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Abstract
Graph labeling is one of the most popular and dynamic areas of graph theory, perhaps even among all of mathematics. The
standard problem involves a graph having labels from a given set of integers on its vertices and then are assigned values
according to some formula. Frank Harary introduced an alternative problem, in which the labels on the vertices themselves
must meet a specified condition. Here, we give a survey of a problem of each type: (a) strongly multiplicative graphs, where,
given a labeling of the vertices, each edge is labeled with the product of its vertex labels; (b) sum graphs, where, given a
labeling of the vertices, two are adjacent if the sum of their labels is also a vertex label.

Keywords: graph labelings; strongly multiplicative graphs; productive graphs; strongly quotient graphs; sum graphs;
integral sum graphs.
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1. Introduction

Most graph labeling problems have three ingredients: for a given graph G:

• A set S of numbers from which vertex labels are chosen.

• A rule that assigns a value to each edge.

• A condition that these values must satisfy.

Following standard notation, a graph G will generally consist here of a set V of n vertices and a set E of m edges, and
will be simple (that is no loops or multiple edges). In a labeling of a graph, the label on a vertex v is denoted `(v) and the
value on an edge e is denoted f(e). Throughout this article, it is always a requirement that no two vertices in a labeling
of a graph receive the same label. Two classical labelings, called “graceful” and “harmonious” labelings, originated in the
1960s. After considering them briefly, we will move on to two that are less well-known. In the spirit of the aforementioned
names and their catchiness and in honor of Frank Harary and his mathematical productivity, we call the first of these
“productive” here, instead of their original name of “strongly multiplicative”. The second type that we consider here are
“sum” graphs, given that name by Harary himself.

Information on the subject of graph labeling can be found at the wonderful site founded and maintained by Joe Gallian,
“A Dynamic Survey of Graph Labeling” [9]. It has considerably greater detail, and in a more formal form, than is presented
here.

Graceful labelings

The universal interest in graph labelings was motivated by Alexander Rosa’s β-valuations [16], which have these ingredi-
ents, given a graph G having m edges, with vertex v having label `(v):

Set: S = {0, 1, . . . ,m}
Rule: f(e) = |`(v)− `(w)|
Condition: All edge labels different.

∗Dedicated to the memory of Professor Frank Harary on the occasion of his 100th birthday.
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Figure 1: A graceful labeling.

An example of a graceful labeling is shown in Figure 1.
We note that there is a close connection with a conjecture on decompositions of complete graphs into trees, as posed by

Gerhard Ringel [15].

Harmonious labelings

These labelings were introduced and investigated by Ron Graham and Neil Sloane [10]. With the exception of trees, for
which the definition is modified slightly, G is a graph with m edges, and here are the ingredients:

For graphs with m edges and edge e = vw:
Set: S = {1, 2, . . . ,m}
Rule: f(e) = `(v) + `(w) (mod m)

Condition: All edge labels different

An example of a harmonious labeling is shown in Figure 2.
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Figure 2: A harmonious labeling.

There is in fact a close connection between harmonious graphs and error-correcting codes (see [10]).
The operations in these labelings are subtraction and addition. In what follows, we consider two other variations; in

the first, the operation is multiplication, whereas in the second, the operation is addition but the labels on the vertices
must meet a prescribed condition (and the edges are not labeled).

2. Productive labelings

In the spirit of Frank Harary, we are re-naming strongly multiplicative graphs as productive graphs (thus fitting in with
the names graceful and harmonious).
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As strongly multiplicative graphs, they originated in the paper by Beineke and Hegde [4] with labelings having these
ingredients, given a graph of order n:
For graphs of order n and edge e = vw:
Set: S = {1, 2, . . . , n}
Rule: f(e) = `(v) · `(w)
Condition: All edge labels different

Figure 3 shows that the Petersen graph has a productive labeling.
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Figure 3: A productive labeling.

The immediate predecessor of productive (strongly multiplicative) labelings was the concept of multiplicative labelings,
introduced by B. D. Acharya and S. M. Hegde [1]. These are defined as follows:
For graphs of order n and edge e = vw:
Set: S = N
Rule: f(e) = `(v) · `(w)
Condition: All edge labels different

This type of labeling differs from graceful and harmonious labelings in the unboundedness of the allowable vertex labels
being any positive integers. In fact, some restrictions are desirable, as is indicated by the following theorem.

Theorem 2.1. Every graph has a multiplicative labeling.

Proof. Given a graph G, label its vertices with different primes. The result is clearly a multiplicative labeling.

This result does however suggest quite an interesting question, but one which we will not explore here: Given a graph
G, what is the minimum r over all multiplicative labelings ofG of the largest label; that is, there is a multiplicative labeling
with S = {1, 2, . . . , r}, but not one with S = {1, 2, . . . , r − 1}.

Returning to productive graphs, we observe that the complete graphK6 is not productive since if its vertices are labeled
from 1 to 6, then the edge joining the vertices 1 and 6 clearly gets the same value as that joining 2 and 3.

The following theorem gives two results on subgraphs and productive graphs.

Theorem 2.2. (a) Every spanning subgraph of a productive graph is productive.

(b) Every graph is an induced subgraph of a productive graph.

Proof. (a) This is a direct consequence of the definition of a productive labeling.
(b) As stated in Theorem 2.1, every graph has a multiplicative labeling. Let G be a graph of order n and let k be the largest
label in some multiplicative labeling ` of G. Now take H be the graph obtained from G by adding k − n isolated vertices
and labeling them with those positive integers less than k not on vertices of G. Then H is clearly productive and has G as
an induced subgraph.

Observe that in Part (a) of the theorem the word ‘spanning’ is necessary, as is shown by the graph in Figure 4 (K7 with
two edges at one vertex removed) with a productive labeling. If the vertex labeled 6 is deleted, then what remains is K6,
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which, as noted above, is not productive.

Families of productive graphs

We now consider whether the graphs in some of the well-known and much-studied families of graphs are productive. We
begin by showing that not many complete graphs or regular complete bipartite graphs are.

Theorem 2.3. (a) The complete graph Kn is productive if and only if n ≤ 5.

(b) The regular complete bipartite graph Kr,r is productive if and only if r ≤ 4.

Proof. (a) As observed above, K6 cannot be productively labeled, while on the other hand, all of the ten products of two
integers from 1 to 5 are different. This verifies Part (a).
(b) A productive labeling of K4,4 is shown in Figure 4 and deletion of the vertices labeled 7 and 8 results in one for K3,3,
so all that remains is to show that larger graphs in this family are not productive. Suppose that Kr,r is productive, r ≥ 5.
Let A and B be the labels in each of the two disjoint partite sets of five elements each. Let 1 ≤ i < j ≤ 2r. We make two
elementary observations: (1) If i and j are both in one of the sets, then 2i and 2j cannot both be in the other set. (2) If i and
2i are both in one of the sets, then j and 2j cannot both be in the other set. It follows that there can be at most two pairs
of the form {k, 2k} split between the two sets. Furthermore, all of the other such pairs, so at least r − 2 of them, must lie
in the same set, say A. Now let C = {1, 2, . . . , r} ∪ {2, 4, . . . , 2r}. Since r ≥ 5, |C| ≥ r + 3. It follows that B then has at most
two of the numbers in C, and so |B| ≥ r + 1, which is a contradiction. Hence, Kr,r cannot be productive.

2 3 4 8

1 5 6 7

Figure 4: A productive labeling of K4,4.

This leaves open the interesting question of which complete bipartite graphs Kr,s with r < s are productive; in partic-
ular, when r = 3 and r = 4.

We turn now to the family of trees. Figure 5 shows one with a productive labeling.

11 12 13 14 15

5 6 7 8 9 10

2 3 4

1

Figure 5: A productive labeling of a tree.

Note that the labeling is that of the vertices encountered in a breadth-first search. It is a straightforward matter to
show that this always works, so we have the following result for special productive labelings of trees.

Theorem 2.4. Every tree has a productive labeling in which a given root is labeled 1.
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Turning to cycles, we have the following result; our proof is not quite as simple as one might expect.

Theorem 2.5. Every cycle is productive.

Proof. Consider the cycle Cn for n ≥ 3. It is easy to show that it is productive if n ≤ 6, so we assume that n ≥ 7 and let
C = v1v2 . . . vnv1. Now if n is not the product of two consecutive integers, then the labeling `(vi) = i gives the products
on the edges as 1 · 2, 2 · 3, . . . , (n − 1)n, n · 1, and these are clearly all different, so the labeling is productive. Now assume
that n = k(k + 1), and consider the labeling as previously except that the labels on vk−1 and vk are interchanged; that is,
`(vk−1) = k, `(vk) = k−1, and `(vi) = i otherwise. It is now straightforward to verify that this labeling is also productive.

The same result can be extended to wheels (those graphsK1 ∗Cr consisting of a cycle augmented by one vertex adjacent
to all of the others); for a proof, the reader is referred to [4].

Theorem 2.6. Every wheel is productive.

The next family that we consider are the grid graphs Pr×Ps, the products of the path Pr of length r−1 and the path Ps of
length s−1. Note that its order is rs. Using a traditional diagonal pattern of the numbers from 1 to rs it is straightforward
to verify that Pr × Ps is productive, so we have our next result.

Theorem 2.7. Every grid graph is productive.

The productiveness of powers of paths were investigated by Beineke and Seoud [5]. The kth power P k
n of the path Pn is

obtained from Pn by joining all pairs of vertices at distance k or less. The following theorem is a summary of their results
for n ≤ 5.

Theorem 2.8. (a) P 3
n is productive for all n.

(b) P 4
n is productive except for n = 6.

(c) P 5
n is productive if n ≤ 5, 9 ≤ n ≤ 13, or n ≥ 17, and is not productive if n = 6, 7, or 8.

As would be expected from the theorem, whether P 5
n has a productive labeling when n = 14, 15, or 16 remains unknown.

Here are two natural questions based on the limited known results:

1. For each value of k ≥ 4, does there exist an integer nk for which P k
n is productive for all n ≥ nk?

2. For each value of k ≥ 4, does there exist an integer nk for which P k
n is not productive if and only if 6 ≤ n < nk?

Maximum numbers of edges

As we observed at the beginning, when the vertices of K6 are labeled 1 to 6, there are two pairs of edges with the same
product, so removing one edge from each pair leaves a productive graph. Because the pairs of products are 1 · 6 = 2 · 3
and 2 · 6 = 3 · 4, the two chosen edges can be adjacent or they can be independent. Consequently, the removal of any two
edges from K6 leave a productive graph. Furthermore, since 7 is prime, the same can be said for K7. In the context of
investigating necessary and sufficient conditions for productive graphs, Seoud and Mahran [17] looked at K8 and found
that four edges need to be removed in order to have a productive graph. An alternative way of considering this problem is
in terms of the greatest number of edges that one can have with a given number of vertices: Let λ(n) denote the maximum
number of edges in a productive graph of order n. Then we have the following table:

n 4 5 6 7 8
λ(n) 6 10 13 19 24

The following result gives upper bounds on the number of edges that one can have.

Theorem 2.9. For all n,

λ(n) ≤


3n2/8 if n ≡ 0 (mod 4),

(3n2 + 2n− 5)/8 if n ≡ 1 (mod 4),

(3n2 − 4)/8 if n ≡ 2 (mod 4),

(3n2 + 2n− 9)/8 if n ≡ 3 (mod 4).

This is unified in this corollary.
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Corollary 2.1. For n ≥ 12, λ(n) ≤ 3n2/8.

An alternate view of this function is that λ(n) equals the number of different products of two different numbers between
1 and n:

λ(n) = |{rs : 1 ≤ r < s ≤ n}|.

Erdős [8] determined its asymptotic behavior:

Theorem 2.10. Let c = 1− 1+ln ln 2
ln 2 . Then

λ(n) ∼ n2

(lnn)c+o(1)
.

An explicit, but quite complicated, formula was found by Kafshar Zaferani [14].

Theorem 2.11.

λ(n) =
n(n− 1)

2
+

n∑
m=2

m−1∑
k=1

⌊
− θ(m, k)

b
√
mk − 1c − k + 1

⌋
,

where

θ(m, k) =

b
√
mk−1c∑

i=k+1

⌊
bmk

i c
mk
i

⌋
.

There are of course many other specifications that one can make on multiplicative labelings of graphs, and one of
the more interesting are those requiring a geometric sequence for the products, which was investigated by Hegde and
Shankaran [11].

Other operations

A variation on our productive graphs was introduced by Adiga and Somashekara [2] as a family called strongly-∗ graphs.
For graphs of order n and edge e = vw:
Set: S = {1, 2, . . . , n}
Rule: f∗(e) = `(v) · `(w) + `(v) + `(w)

Condition: All edge labels different

Because of the similarity in its definition to productive graphs, many of the same results hold also for this labeling.
Another interesting variation uses quotients instead of products; strongly quotient graphs were introduced by Adiga,

Kafshgar Zaferani, and Smitha [3], and are defined as follows:

For graphs of order n and edge e = vw:
Set: S = {1, 2, . . . , n}
Rule: f(e) = `(v)/`(w) with `(v) < `(w)

Condition: All edge labels different
The authors show that the Petersen graph, which we saw was productive, is also strongly quotient, as is shown in

Figure 6.
We note however that this labeling is not productive. Nonetheless, it would appear more likely that a graph is productive

than strongly quotient. For, if one edge has labels a and b with a < b and another has labels c and d with c < d it appears
more likely that a

b = c
d than that ab = cd. This seems to be borne out for some graphs at any rate. For instance, it is

known [3], [4] that although K4 and K5 are productive, they are not strongly quotient, and this is also the case for K3,3.
In comparing and contrasting the two types of labeling, Adiga, Kafshgar Zaferani, and Smitha [3] prove the following
theorems (compare these results with Theorems 2.5, 2.6, and 2.7).

Theorem 2.12. Every cycle is strongly quotient.

Theorem 2.13. A wheel is strongly quotient if and only if it has at least five vertices.

Theorem 2.14. Every grid graph is strongly quotient.

13
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Figure 6: A strongly quotient labeling.

It is interesting that it is an open question whether or not all trees are strongly quotient:
Conjecture. All trees are strongly quotient graphs.

A formula for the greatest number of edges µ(n) that a strongly quotient graph of order n can have was given in [3].
Interestingly, it involves the Euler ϕ-function from number theory.

Theorem 2.15. The maximum number µ(n) of edges in a strongly quotient graph of order n ≥ 2 is

µ(n) =

n∑
k=2

ϕ(k).

The following bounds are also known:

Theorem 2.16. For n ≥ 2,
n∑

k=2

√
k < µ(n) ≤ n(n+ 1)

2
−

n−1∑
k=2

⌊n
k

⌋
− 2.

We conclude this section with an open question: Are the d-dimensional cubes Qd productive and are they strongly
quotient? In Figure 7 we show that the 3-cube has both properties, but with different labelings (neither of these has both
properties).

1 3

7 5

2 4

8 6

1 2

4 3

6 5

7 8

Figure 7: Strongly multiplicative and strongly quotient cubes.

3. Sum graphs

Among the many graph-theoretic creations of Frank Harary was that of “sum graphs” within the area of graph labelings.
The key concept is that the labels on the vertices are closed under the operation of addition of the labels on adjacent vertices.
Originally, Harary [12] restricted the labels to the positive integers, but later extended the possible labels to all integers.
The former he called “sum graphs” and the latter “integral sum graphs”. Here, we will take the liberty of extending the
name “sum graphs” to be the general term and use “positive-valued sum graphs” when that is to be emphasized.

Formally, we have this definition: Given a graph G of order n and a set S of n or more integers, a sum labeling of G is
an assignment `(v) of different numbers from S to the vertices of G so that if vw is an edge of G, then there is a vertex with
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label `(v) + `(w) in S. If all of the labels are positive, the labeling is called positive-valued. We illustrate these definitions
in Figure 8. The first graph shows that the path P4 has a sum labeling using both positive and negative integers, while
the second shows a positive-valued labeling of the union of P3 and an isolated vertex. (It is not difficult to see that (and we
will show this shortly) that P3 itself does not have a positive-valued labeling.)

G: 1 2 -1 3

H: 2 1 3 4

Figure 8: Examples of sum graphs.

In the next two subsections, we look at two of the most interesting aspects of sum graphs that Harary introduced:

• Given a graph G, is it a sum graph (for N or Z)?

• Given a set S of integers, what is its sum graph?

Features of labelings

When Harary first introduced positive-valued sum labelings, he observed that no non-trivial connected graph has such a
labeling. For, suppose that G is connected and has a labeling with positive integers. Let v be the vertex with the largest
label and let w be a vertex adjacent to v. Then there cannot be a vertex with label `(v) + `(w), so G cannot be a positive-
valued sum graph. In fact, it follows from this argument that every positive-valued sum graph G must have isolated
vertices, and a natural question is how many vertices must such a graph have? For paths, the answer is 1, and Harary
used the Fibonacci sequence to illustrate this (see Figure 9).

Harary conjectured that only one vertex was needed for any tree, and this was proved by Ellingham [7].

Theorem 3.1. Every graph consisting of a tree together with one isolated vertex is a positive-valued sum graph.

At the other extreme, Bergstrand et al. [6] showed that for the complete graph Kn the minimum number of isolated
vertices that are needed to get a positive-valued sum graph is 2n− 3.

Returning briefly to integer labelings, Harary [13] showed that a Fibonacci-like sequence can be used to show that
every path is a sum graph. Consider the sequence hn with h1 = 1, h2 = 2, and for n ≥ 3, hn = hn−2 − hn−1 (thus the next
term is a difference of the two preceding terms rather than a sum). When truncated after n terms, this gives a neat sum
labeling of Pn since the sum of two adjacent labels is the label of their immediate predecessor. Figure 10 shows this for
n = 7.

We note that given a set of integers S, the sum graph of the set of negatives of the elements of S is isomorphic to that
of S itself. Most of our discussion will involve labelings with consecutive integers and so we will use the name “interval
labelings”.

Sum graphs of intervals

Heretofore the starting point was a graph and the problem was to assign numbers to its vertices so that there was closure
under addition. Harary [12] also considered working in the opposite direction: start with a set of numbers and construct
a graph that satisfies closure. Formally, if S is a set of n integers, then the sum graph of S, denoted G(S), is that graph of
order nwhose vertices are labeled with the elements in S and two vertices are joined by an edge if their sum is in S (that is,
is the label of one of the vertices). In his inaugural paper, Harary chose to feature the graph Gn of order n whose vertices
are labeled 1, 2, . . . , n, with the vertices labeled i and j joined by an edge if and only if i+ j ≤ n. We let Gn represent this
graph and, as others have done, call it the Harary graph of order n. From here on, we identify a vertex in a labeled graph
with its label. The graphs G6 and G7 are shown in Figure 11.

P7 +K1: 1 2 3 5 8 13 21 34

Figure 9: A positive-valued sum graph.
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P7: 1 2 -1 3 -4 7 -11

Figure 10: A connected sum graph.

G6:
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5

6

G7:

1

2

3

45

6

7

Figure 11: The Harary graphs G6 and G7.

We observe in this example that the structure of a Harary graph is a split graph, that is, the vertices can be “split”
into two sets, one of which induces a complete subgraph and the other induces an independent set of vertices. Further, we
observe that the vertex labeled 1 has degree n− 2, and in going from the vertex labeled i to that labeled i+ 1, the degree
goes down by 1, with one exception, when it remains the same. That exception is for i = k when n = 2k as well as for
i = k + 1 when n = 2k + 1. Figure 11 illustrates this for the cases n = 6 and 7. By summing these degrees, we can deduce
the number of edges in Gn. These facts are summarized in the following result.

Theorem 3.2. (a) For n ≥ 2, the Harary graph Gn is a split graph with the vertices labeled 1, 2, . . . , dn2 e being mutually
adjacent and those labeled dn2 e+ 1, dn2 e+ 2, . . . , n being mutually independent.

(b) The degree of the vertex with label i in Gn is

deg i =

{
n− i− 1 if 1 ≤ i ≤ bn2 c,
n− i if bn2 c+ 1 ≤ i ≤ n.

(c) Gn has
⌊
(n−1)2

4

⌋
edges.

Another view of the Harary graph Gn is to consider, as is often done, a set of consecutive integers in (closed) interval
terms; that is, for r < s, let [r, s] denote the set {r, r+1, . . . , s}. Then Gn is the sum graph G([1, n]). For r > 0, we denote the
sum graph of the interval [r+1, r+n] as Gr+1,r+n. The following theorem of Vilfred, Beineke, and Suryakala [18] extends
Theorem 3.2 to these graphs. We note that our notation for graph operations differs from that of some authors. For the
disjoint union of two graphs G and H, we write G+H (this is consistent in having G+G = 2G), and for the join (in which
every vertex of G is joined to every vertex of H), we write G ∗H.

Theorem 3.3. Let r ≥ 0 and n ≥ 1.

(a) For r ≤ n− 3, Gr+1,r+n
∼= Gn−r + rK1, while for r ≥ n− 2, it is totally disconnected.

(b) For r ≤ n− 3, the interval graph Gr+1,r+n is a split graph with the vertices labeled r + 1, r + 2, . . . , dn2 e being mutually
adjacent and those labeled dn2 e+ 1, dn2 e+ 2, . . . , n being mutually independent.

(c) The degree of the vertex with label i in Gr+1,r+n is

deg(i+ r) =


n− r − i− 1 if 1 ≤ i ≤ bn−r2 c,
n− r − i if bn−r2 c+ 1 ≤ i ≤ n− r.
0 otherwise.

(d) Gr+1,r+n has
⌊
(n−r−1)2

4

⌋
edges.
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The extension of this concept to all intervals of integers was introduced by Vilfred and Mary Florida [19], with the most
interesting being those with both positive and negative values. Note that if every label in a sum graph G(S) is replaced by
its negative, the resulting sum graph is isomorphic to the original sum graph. Hence, we assume for convenience (unless
it is specified otherwise), that sum graphs have at least as many positive as negative labels. Thus, for an interval with
both positive and negative values, we adopt the notation [−r, s] with 1 ≤ r ≤ s. Clearly, the sum graph of such an interval
contains 0 and hence is connected. Figure 12 shows the sum graphs of these intervals of length 6.

G0,6:

0

1

2

34

5

6

G−1,5:

0

1

2

34

5

-1

G−2,4:

0

1

2

34

-2

-1

G−3,3:

0

1

2

3-3

-2

-1

Figure 12: Sum graphs of intervals.

These sum graphs of intervals differ from the earlier ones in that not all of them are split graphs. In fact, each of
the vertices labeled with a negative number will be adjacent to each of those with a positive label. In other words, the
set of positive vertices and and the set of negative vertices yield a complete bipartite subgraph (in general not induced).
As a generalization of a split graph, we define a 3-way split graph to be a graph whose vertices can be partitioned three
subsets, one of which induces a complete graph and each of the other two forms an independent set. The following theorem
summarizes the main properties of the family of sum graphs of intervals with both positive and negative labels.

Theorem 3.4. Let 1 ≤ r ≤ s and n = r + s+ 1.

(a) The sum graph G−r,s ∼= K1 ∗Gr ∗Gs.

(b) G−r,s is a 3-way split graph with the vertices labeled −d r2e,−d
r
2e + 1, . . . ,−1, 0, 1, . . . , d s2e being mutually adjacent and

those labeled in each of the groups −d r2e+ 1,−d r2e+ 2, . . . ,−r and d s2e+ 1, d s2e+ 2, . . . , s being mutually independent.

(c) In G−r,s the degree of the vertex with label i is

deg i =



n+ i if −r ≤ i ≤ −b r2c − 1,

n+ i− 1 if − b r2c ≤ i ≤ −1,
n− 1 if i = 0,

n− i− 1 if 1 ≤ i ≤ b s2c,
n− i if b s2c+ 1 ≤ i ≤ s.

(d) G−r,s has rs+ r + s+
⌊
(r+1)2

4

⌋
+
⌊
(s+1)2

4

⌋
edges.

With that, with a final recognition of Frank Harary’s tremendous contributions to graph theory, we conclude this survey
of two beautiful types of graph labelings.
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[8] P. Erdős, An asymptotic inequality in the theory of numbers, Vestnik Leningrad Univ. 15 (1960) 41–49.
[9] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2019) Art# DS6.

[10] R. L. Graham, N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Algebr. Discrete Methods 1 (1980) 382–404.
[11] S. M. Hegde, P. Shankaran, Geometric labeled graphs, AKCE J. Graphs Combin. 5 (2008) 83–97.
[12] F. Harary, Sum graphs and difference graphs, Congr. Numer. 72 (1990) 101–108.
[13] F. Harary, Sum graphs over all integers, Discrete Math. 124 (1994) 99–105.
[14] R. Kafshgar Zaferani, The maximum number of edges in a strongly multiplicative graph, Bull. Iranian Math. Soc. 31 (2005) 53–56.
[15] G. Ringel, Problem 25, In: Theory of Graphs and its Applications (Proc. Int. Symp. Smolenice 1963), Czech Acad. Sci., Prague, 1964, p.162.
[16] A. Rosa, On certain valuations of the vertices of a graph, In: Theory of Graphs (Int. Symp. Rome 1966), Gordon and Breach, N. Y. and Dunod Paris,

1967, pp. 349–355.
[17] M. A. Seoud, A. E. A. Mahran, On strongly multiplicative graphs, Ars Combin. 118 (2015) 155–165.
[18] K. Vilfred, L. W. Beineke, A. Suryakala, More properties of sum graphs, Graph Theory Notes N. Y. 66 (2014) 10–15.
[19] K. Vilfred, L. M. Florida, Integral sum graphs and maximal integral sum graphs, Graph Theory Notes N. Y. 63 (2012) 28–36.

18


	Introduction
	Productive labelings
	Sum graphs

