leq m \text { and } m \text { is even } .\end{cases}
$$

4. Bipartite Ramsey numbers

In 1975 Lowell Beineke and Allen Schwenk [5] introduced a new class of Ramsey numbers by considering for a pair F, H of graphs, a red-blue coloring of the regular complete bipartite graph $K_{r, r}$ rather than the complete graph K_{n}, with the goal of obtaining either a red F or a blue H in $K_{r, r}$. Of course, since $K_{r, r}$ is a bipartite graph, the only graphs F and H for which this is possible are bipartite graphs. Precisely, for two bipartite graphs F and H, the bipartite Ramsey number BR(F, H) of F and H is the smallest positive integer r such that every red-blue coloring of the r-regular complete bipartite graph $K_{r, r}$ results in either a red F or a blue H. We saw in the preceding section that the standard Ramsey number $R\left(C_{4}, C_{4}\right)$ is 6 . Since $C_{4}=K_{2,2}$ is bipartite, it is reasonable to consider the bipartite Ramsey number $B R\left(C_{4}, C_{4}\right)$. In particular, we show that $B R\left(C_{4}, C_{4}\right)=5$.

Example 4.1. $B R\left(C_{4}, C_{4}\right)=5$.
Proof. Since the graph $K_{4,4}$ can be decomposed into two copies of C_{8} with one copy colored red and the other colored blue (see Figure 2), there is a red-blue coloring of $K_{4,4}$ that avoids a monochromatic C_{4}. Therefore, $B R\left(C_{4}, C_{4}\right) \geq 5$.

Figure 2: A red-blue coloring of $K_{4,4}$ in Example 4.1.

It remains to show that $B R\left(C_{4}, C_{4}\right) \leq 5$. Let there be given a red-blue coloring of $K_{5,5}$ whose partite sets are denoted by U and W. The partite set U, for example, contains three vertices, each incident with three or more edges of the same color, say red edges. Then two of these vertices are joined to two vertices of W by red edges, producing a red C_{4}. Thus, $B R\left(C_{4}, C_{4}\right) \leq 5$ and so $B R\left(C_{4}, C_{4}\right)=5$.

While $B R\left(C_{4}, C_{4}\right)=5$, the primary question here is that of determining those bipartite graphs F and H for which $B R(F, H)$ exists. It turns out in fact that $B R(F, H)$ exists for every pair F, H of bipartite graphs. Although this was stated in [5], an upper bound for $B R(F, H)$ was obtained by Johann Hattingh and Michael Henning [21], thereby establishing this existence result. In order to state this bound, it is useful to introduce some additional terminology.

For positive integers s and t, bipartite Ramsey numbers of the type $B R\left(K_{s, s}, K_{t, t}\right)$ are referred to as classical bipartite Ramsey numbers. These numbers are also denoted by $B R(s, t)$. Showing that $B R(s, t)$ exists for every pair s, t of positive integers shows that $B R(F, H)$ exists for every pair F, H of bipartite graphs. To see this, let F and H be two bipartite graphs, where the largest partite set of F has s vertices and the largest partite set of H has t vertices. Then $B R(F, H) \leq B R(s, t)$. The following result of Hattingh and Henning [21] is analogous to Theorem 2.1.

Theorem 4.1. [21] For every two positive integers s and t,

$$
B R(s, t) \leq\binom{ s+t}{s}-1
$$

According to the bound for $B R(s, t)$ given in Theorem 4.1, $B R\left(K_{2,2}, K_{2,2}\right)=B R(2,2) \leq\binom{ 4}{2}-1=5$. However, this is $B R\left(C_{4}, C_{4}\right) \leq 5$. We have already seen in Example 4.1 that $B R\left(C_{4}, C_{4}\right)=5$, so this bound is attained when $s=t=2$. It was shown in [5] that $B R(2,3)=9$ and $B R(2,4)=14$, so this bound is also attained when $s=2$ and $t \in\{3,4\}$. However, it was also shown in [5] that $B R(3,3)=17$ and so the bound is not attained when $s=t=3$. This last bipartite Ramsey number then gives the answer to the question asked in the following "party problem":

> Suppose, for some positive integer r, that r girls and r boys are invited to a party where each girl-boy pair are either acquainted or are strangers. What is the smallest such r that guarantees that there exists a group of six people, three girls and three boys, such that either (1) every one of the three girls is acquainted with every one of the three boys or (2) every one of the three girls is a stranger of every one of the three boys?

Bipartite Ramsey numbers can be defined for more than two bipartite graphs. For example, $B R(s, t, p)$ is the smallest positive integer r for which any red-blue-green coloring of $K_{r, r}$ results in either a red $K_{s, s}$, a blue $K_{t, t}$, or a green $K_{p, p}$. That these numbers exist (as well as for any prescribed number k of bipartite graphs and colors) is a consequence of a theorem of Paul Erdős and Richard Rado [14]. The only nontrivial bipartite Ramsey number that has been determined for $k \geq 3$ is $B R(2,2,2)=B R\left(K_{2,2}, K_{2,2}, K_{2,2}\right)=11$, a result due to Goddard, Henning, and Oellermann [18].

5. k-Ramsey numbers

If, for two bipartite graphs F and H, we have $B R(F, H)=r$, then it follows that for every red-blue coloring of $K_{r, r}$, there is either a red F or a blue H; while there exists a red-blue coloring of $K_{r-1, r-1}$ for which there is neither a red F nor a blue H. This brings up the question of which situation can occur for the graph $K_{r-1, r}$. This question led to a concept introduced in [3].

For bipartite graphs F and H, the 2-Ramsey number $R_{2}(F, H)$ is the smallest positive integer n such that every red-blue coloring of the complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ of order n results in a red F or a blue H. In particular, if $B R(F, H)=r$ and there is a red-blue coloring of $K_{r-1, r}$ that avoids both a red F and a blue H, then $R_{2}(F, H)=2 r$; while if every red-blue coloring of $K_{r-1, r}$ produces either a red F or a blue H, then $R_{2}(F, H)=2 r-1$. In general then, either

$$
\begin{equation*}
R_{2}(F, H)=2 B R(F, H) \text { or } R_{2}(F, H)=2 B R(F, H)-1 . \tag{1}
\end{equation*}
$$

We saw in Example 4.1 that $B R\left(C_{4}, C_{4}\right)=5$. This implies that either $R_{2}\left(C_{4}, C_{4}\right)=10$ or $R_{2}\left(C_{4}, C_{4}\right)=9$.
Example 5.1. $R_{2}\left(C_{4}, C_{4}\right)=10$.
Proof. Let $K_{2,3}$ be the complete bipartite graph where u_{1}, u_{2}, u_{3} are the three vertices of degree 2 and let H be the graph obtained from $K_{2,3}$ by subdividing each edge incident with u_{1} or u_{2} exactly once. The graph H is shown Figure 3(c). Then H does not contain C_{4} as a subgraph. Since $K_{4,5}$ can be decomposed into two copies of H, with one copy colored red (shown in Figure 3(a)) and the other copy colored blue (shown in Figure 3(b)), it follows that $R_{2}\left(C_{4}, C_{4}\right) \neq 9$. Therefore, $R_{2}\left(C_{4}, C_{4}\right)=10$ by (1).

Figure 3: A red-blue coloring of $K_{4,5}$ in Example 5.1.
There is a concept even more general than the 2-Ramsey number of bipartite graphs. For an integer $k \geq 2$, a balanced complete k-partite graph of order $n \geq k$ is the complete k-partite graph in which every partite set has either $\lfloor n / k\rfloor$ or $\lceil n / k\rceil$ vertices. In particular, if $n=k q+r$ (by the Division Algorithm) where $q \geq 1$ and $0 \leq r \leq k-1$, then the balanced complete k-partite graph G of order n has r partite sets with $q+1$ vertices and $k-r$ partite sets with q vertices. If $r=0$, then G is a $(k-1) q$-regular graph.

For bipartite graphs F and H and an integer k with $2 \leq k \leq R(F, H)$, the k-Ramsey number $R_{k}(F, H)$ is defined as the smallest positive integer n such that every red-blue coloring of a balanced complete k-partite graph of order n results in a red F or a blue H. That is, $R_{k}(F, H)$ is the minimum order of a balanced complete k-partite graph every red-blue coloring of which results in a red F or a blue H.

If F and H are two bipartite graphs for which $R(F, H)=n \geq 3$, then every red-blue coloring of K_{n} produces either a red F or a blue H. However, such is not the case for the smaller complete graphs $K_{2}, K_{3}, \ldots, K_{n-1}$. Equivalently, for every red-blue coloring of the complete n-partite graph K_{n} where each partite set consists of a single vertex, there is either a red F or a blue H. However, for each complete k-partite graph K_{k}, where $2 \leq k \leq n-1$ such that every partite set consists of a single vertex, there exists a red-blue coloring that produces neither a red F nor a blue H. On the other hand, for each of the graphs $K_{2}, K_{3}, \ldots, K_{n-1}$, we can continue to add vertices to each partite set, resulting in a balanced complete k-partite graph at each step where $2 \leq k \leq n-1$ until eventually arriving at the balanced complete k-partite graph of smallest order $R_{k}(F, H)$ having the property that every red-blue coloring of this graph produces a red F or a blue H. Consequently, for every two bipartite graphs F and H and every integer k with $2 \leq k \leq R(F, H)$, the k-Ramsey number $R_{k}(F, H)$ exists. Furthermore, if $R(F, H)=n$, then

$$
R_{n}(F, H) \leq R_{n-1}(F, H) \leq \cdots \leq R_{3}(F, H) \leq R_{2}(F, H)
$$

In Example 5.1, we saw that $R_{2}\left(C_{4}, C_{4}\right)=10$. The following result was obtained in [3].
Theorem 5.1. [3] For every integer k with $2 \leq k \leq 6, R_{k}\left(C_{4}, C_{4}\right)=12-k$.
While the k-Ramsey number $R_{k}(F, H)$ exists for every two bipartite graphs F and H when $2 \leq k \leq R(F, H)$, such is not the case when F and H are not bipartite. For graphs F and H that are not bipartite, not only does $R_{2}(F, H)$ fail to exist
but $R_{3}(F, H)$ and $R_{4}(F, H)$ also do not exist. To see this, let G be any balanced complete 3-partite graph with partite sets V_{1}, V_{2}, and V_{3}. Assigning the color red to every edge of $\left[V_{1}, V_{2}\right]$, the set of edges joining a vertex of V_{1} and a vertex of V_{2}, and blue to all other edges of G results in a red subgraph G_{R} and a blue subgraph G_{B} both being bipartite. Similarly, if G is a balanced complete 4-partite graph with partite sets V_{1}, V_{2}, V_{3}, and V_{4}, where the color red is assigned to every edge of $\left[V_{1}, V_{2}\right] \cup\left[V_{2}, V_{3}\right] \cup\left[V_{3}, V_{4}\right]$ and the color blue to all other edges of G, then G_{R} and G_{B} are both bipartite. Indeed, even if $\chi(F)=\chi(H)=3, R_{5}(F, H)$ need not exist. For example, $R_{5}\left(K_{3}, K_{3}\right)$ does not exist. To see this, let G be a balanced complete 5 -partite graph with partite sets V_{i} for $1 \leq i \leq 5$. If the edges in $\left[V_{1}, V_{2}\right] \cup\left[V_{2}, V_{3}\right] \cup\left[V_{3}, V_{4}\right] \cup\left[V_{4}, V_{5}\right] \cup\left[V_{5}, V_{1}\right]$ are colored red and all other edges are colored blue, then G does not contain a monochromatic K_{3}. Consequently, $R_{k}\left(K_{3}, K_{3}\right)$ exists only when $k=R\left(K_{3}, K_{3}\right)=6$. Even if a red-blue coloring of K_{5} does not contain a monochromatic K_{3}, there is another monochromatic graph it must contain.

Observation 5.2. Every red-blue coloring of K_{5} produces either a monochromatic C_{3} or a monochromatic C_{5}.
From our preceding discussion, the k-Ramsey number of two odd cycles does not exist when $k=2,3,4$. Furthermore, the 5-Ramsey number of two triangles does not exist. However, if neither of the two odd cycles is a triangle, then the situation is different. The following was shown in [2].

Theorem 5.3. [2] For every pair k, ℓ of integers with $k, \ell \geq 2, R_{5}\left(C_{2 \ell+1}, C_{2 k+1}\right)$ exists.
We have seen that Ramsey numbers are defined for three or more graphs. In particular, for three graphs F_{1}, F_{2}, and F_{3}, the Ramsey number $R\left(F_{1}, F_{2}, F_{3}\right)$ is the smallest positive integer n for which every red-blue-green coloring (in which every edge is colored red, blue, or green) of the complete graph K_{n} results in a red F_{1}, a blue F_{2}, or a green F_{3}. This gives rise to the concept of the k-Ramsey number of three (or more) graphs. For three graphs F_{1}, F_{2}, and F_{3} and an integer k with $2 \leq k \leq R\left(F_{1}, F_{2}, F_{3}\right)$, the k-Ramsey number $R_{k}\left(F_{1}, F_{2}, F_{3}\right)$, if it exists, is the smallest order of a balanced complete k-partite graph G for which every red-blue-green coloring of G results in a red F_{1}, a blue F_{2}, or a green F_{3}. In particular, if $k=2$ and $F_{i} \cong F$ for some graph F, where $i=1,2,3$, then the 2-Ramsey number $R_{2}(F, F, F)$ is the smallest order of a balanced complete bipartite graph G for which every red-blue-green coloring of G results in a monochromatic F. For example, we mentioned that it was shown in [18] that $B R\left(C_{4}, C_{4}, C_{4}\right)=11$, implying that $R_{2}\left(C_{4}, C_{4}, C_{4}\right) \geq 21$. Furthermore, it was shown in [22] that $R_{2}\left(C_{4}, C_{4}, C_{4}\right) \leq 21$. Consequently, $R_{2}\left(C_{4}, C_{4}, C_{4}\right)=21$.

6. s-Bipartite Ramsey numbers

In the two preceding sections, we have seen that $B R\left(C_{4}, C_{4}\right)=5$ and $R_{2}\left(C_{4}, C_{4}\right)=10$. From this, it follows that every red-blue coloring of $K_{5,5}$ results in a monochromatic C_{4}, while there exists a red-blue coloring of $K_{4,5}$ that avoids a monochromatic C_{4}. This brings up another question. Does every red-blue coloring of $K_{4,6}$ produce a monochromatic C_{4} or is there some red-blue coloring of $K_{4,6}$ that avoids a monochromatic C_{4} ? This can be answered by observing that (1) the graph H in Figure 4 does not contain a 4-cycle and (2) the graph $K_{4,6}$ can be decomposed into two copies of H (or $K_{4,6}$ is H-decomposable). Thus, by coloring one copy of H red and the other blue, a red-blue coloring of $K_{4,6}$ is produced that avoids a monochromatic C_{4}.

Figure 4: A graph H for which $K_{4,6}$ is H-decomposable.
This changes with the graph $K_{4,7}$, however. In fact, not only does every red-blue coloring of $K_{4,7}$ contain a monochromatic C_{4}, every red-blue coloring of $K_{3,7}$ contains a monochromatic C_{4}. To see this, let there be given a red-blue coloring of $G=K_{3,7}$ resulting in a red subgraph G_{R} and a blue subgraph G_{B}, the sizes of which are denoted by m_{R} and m_{B}, respectively. Since the size of G is 21 , one of m_{R} and m_{B} is at least 11 , say $m_{R} \geq 11$. Let U and W be the partite sets of G, where $|U|=3$ and $|W|=7$. If U contains vertices u_{1} and u_{2} such that $\operatorname{deg}_{G_{R}} u_{1}+\operatorname{deg}_{G_{R}} u_{2} \geq 9$, then u_{1} and u_{2} have two common neighbors in G_{R} and so G_{R} contains a 4-cycle. Otherwise, the degrees of the three vertices of U in G_{R} are either $5,3,3$, or $4,4,4$, or $4,4,3$. In any of these three cases, two vertices of U have two common neighbors in G_{R}, resulting in a 4-cycle in G_{R}.

These observations resulted in a concept introduced in [7]. For two bipartite graphs F and H and a positive integer s, the s-bipartite Ramsey number $B R_{s}(F, H)$ of F and H is the smallest integer t with $t \geq s$ such that every red-blue coloring of $K_{s, t}$ results in a red F or a blue H. From our discussion above, we have the following result. Here, we write $B R_{s}\left(K_{p, p}, K_{q, q}\right)$ as $B R_{s}(p, q)$.
Theorem 6.1. [7] For each integer $s \geq 2$,

$$
B R_{s}(2,2)=\left\{\begin{array}{cl}
\text { does not exist } & \text { if } s=2 \\
7 & \text { if } s=3,4 \\
s & \text { if } s \geq 5
\end{array}\right.
$$

Proof. First, let $t \geq 2$ be an integer and let $G=K_{2, t}$, where $\left\{u_{1}, u_{2}\right\}$ is one of the partite sets of G. If each edge of G incident with u_{1} is colored red and each edge incident with u_{2} is colored blue, then there is no monochromatic $K_{2,2}$. Thus, $B R_{2}(2,2)$ does not exist.

We have seen that every red-blue coloring of $K_{3,7}$ has a monochromatic $C_{4}=K_{2,2}$ and there exists a red-blue coloring of $K_{4,6}$ that avoids a monochromatic $K_{2,2}$. Therefore, $B R_{3}(2,2)=B R_{4}(2,2)=7$.

Since $B R(2,2)=5$, it follows that $B R_{s}(2,2)=s$ for each integer $s \geq 5$.
Not only has $B R_{s}\left(K_{2,2}, H\right)$ been determined for $H=K_{2,2}$ and $s \geq 2$, it has also been determined when $H=K_{2,3}$ or when $H=K_{3,3}$ (see $[6,7]$).

Theorem 6.2. [6, 7] For each integer $s \geq 2$,

$$
B R_{s}\left(K_{2,2}, K_{2,3}\right)=\left\{\begin{array}{cl}
\text { does not exist } & \text { if } s=2 \\
10 & \text { if } s=3 \\
8 & \text { if } 4 \leq s \leq 7 \\
s & \text { if } s \geq 8
\end{array}\right.
$$

Theorem 6.3. [6, 7] For each integer $s \geq 2$,

$$
B R_{s}(2,3)=B R_{s}\left(K_{2,2}, K_{3,3}\right)=\left\{\begin{array}{cl}
\text { does not exist } & \text { if } s=2,3 \\
15 & \text { if } s=4 \\
12 & \text { if } s=5,6 \\
9 & \text { if } s=7,8 \\
s & \text { if } s \geq 9
\end{array}\right.
$$

While $B R_{s}(F, H)$ has been determined when $F=K_{2,3}$ and $H \in\left\{K_{2,3}, K_{3,3}\right\}$ for each $s \geq 2$, there are only partial results obtained when $F=H=K_{3,3}$ (see [6-9, 32]).
Theorem 6.4. [9] For each integer $s \geq 2$,

$$
B R_{s}\left(K_{2,3}, K_{2,3}\right)=\left\{\begin{array}{cl}
\text { does not exist } & \text { if } s=2 \\
13 & \text { if } s=3,4 \\
11 & \text { if } s=5,6 \\
9 & \text { if } s=7,8 \\
s & \text { if } s \geq 9
\end{array}\right.
$$

Theorem 6.5. [8,32] For each integer $s \geq 2$,

$$
B R_{s}\left(K_{2,3}, K_{3,3}\right)=\left\{\begin{array}{cl}
\text { does not exist } & \text { if } s=2,3 \\
21 & \text { if } s=4,5 \\
15 & \text { if } s=6,7 \\
13 & \text { if } s=8,9 \\
12 & \text { if } s=10,11 \\
s & \text { if } s \geq 12
\end{array}\right.
$$

Theorem 6.6. [6, 7] For each integer $s \geq 2$,

$$
B R_{s}(3,3)=\left\{\begin{array}{cl}
\text { does not exist } & \text { if } s=2,3,4 \\
41 & \text { if } s=5,6 \\
29 & \text { if } s=7,8
\end{array}\right.
$$

The concept of s-bipartite Ramsey number is also related to recreational problems, an example of which is the following.
There are five girls at a party. What is the minimum number of boys who must be invited to the party to guarantee that there exists a group of six people, three girls and three boys, such that either (1) every one of the three girls is acquainted with every one of the three boys or (2) every one of the three girls is a stranger of every one of the three boys?
By Theorem 6.6, the answer to this question is $B R_{5}(3,3)=41$.

7. Ramsey sequences

The establishment of the existence of the classical Ramsey numbers $R(s, s)$, indirectly by Ramsey, and the classical bipartite Ramsey numbers of $B R(s, s)$ by Beineke and Schwenk for every positive integer suggested another Ramsey concept (and another class of problems) stated in [10, p. 313] and [11].

A sequence $\left\{G_{k}\right\}$ of graphs is ascending if G_{k} is isomorphic to a proper subgraph of G_{k+1} for every positive integer k. Furthermore, an ascending sequence $\left\{G_{k}\right\}$ of graphs is a Ramsey sequence if for every positive integer k, there is an integer $n>k$ such that every red-blue coloring of G_{n} results in either a red G_{k} or a blue G_{k}, that is, a monochromatic G_{k}. The theorems obtained by Ramsey and by Beineke and Schwenk show, respectively, that $\left\{K_{k}\right\}$ and $\left\{K_{k, k}\right\}$ are both Ramsey sequences.

Even though $\left\{K_{k, k, k}\right\}$ is an ascending sequence, it is not a Ramsey sequence. To see this, let k be a given integer and let n be an integer where $n>k$. Let the partite sets of $K_{n, n, n}$ be V_{1}, V_{2}, V_{3}. Color each edge of $\left[V_{1}, V_{2}\right]$ red and color all remaining edges of $K_{n, n, n}$ blue. Then every monochromatic subgraph of $K_{n, n, n}$ is bipartite, while $K_{k, k, k}$ is not. Similarly, if $\left\{G_{k}\right\}$ is any ascending sequence for which $\left\{\chi\left(G_{k}\right)\right\}$ is a constant sequence of an integer 3 or more, then $\left\{G_{k}\right\}$ is not a Ramsey sequence. This results in the following.

Proposition 7.1. [11] If $\left\{G_{k}\right\}$ is a Ramsey sequence, then either every graph G_{k} is bipartite or $\lim _{k \rightarrow \infty} \chi\left(G_{k}\right)=\infty$.
Proof. Since the sequence $\left\{G_{k}\right\}$ of graphs is ascending, it follows that $\chi\left(G_{k+1}\right) \geq \chi\left(G_{k}\right)$ for every positive integer k. Assume that neither every graph G_{k} is bipartite nor $\lim _{k \rightarrow \infty} \chi\left(G_{k}\right)=\infty$. Therefore, there is a positive integer N such that for every integer $k \geq N$, it follows that $\chi\left(G_{k}\right)$ is a constant $p \geq 3$. Let n be an arbitrary integer with $n>N$. Then $\chi\left(G_{n}\right)=p$. Let $V_{1}, V_{2}, \ldots, V_{p}$ be the color classes in a proper p-coloring of the vertices of G_{n}. Assign the color red to all edges in $\left[V_{p}, \bigcup_{i=1}^{p-1} V_{i}\right]$ and the color blue to the remaining edges of G_{n}. Since the resulting red subgraph of G_{n} is bipartite and the chromatic number of the blue subgraph of G_{n} is $p-1$, it follows that there is no monochromatic subgraph of G_{n} that is isomorphic to G_{N}. Hence, $\left\{G_{k}\right\}$ is not a Ramsey sequence.

While $\left\{K_{r, r}\right\}$ is a Ramsey sequence of bipartite graphs, $\left\{K_{k}\right\}$ is a Ramsey sequence for which $\lim _{k \rightarrow \infty} \chi\left(K_{k}\right)=\infty$.
For a graph G_{k} in a Ramsey sequence $S=\left\{G_{k}\right\}$ of graphs, the smallest positive integer n for which every red-blue coloring of G_{n} results in a monochromatic G_{k} is referred to as the S-Ramsey number $R_{S}\left(G_{k}\right)$ of G_{k}. For example, if $S=\left\{K_{k}\right\}$, then $R_{S}\left(K_{3}\right)=R(3,3)=6$ and $R_{S}\left(K_{4}\right)=R(4,4)=18$; while if $S=\left\{K_{r, r}\right\}$, then $R_{S}\left(K_{2,2}\right)=B R(2,2)=5$ and $R_{S}\left(K_{3,3}\right)=B R(3,3)=17$. More generally, the following is a consequence of Theorems 2.1 and 4.1.

Corollary 7.1. [11] Let s be a positive integer.
\star If $S=\left\{K_{k}\right\}$, then $R_{S}\left(K_{s}\right) \leq\binom{ 2 s-2}{s-1}$.
\star If $S=\left\{K_{r, r}\right\}$, then $R_{S}\left(K_{s, s}\right) \leq\binom{ 2 s}{s}-1$.
Another Ramsey sequence of graphs is that of the stars.
Proposition 7.2. [11] If $S=\left\{K_{1, k}\right\}$, then $R_{S}\left(K_{1, t}\right)=2 t-1$ for every positive integer t.
Proof. For a positive integer t, every red-blue coloring of $K_{2 t-1}$ produces either a red $K_{1, t}$ or a blue $K_{1, t}$ and so $R_{S}\left(K_{1, t}\right) \leq$ $2 t-1$. Since the red-blue coloring of $H=K_{2 t-2}$ that assigns red to $t-1$ edges of H and blue the remaining $t-1$ edges of H avoids a red $K_{1, t}$ and a blue $K_{1, t}$, it follows that $R_{S}\left(K_{1, t}\right) \geq 2 t-1$ and so $R_{S}\left(K_{1, t}\right)=2 t-1$.

Another simple Ramsey sequence consists of disconnected graphs. An argument similar to the one in the proof of Proposition 7.2 gives the following result.

Proposition 7.3. [11] If $S=\left\{k K_{2}\right\}$, then $R_{S}\left(t K_{2}\right)=2 t-1$ for every positive integer t.
Theorem 7.1. [11] The sequence $S=\left\{2 K_{k}\right\}$ is a Ramsey sequence. Furthermore, $R_{S}\left(2 K_{3}\right)=9$.
Proposition 7.4. [11] If H is any connected graph of order 3 or more, then $\{k H\}$ is not a Ramsey sequence.
Proof. The sequence $S=\{k H\}$ is clearly an ascending sequence. For an integer k, let $G=k H$ and let $H_{1}, H_{2}, \ldots, H_{k}$ be the k vertex-disjoint copies of H in G. Define a red-blue coloring of G by assigning red to one edge of H_{i} and blue to the remaining edges of H_{i} for $1 \leq i \leq k$. Since this coloring avoids a monochromatic H in G, it follows that $\{k H\}$ is not a Ramsey sequence.

The n-cube or hypercube Q_{n} is K_{2} if $n=1$, while for $n \geq 2, Q_{n}$ is defined recursively as the Cartesian product $Q_{n-1} \square K_{2}$ of Q_{n-1} and K_{2}. The n-cube can also be defined as that graph whose vertex set is the set of n-bit strings $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ or
$a_{1} a_{2} \cdots a_{n}$, where a_{i} is 0 or 1 for $1 \leq i \leq n$ such that two vertices are adjacent if and only if the corresponding n-bit strings differ at precisely one coordinate. Even though $\left\{Q_{k}\right\}$ is an ascending sequence of bipartite graphs, $\left\{Q_{k}\right\}$ is not a Ramsey sequence.

Theorem 7.2. [11] The sequence $\left\{Q_{k}\right\}$ of hypercubes is not a Ramsey sequence.

Proof. Let $S=\left\{Q_{k}\right\}$. Since Q_{k} is a proper subgraph of Q_{k+1} for every positive integer k, it follows that S is ascending. We show that for every integer $k \geq 3$, there is a red-blue coloring of Q_{k} that avoids a monochromatic $Q_{2}=C_{4}$.

Let $v=(0,0, \ldots, 0) \in V\left(Q_{k}\right)$, where $k \geq 3$. For each integer i with $0 \leq i \leq k$, let $V_{i}=\{x \in V(G): d(v, x)=i\}$. For $0 \leq i \leq k$, a vertex in V_{i} is a k-bit string $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ where exactly i of the coordinates $a_{1}, a_{2}, \ldots, a_{n}$ are 1 and the remaining $n-i$ coordinates are 0 . Thus, $V_{0}=\{(0,0, \ldots, 0)\}$ and $V_{k}=\{(1,1, \ldots, 1)\}$. Furthermore, each set V_{i} is an independent set of $\binom{k}{i}$ vertices of Q_{k}. For each integer i with $0 \leq i \leq k-1$, let H_{i} denote the subgraph induced by $\left[V_{i}, V_{i+1}\right]$. Consequently, $E\left(Q_{k}\right)=\bigcup_{i=0}^{k-1} E\left(H_{i}\right)$. We show that H_{i} contains no C_{4} for $0 \leq i \leq k-1$. This is clear for H_{0} and H_{k-1}. Assume, to the contrary, that there is an integer i with $1 \leq i \leq k-2$ such that H_{i} contains a 4-cycle ($\left.w, x, y, z, w\right)$, where $w, y \in V_{i}$ and $x, z \in V_{i+1}$. Since $w x, w z \in E\left(H_{i}\right)$, there are two coordinates of the vertex w that are both 0 , say coordinates p and q, where in x the coordinate p is 1 and in z the coordinate q is 1 ; while otherwise, the coordinates of w and x and of w and z are identical. This implies, however, that there are two coordinates p^{\prime} and q^{\prime} in x and z, where coordinate p^{\prime} is 1 and the coordinate q^{\prime} is 0 in x, while the coordinate p^{\prime} is 0 and the coordinate q^{\prime} is 1 in z such that changing each 1 to 0 results in the vertex y. However, the only coordinates where this can occur is when $p=p^{\prime}$ and $q=q^{\prime}$, which implies that $y=w$. This is impossible.

We now define a red-blue coloring Q_{k} by assigning red to each edge in H_{i} if i is even and $0 \leq i \leq k-1$ and blue to each edge in H_{i} if i is odd and $1 \leq i \leq k-1$. This red-blue coloring is shown in Figure 5 for Q_{4}, where each dashed line is a red edge and a solid line is a blue edge. Since there is no C_{4} in H_{i} for $0 \leq i \leq k-1$, this red-blue coloring of Q_{k} avoids a monochromatic C_{4}. In fact, the only 4-cycles are of the form (w, x, y, z, w), where $w \in V_{i}, x, z \in V_{i+1}$, and $y \in V_{i+2}$ in which case, w has two coordinates p and q, both $0, y$ has coordinates p and q, both 1 , and is otherwise identical to w; while x and z have exactly one of coordinates p and q to be 1 and is otherwise identical to w. This 4-cycle is not monochromatic, however. Therefore, Q_{k} has no monochromatic C_{4}; thus, S is not a Ramsey sequence.

Figure 5: A red-blue coloring of Q_{4} avoiding a monochromatic C_{4}.
We saw in Proposition 7.1 that if $\left\{G_{k}\right\}$ is a Ramsey sequence, then either every graph G_{k} is bipartite or $\lim _{k \rightarrow \infty} \chi\left(G_{k}\right)=\infty$. We have seen that if $\left\{G_{k}\right\}$ is an ascending sequence of bipartite graphs, then $\left\{G_{k}\right\}$ may or may not be a Ramsey sequence. We now consider ascending sequences $\left\{G_{k}\right\}$ for which $\lim _{k \rightarrow \infty} \chi\left(G_{k}\right)=\infty$. The clique number $\omega(G)$ of a graph G is the order of the largest clique (complete subgraph) of G. Thus, $\chi(G) \geq \omega(G)$ for every graph G. Consequently, if $\left\{G_{k}\right\}$ is an ascending sequence for which $\lim _{k \rightarrow \infty} \omega\left(G_{k}\right)=\infty$, then $\lim _{k \rightarrow \infty} \chi\left(G_{k}\right)=\infty$ as well.

Theorem 7.3. [11] If $\left\{G_{k}\right\}$ is an ascending sequence of graphs for which $\lim _{k \rightarrow \infty} \omega\left(G_{k}\right)=\infty$, then $\left\{G_{k}\right\}$ is a Ramsey sequence.
Proof. Let G_{j} be an arbitrary graph in the sequence $\left\{G_{k}\right\}$ and let $R\left(G_{j}, G_{j}\right)=n$. Since $\lim _{k \rightarrow \infty} \omega\left(G_{k}\right)=\infty$, there exists an integer p such that for every integer $k \geq p$, it follows that $\omega\left(G_{k}\right) \geq n$ and so $H=K_{n}$ is a subgraph of G_{k}. For every red-blue coloring of G_{k}, there exists a red-blue coloring of the subgraph H in G_{k}. Since $R\left(G_{j}, G_{j}\right)=n$, it follows that there exists a monochromatic G_{j} in H and so there is a monochromatic G_{j} in G_{k}. Therefore, $\left\{G_{k}\right\}$ is a Ramsey sequence.

There are sequences $\left\{G_{k}\right\}$ of graphs for which $\lim _{k \rightarrow \infty} \chi\left(G_{k}\right)=\infty$ and $\lim _{k \rightarrow \infty} \omega\left(G_{k}\right) \neq \infty$. The question is whether there are sequences with these properties that are ascending and, if so, whether these sequences are Ramsey sequences. In [11] one such sequence was described.

Let G be a graph of order n with $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Applying a construction (called the Mycielski construction) to G, we obtain a graph, denoted by $M(G)$, of order $2 n+1$ by adding a vertex-disjoint star $K_{1, n}$ to G, where the central vertex of $K_{1, n}$ is v and the end-vertices are $v_{1}, v_{2}, \ldots, v_{n}$. Edges are then added between $V(G)$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ so that $N\left(v_{i}\right)=N_{G}\left(u_{i}\right) \cup\{v\}$ for $i=1,2, \ldots, n$. Here, the vertex v_{i} is often referred to as the shadow vertex of u_{i}. This construction was introduced by Jan Mycielski [26]. If G is triangle-free, then $M(G)$ is also triangle-free and $\chi(M(G))=\chi(G)+1$. Thus, by successively applying the Mycielski construction, we obtain a sequence $G, M(G), M(M(G))=M^{2}(G), \ldots$ of triangle-free graphs where $\lim _{k \rightarrow \infty} \chi\left(M^{k}(G)\right)=\infty$. For $G=K_{2}$, the graphs $M(G)=C_{5}$ and $M^{2}(G)$ are shown in Figure 6. The graph $M^{2}(G)$ is the famous Grötzsch graph, which is the triangle-free graph of smallest order that has chromatic number 4.

Figure 6: The graphs C_{5} and Grötzsch graph.
The Mycielski construction can be applied as well to graphs that are not triangle-free. In particular, we can apply the Mycielski construction to the triangle K_{3}. Therefore, $G_{0}=K_{3}, G_{1}=M\left(K_{3}\right), G_{2}=M^{2}\left(K_{3}\right), \ldots$ is a sequence of K_{4}-free graphs and so $\omega\left(G_{k}\right)=3$ for every nonnegative integer k with $\lim _{k \rightarrow \infty} \chi\left(G_{k}\right)=\infty$. Figure 7 shows red-blue colorings of K_{3} and $M\left(K_{3}\right)$, where a red edge is denoted by a dashed line and a blue edge by a solid line. In both red-blue colorings, there is no monochromatic K_{3}.

Figure 7: Red-blue colorings of K_{3} and $M\left(K_{3}\right)$ avoiding a monochromatic K_{3}.
The following result was obtained in [11].
Theorem 7.4. [11] The sequence $S=\left\{M^{k}\left(K_{3}\right)\right\}$ of graphs is ascending,

$$
\lim _{k \rightarrow \infty} \omega\left(M^{k}\left(K_{3}\right)\right)=3, \text { and } \lim _{k \rightarrow \infty} \chi\left(M^{k}\left(K_{3}\right)\right)=\infty
$$

but S is not a Ramsey sequence.
Of course, we are still left with the following question:
Does there exist an ascending sequence $\left\{G_{k}\right\}$ of graphs with $\lim _{k \rightarrow \infty} \chi\left(G_{k}\right)=\infty$ and $\lim _{k \rightarrow \infty} \omega\left(G_{k}\right) \neq \infty$ such that $\left\{G_{k}\right\}$ is a Ramsey sequence?

8. Monochromatic ascending subgraph sequences

There is a problem in Ramsey theory that involves both ascending sequences of graphs and graph decompositions. A graph G of size $\binom{n+1}{2}$ for some integer $n \geq 2$ is said to have an ascending subgraph decomposition (ASD) if there exists an ascending sequence $\left\{G_{k}\right\}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ of n subgraphs of G such that $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is a decomposition of G where G_{i} has size i for $1 \leq i \leq n$. This concept and the following conjecture were introduced in [1].

The Ascending Subgraph Decomposition Conjecture. For $n \geq 2$, every graph of size $\binom{n+1}{2}$ has an ascending subgraph decomposition.

Let G be a graph of size m where $\binom{n+1}{2} \leq m<\binom{n+2}{2}$. The ascending Ramsey index $A R(G)$ of G is the maximum integer k such that for every red-blue coloring of G, there exists an ascending subgraph sequence $G_{1}, G_{2}, \ldots, G_{k}$ such that G_{i} is monochromatic for $1 \leq i \leq k$. A graph G of size $\binom{n+1}{2}$ is said to have a monochromatic ascending subgraph decomposition (or a monochromatic $A S D$) if for every red-blue coloring of G, there exists an ascending subgraph decomposition G_{1}, G_{2}, \ldots, G_{n} of G such that each subgraph G_{i} is monochromatic for $1 \leq i \leq n$. Consequently, if a graph G of size $\binom{n+1}{2}$ has a monochromatic ASD, then $A R(G)=n$. This concept is illustrated in the next two examples.

Example 8.1. The graph K_{4} has a monochromatic $A S D$ and so $A R\left(K_{4}\right)=3$.
Proof. Let there be given an arbitrary red-blue coloring of K_{4}, resulting in the red subgraph G_{R} and the blue subgraph G_{B} of sizes m_{R} and m_{B}, respectively, where $m_{R} \leq m_{B}$. We show that K_{4} has a monochromatic ASD. Since $m_{R} \leq m_{B}$, it follows that $0 \leq m_{R} \leq 3$. For $m_{R} \in\{0,1\}$, such an ASD is clear. Suppose that $m_{R}=2$. Then either $G_{R}=2 K_{2}$ or $G_{R}=P_{3}$. In either case, there is a monochromatic ASD with $G_{1}=K_{2}, G_{2}=G_{R}$, and $G_{3}=P_{4}$. If $m_{R}=3$, then $G_{R} \in\left\{K_{3}, K_{1,3}, P_{4}\right\}$. In each case, $G_{1}=K_{2}, G_{2}=K_{1,2}, G_{3}=G_{R}$ is a monochromatic ASD of K_{4}.

Example 8.2. The graph $G=3 K_{2}+K_{1,7}$ of size 10 has ascending Ramsey index 3 .
Proof. First, consider the red-blue coloring of G, resulting in the red subgraph $G_{R} \cong 4 K_{2}$. We show that there is no monochromatic ASD of G into four graphs $G_{1}, G_{2}, G_{3}, G_{4}$ of G with this red-blue coloring, for suppose that there is. Then either (1) only G_{4} is a red subgraph or (2) only G_{1} and G_{3} are red subgraphs. We consider these two cases.

Case 1. Only G_{4} is a red subgraph of G. Since $G_{4}=4 K_{2}$, it follows that $G_{3}=K_{1,3}$. Because $K_{1,3}$ is not isomorphic to a subgraph of G_{4}, this is a contradiction.

Case 2. Only G_{1} and G_{3} are red subgraphs of G. Since $G_{1}=K_{2}$ and $G_{3}=3 K_{2}$, it follows that $G_{2}=K_{1,2}$ and $G_{4}=K_{1,4}$. Because G_{3} is not isomorphic to a subgraph of G_{4}, for example, this is a contradiction.

Therefore, $A R(G) \leq 3$. It remains to show that $A R(G) \geq 3$. Let there be given an arbitrary red-blue coloring of G. Let $G_{1}=K_{2}$ be any of the three components of size $1 \mathrm{in} G$ and let $G_{2}=K_{1,2}$ be a monochromatic subgraph of $K_{1,7}$. The remaining subgraph $K_{1,5}$ of $K_{1,7}$ has three edges colored the same. Let $G_{3}=K_{1,3}$ be such a monochromatic subgraph of $K_{1,5}$. Then G_{1}, G_{2}, G_{3} is a monochromatic ascending subgraph sequence in G. Thus, $A R(G) \geq 3$ and so $A R(G)=3$.

If G is a star or a matching of size $\binom{n+1}{2}$, then G has a monochromatic ASD and consequently $A R(G)=n$, as we show next.

Proposition 8.1. For each integer $n \geq 2$, every star of size $\binom{n+1}{2}$ has a monochromatic ASD.
Proof. We proceed by induction on n. The truth of this statement is immediate for $n=2$. Assume for an arbitrary integer $n \geq 2$ that every star of size $\binom{n+1}{2}$ has a monochromatic ASD. Let G be a star of size $\binom{n+2}{2}$ and let there be given a red-blue coloring of G. Since $n \geq 2$, it follows that $\frac{1}{2}\binom{n+2}{2} \geq n+1$ and so there is a monochromatic substar H of G having size $n+1$. Let U be the set of the $n+1$ end-vertices of the substar H and let $G^{\prime}=G-U$. Thus, G^{\prime} is a star of size $\binom{n+1}{2}$. By the induction hypothesis, the resulting red-blue coloring of G^{\prime} has a monochromatic ASD into n monochromatic subgraphs $G_{1}, G_{2}, \ldots, G_{n}$. Hence, $G_{1}, G_{2}, \ldots, G_{n}, G_{n+1}=H$ is a monochromatic ASD of G.

The following result has a proof similar to that of Proposition 8.1.
Proposition 8.2. For each integer $n \geq 2$, every matching of size $\binom{n+1}{2}$ has a monochromatic $A S D$.
Among the numerous problems on this topic are the following. In addition to stars and matchings of size $\binom{n+1}{2}$, which graphs G of size $\binom{n+1}{2}$ have $A R(G)=n$? For which positive integers k, do there exist a positive integer n and a graph G of size $\binom{n+1}{2}$ such that $A R(G)=n-k$?

References

[1] Y. Alavi, A. J. Boals, G. Chartrand, P. Erdős, O. R. Oellermann, The ascending subgraph decomposition problem, Congr. Numer. 58 (1987) 7-14.
[2] E. Andrews, Z. Bi, D. Johnston, C. Lumduanhom, P. Zhang, On k-Ramsey numbers of stripes, Util. Math. 106 (2018) $233-249$.
[3] E. Andrews, G. Chartrand, C. Lumduanhom, P. Zhang, Stars and their k-Ramsey numbers, Graphs Combin. 33 (2017) $257-274$.
[4] V. Angeltveit, B. D. McKay, $R(5,5) \leq 48$, arXiv:1703.08768v2 [math.CO].
[5] L. W. Beineke, A. J. Schwenk, On a bipartite form of the ramsey problem, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen), 1975, pp. 17-22.
[6] Z. Bi, G. Chartrand, P. Zhang, Another view of bipartite Ramsey numbers, Discuss. Math. Graph Theory. 38 (2018) $587-605$.
[7] Z. Bi, G. Chartrand, P. Zhang, A new view of bipartite Ramsey numbers, J. Combin. Math. Combin. Comput. 108 (2019) $193-203$.
[8] Z. Bi, D. Olejniczak, P. Zhang, On the s-bipartite Ramsey numbers of Graphs $K_{2,3}$ and $K_{3,3}$, J. Combin. Math. Combin. Comput. 106 (2018) $257-272$.
[9] Z. Bi, D. Olejniczak, P. Zhang, The s-bipartite Ramsey numbers of the graph $K_{2,3}$, Ars Combin. 142 (2019) $283-291$.
[10] G. Chartrand, P. Zhang, Chromatic Graph Theory, Second Edition, CRC Press, Boca Raton, 2020.
[11] G. Chartrand, P. Zhang, Ramsey sequences of graphs, AKCE J. Graphs Combin. 17 (2020) 646-652.
[12] V. Chvátal, Tree-complete ramsey numbers, J. Graph Theory 1 (1977) 93.
[13] M. Codish, M. Frank, A. Itzhakov, A. Miller, Computing the Ramsey number R(4,3,3) using abstraction aymmetry breaking, Constraints 21 (2016) 375-393.
[14] P. Erdős, R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956) 427-489.
[15] R. J. Faudree, S. L. Lawrence, T. D. Parsons, R. H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974) $269-277$.
[16] R. J. Faudree, R. H. Schelp, All ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313-329.
[17] L. Gerencsér, A. Gyárfas, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167-170.
[18] W. Goddard, M. A. Henning, O. R. Oellermann, Bipartite Ramsey numbers and Zarankiewicz numbers, Discrete Math. 219 (2000) 85-95.
[19] R. L. Graham, B. L. Rothschild, J. H. Spencer, J. Solymosi, Ramsey Theory, Third Edition, John Wiley \& Sons, Hoboken, 2018.
[20] R. E. Greenwood, A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1-7.
[21] J. H. Hattingh, M. A. Henning, Bipartite Ramsey theory, Util. Math. 53 (1998) 217-230.
[22] D. Johnston, P. Zhang, A note on the 2-Ramsey numbers of 4-cycles, J. Combin. Math. Combin. Comput. 98 (2016) $271-279$.
[23] M. Katz, J. Reimann, An Introduction to Ramsey Theory: Fast Functions, Infinity, and Mathematics, American Mathematical Society, Providence, 2018.
[24] G. Károlyi, V. Rosta, Generalized and geometric Ramsey numbers for cycles, Theoret. Comput. Sci. 263 (2001) 87-98.
[25] B. D. McKay, S. P. Radziszowski, Subgraph counting identities and Ramsey numbers, J. Combin. Theory Ser. B 69 (1997) $193-209$.
[26] J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3 (1955) 161-162.
[27] S. P. Radzisowski, Small Ramsey numbers, Electronic J. Combin. (2017) Art\# DS1, Revision\# 15.
[28] F. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264-286.
[29] V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdős. I, J. Combin. Theory Ser. B 15 (1973) 94-104.
[30] V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdős. II, J. Combin. Theory Ser. B 15 (1973) 105-120.
[31] H. S. Sun, M. E. Cohen, An easy proof of the Greenwood-Gleason evaluation of the Ramsey number R(3, 3, 3), Fibonacci Quart. 22 (1984) $235-238$.
[32] W. C. Wan, S. Li, F. Deng, The s-bipartite Ramsey numbers involving $K_{2,3}$ and $K_{3,3}$, J. Combin. Math. Combin. Comput. 109 (2019) $275-285$.

[^0]: *To the memory of Frank Harary on the occasion of the 100th anniversary of his birth.
 ${ }^{\dagger}$ Corresponding author (ping.zhang@wmich.edu).

