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Abstract

The planar graphs of the platonic solids the tetrahedron, octahedron, and icosahedron can be drawn as triangulations of
the plane. Such drawings are called primitive integral plane graphs if the edges are noncrossing straight line segments of
integer lengths and if the greatest common divisor of the lengths is one. It is proved that for each of these three solids, there
exist infinitely many primitive integral plane graphs. The simpler cases of the cube and dodecahedron are mentioned.
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1. Introduction

Every planar graph can be drawn in the plane with noncrossing edges which are straight line segments (Steinitz and
Rademacher, Wagner, Fáry, Stein – see a short proof in [7]). It is an open problem [2, 4] whether the edges also can be
straight line segments of integral lengths. Nevertheless, one can try to construct for each planar graph G such an integral
plane drawing, denoted by D(G). Moreover, it can be asked for the minimum diameter d of D(G), where d denotes the
largest edge length of a D(G).

For the five platonic solids, the tetrahedron, octahedron, cube, dodecahedron, and icosahedron, the minimum diameters
of their integral plane graphs have been determined in [5] to be 17, 2, 13, 2, and 159, respectively. Those three of them which
are triangulations of the plane, that is, where the corresponding polyhedra have triangular faces, namely the tetrahedron,
octahedron, and icosahedron, occur in connection with generalized matchstick graphs in [1].

It is asked in [1] for the minimum number n0(r, d) of vertices of an integral plane drawing (matchstick graph) of an
r–regular planar graph (r = 3, 4, or 5 due to the Eulerian polyhedron formula) with given diameter d. Since n0(3, d) = 4

for a plane tetrahedron graph, n0(4, d) = 6 for a plane octahedron graph, and n0(5, d) = 12 for a plane icosahedron graph
are determined in [1] for many values of d, we will discuss here whether infinitely many values of d are possible, that is,
whether there exist infinitely many primitive integral plane drawings of these three planar platonic solid graphs.

2. Tetrahedron

The smallest integral plane drawing of the tetrahedron graph, that is, with the smallest diameter d = 17, can be seen in
Figure 1 (see [1,5]).

Theorem 2.1. There exists an infinite number of primitive integral plane tetrahedron graphs determined by any pair of
primitive pythagorean triangles.

Proof. Primitive pythagorean triangles are used with legs of lengths 2mn andm2−n2, and the hypotenuse of lengthm2+n2

for parameters m,n with (m,n) = 1 and m 6≡ n (mod 2) (see [11]).
Consider any two such triangles (a, b, c) and (d, e, f) with a < b and e < d for the pairs of legs a, b and d, e, respectively.

Then a multiplication of (a, b, c) by d and (d, e, f) by a, and a reflection at the side of length bd leads to the tetrahedron
graph in Figure 2. Finally, division by (a, d) results in a primitive solution.
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Figure 1: Tetrahedron graph with smallest diameter.
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Figure 2: Tetrahedron graph from pythagorean trian-
gles.

The smallest diameter d in the case of Theorem 2.1 is d = 17 as in Figure 1, where pythagorean triangles (a, b, c) =

(8, 15, 17) and (d, e, f) = (4, 3, 5) are used.
We next consider tetrahedra where edges incident to the inner vertex have equal length.

Theorem 2.2. There exists an infinite number of primitive integral plane tetrahedron graphs where the three outer vertices
lie on a circle with the inner vertex as its centerpoint.

Proof. We use the following result of [10, pp. 7, 26]:

“On a circle with diameter R =
∏k
j=1 p

αj

j , for any distinct prime numbers pj ≡ 1 (mod 4) there exist n =∏k
j=1(αj + 1) pairs of opposite points with pairwise integral distances.”

Then, from any n ≥ 3 pairs of opposite points on the circle, we always can choose three points such that the center of
the circle is inside of the triangle determined by the three points. Figure 3 shows an example for R = 52, which after
multiplication by 2 implies the desired tetrahedron graph in Figure 4.

By computer search (see [1]) all 499 integral plane tetrahedron graphs with diameter d ≤ 100 have been found and it
can be checked that d = 48 is the smallest diameter if the inner edges are of equal length as in Figure 4.
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Figure 3: Pairwise integral distances for opposite pairs
of points with diameter 25.
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Figure 4: The smallest tetrahedron graph with equal
inner edges.

What if the outer edges of the tetrahedron form an equilateral triangle?

Theorem 2.3. There exists an infinite number of primitive integral plane tetrahedron graphs where the outer vertices are
vertices of an equilateral triangle.

Proof. We use the following result of [9, p. 48] (see also [6] and [3, D21]):

“Any pair of rational numbers (p, q) 6= (0, 0) in

u = (p2 + 4pq + q2)2 + 4(p2 − q2)2

and
v = 2(p2 + 4pq + q2)(p2 − q2)

determines four points with pairwise rational distances

s, x =

∣∣∣∣s(u+ v)

u

∣∣∣∣ , y =

∣∣∣∣s(u− v)u

∣∣∣∣ ,
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and z =
∣∣∣∣8su (p2 − q2)(p2 + pq + q2)

∣∣∣∣
where any of these four distances can serve as the side lengths of an equilateral triangle, and then the fourth
point has the remaining distances to the vertices of this triangle.”

Choosing s = u we obtain

s = u = 5p4 + 8p3q + 10p2q2 + 8pq3 + 5q4,

x = u+ v = 7p4 + 16p3q + 10p2q2 + 3q4,

y = u− v = 3p4 + 10p2q2 + 16pq3 + 7q4,

z = 8p4 + 8p3q − 8pq3 − 8q4.

Furthermore, we may choose p = 4t and q = 2t+ 1 for t ≥ 1 to get

u = 3280t4 + 1696t3 + 472t2 + 72t+ 5,

x = 4528t4 + 1760t3 + 232t2 + 24t+ 3,

y = 2032t4 + 1632t3 + 712t2 + 120t+ 7,

z = 2688t4 − 128t3 − 384t2 − 96t− 8.

If now x serves as the side length of the equilateral triangle, then it can be checked that for t ≥ 1, the lengths u, y, and z
are less than x

2

√
3, so that the fourth point lies inside the triangle. For example, for t = 1, the tetrahedron graph in Figure

5 is determined.

It was checked by computer in [9] that d = 112 is the smallest diameter for an equilateral triangle as shown in Figure
6.

6547

4503

6547

6547

2072

5525

Figure 5: Equilateral triangle for t = 1.
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Figure 6: Minimum d = 112 for an equilateral triangle.

It may be remarked that due to a computer search it was conjectured in [1] that a primitive integral plane tetrahedron
graph exists for any d ≥ 68.

Question 2.1. Is d = 67 the largest diameter d such that a primitive integral plane tetrahedron graph does not exist?

3. Octahedron

For the octahedron graph the smallest diameter was determined in [1,5] to be d = 13 (see Figure 8).

Theorem 3.1. There exists an infinite number of primitive integral plane octahedron graphs.

Proof. We use the primitive integral 120◦-triangles where the largest side is of length m2 +mn+ n2 and where the legs of
the angle of 120◦ are of lengths 2mn+ n2 and m2 − n2 with parameters m,n for m 6≡ n (mod 3) and (m,n) = 1 (see [8]).

For such a triangle (a, b, c), where a and b, with a > b, are the legs of the angle of 120◦, we consider an equilateral
triangle of side length 2a + b. Incident to its vertices we insert three pairs of triangles (a, b, c), as in Figure 7. Then
x = a + b − 2b = a − b and after the deletion of the inner six edges of length b the desired integral octahedron graph is
complete.
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Figure 7: Construction of an integral octahedron graph.
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Figure 8: Octahedron minimum d = 13 (m = 2, n = 1).
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Figure 9: Octahedron graph (m = 5, n = 1).

As examples, for m = 2, n = 1, the minimum case of Figure 8 (see [1, 5]) is given, and for m = 5, n = 1, the graph in
Figure 9 is obtained.

In [1] for diameters up to 100 all 22 primitive integral plane octahedron graphs are listed.

Question 3.1. Is there a largest distance d such that a primitive integral plane octahedron graph does not exist?

4. Icosahedron

The smallest diameter for the icosahedron graph is d = 159 (see [1,5] and Figure 10).

Theorem 4.1. There exists an infinite number of primitive integral plane icosahedron graphs.

Proof. We will generalize the minimum drawing of Figure 10 which is symmetrical by rotation and which is determined
by the three integral 120o-triangles

(b, c, d) = (40, 24, 56),

(u, v, w) = (16, 39, 49),and
(p, q, r) = (95, 24, 109)

together with the three conditions (i) b > c, (ii) u = b− c, and (iii) q = c, p = b+ u+ v. Due to (i) the angle at b in (b, c, d) is
less than 30o so that the isosceles triangle with side lengths d and u does exist. Both, b + c and u + 2c are side lengths of
the same equilateral triangle which determines (ii). Condition (iii) follows from the symmetry of Figure 10.

With parameters i, j and s, t we choose the two rational 120o-degree triangles

(b, c, d) = (2ij + j2, i2 − j2, i2 + j2 + ij) and

(u, v, w) = (k(s2 − t2), k(2st+ t2), k(s2 + t2 + st))

where k = (2ij+2j2− i2)/(s2− t2) is determined by (ii). Then all edges of the generalized Figure 10 are of rational lengths,
except for those edges of length r. If i = 2j+1 is chosen for j ≥ 2, j 6≡ 2 (mod 3), then (b, c, d) is primitive and (i) is fulfilled.

63
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Figure 10: Icosahedron, minimum d = 159, and its generalization.

Moreover, we may choose t = 1. For r the triangle (p, q, r) yields r2 = p2 + q2 + pq and (iii) determines

(s2 − 1)p = (s2 − 1)(7j2 − 1) + (2s+ 1)(2j2 − 2j − 1) and
(s2 − 1)q = (s2 − 1)(3j2 + 4j + 1).

By insertion of p and q into r2 = p2 + q2 + pq we obtain

(s2 − 1)2r2 = R2 = a4s
4 + a3s

3 + a2s
2 + a1s+ a0

with

a4 = 79j4 + 52j3 + 12j2 + 4j + 1,

a3 = 68j4 − 52j3 − 54j2 − 4j + 2,

a2 = −108j4 − 162j3 − 51j2 + 6j + 3,

a1 = −52j4 + 20j3 + 54j2 + 20j + 2,

a0 = (7j2 + 5j + 1)2 = T 2.

Since a0 = T 2 is a square number we can assume R2 = ms2 + ns+ T to get

R2 = (ms2 + ns+ T )2 = m2s4 + 2mns3 + (n2 + 2mT )s2 + 2nTs+ T 2.

By comparison of the coefficients we obtain a4s4 + a3s
3 = m2s4 + 2mns3, a2 = n2 + 2mT , and a1 = 2nT . Insertion of the

values for aγ , 0 ≤ γ ≤ 4, yields

n =
a1
2T

= −26

7
j2 +O(j),

64



A. P. Burger, H. Harborth, and M. Möller / Discrete Math. Lett. 6 (2021) 60–67 65

m =
a2 − n2

2T
= −2984

343
j2 +O(j), and

s = s0 =
a3 − 2mn

m2 − a4
=

68j4 − 2 2984
343

26
7 j

4 +O(j3)
29842

3432 j
4 − 79j4 +O(j3)

= −1,017 . . .+O(j−1).

This gives a rational solution (s0, R0) yielding a rational r. However, since s0 is negative a geometrical realization is
impossible. If we then replace s by x+ s0 in the equation for R2 we obtain

R2 = a′4x
4 + a′3x

3 + a′2x
2 + a′1x+ a′0

where

a′4 = a4 = 79j4 +O(j3),
a′3 = 4a4s0 + a3 = −253,578 . . . j4 +O(j3),
a′2 = 6a4s

2
0 + 3a3s0 + a2 = 175,281 . . . j4 +O(j3),

a′1 = 4a4s
3
0 + 3a3s

2
0 + 2a2s0 + a1 = 46,046 . . . j4 +O(j3),

a′0 = a4s
4
0 + a3s

3
0 + a2s

2
0 + a1s0 + a0 = R2

0 = {1,770 . . .+O(j3)}2.

Since a′0 = R2 is a square number again we can use the same procedure as above to obtain

n′ =
a′1
2R0

= 13,005 . . . j2 +O(j),

m′ =
a′2 − n′2
2R0

= 1,733 . . . j2 +O(j), and

x = x0 =
a′3 − 2m′n′

m′2 − a4
= 3,930 . . .+O(j−1).

Then s1 = x0 + s0 = 2,912 . . . + O(j−1) gives a desired rational solution (s1, R1) yielding a positive rational r for any
sufficiently large j 6≡ 2 (mod 3). After multiplication with the least common denominator a proof is complete.

Of course, these constructed examples have extremely large integers. However, there are many other types than
the minimum one and corresponding generalizations. For d ≤ 250 we know 20 icosahedron graphs with diameters
d = 159, 160, 168, 205, 209, 218, and 247 with 2 and 13 different drawings for 247 and 205, respectively. With the deno-
tations of Figure 11 these drawings are presented in Table 1.

Question 4.1. Is there an arbitrarily large diameter for which a primitive integral plane icosahedron graph does not exist?

(a1a2a3)(a11a12a13a21a22a23a31a32a33)(b11b12b21b22b31b32)(c11c12c13c21c22c23c31c32c33)(c1c2c3)

(159,159,159)(56,56,109,56,56,109,56,56,109)(16,55,16,55,16,55)(49,16,16,49,16,16,49,16,16)(39,39,39)
(160,160,160)(77,77,93,77,77,93,77,77,93)(22,17,22,17,22,17)(21,13,13,21,13,13,21,13,13)(16,16,16)
(168,168,168)(79,79,103,79,79,103,79,79,103)(11,26,11,26,11,26)(14,14,9,14,14,9,14,14,9)(15,15,15)
(205,205,168)(117,110,117,92,75,85,85,75,92)(29,29,29,40,40,29)(25,6,25,25,6,25,25,25,25,)(40,48,40)
(205,205,168)(117,110,117,92,75,85,85,75,92)(29,29,29,40,40,29)(25,6,25,25,6,25,25,39,25,)(30,48,30)
(205,205,168)(117,110,117,92,75,85,85,75,92)(29,29,29,40,40,29)(25,6,25,25,6,25,30,50,30,)(25,48,25)
(205,205,168)(117,110,117,92,75,85,85,75,92)(29,29,29,40,40,29)(20,21,20,20,21,20,24,32,24,)(20,24,20)
(205,205,168)(117,110,117,92,75,85,85,75,92)(29,29,29,40,40,29)(20,21,20,25,36,25,24,32,24,)(20,15,7)
(205,205,168)(117,110,117,92,75,85,85,75,92)(29,29,29,40,40,29)(25,6,25,25,36,25,25,25,25,)(40,30,14)
(205,205,168)(117,110,117,92,75,91,91,75,92)(29,29,29,26,26,29)(25,6,25,25,6,25,25,3,25)(40,48,40)
(205,205,168)(117,110,117,92,75,91,91,75,92)(29,29,29,26,26,29)(25,6,25,25,6,25,25,17,25)(30,48,30)
(205,205,168)(117,110,117,92,75,91,91,75,92)(29,29,29,26,26,29)(25,6,25,25,6,25,30,28,30)(25,48,25)
(205,205,168)(117,110,117,92,75,91,91,75,92)(29,29,29,26,26,29)(20,21,20,20,21,20,24,10,24)(20,24,20)
(205,205,168)(117,110,117,92,75,91,91,75,92)(29,29,29,26,26,29)(20,21,20,25,36,25,24,10,24)(20,15,7)
(205,205,168)(117,110,117,92,75,91,91,75,92)(29,29,29,26,26,29)(20,21,20,20,21,20,25,17,25)(15,24,15)
(205,205,168)(117,110,117,92,75,91,91,75,92)(29,29,29,26,26,29)(25,36,25,25,6,25,25,3,25)(14,30,40)
(209,209,209)(91,91,129,91,91,129,91,91,129)(26,40,26,40,26,40)(39,19,19,39,19,19,39,19,19)(29,29,29)
(218,218,218)(112,112,110,112,112,110,112,112,110)(32,42,32,42,32,42)(13,35,13,13,35,13,13,35,13)(13,13,13)
(247,247,247)(120,91,133,120,91,133,120,91,133)(49,49,49,49,49,49)(26,21,35,35,21,56,56,21,35)(49,35,56)
(247,247,247)(120,91,133,120,91,133,120,91,133)(49,49,49,49,49,49)(56,21,35,56,21,35,56,21,35)(49,49,49)

Table 1: Known primitive integral icosahedron graphs with diameter d = a1 ≤ 250 and denotation of Figure 11.
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Figure 11: Denotations: (ai)(aij)(bik)(cij)(ci), i = 1, 2, 3; j = 1, 2, 3; k = 1, 2.

5. Concluding remarks

For the two remaining platonic solids, the cube and the dodecahedron, infinitely many primitive integral plane drawings
can be constructed as follows (see Figures 12 and 13).
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Figure 12: Integral cube graph.
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Figure 13: Integral dodecahedron graph.

We start with a square or a regular pentagon of side length a together with edges of integer lengths b and c as in Figures
12 and 13, respectively. Now consider the dashed square or pentagon of side length x, (x, a) = 1, being concentric and with
sides parallel to the first square or pentagon, respectively. Then lift it up parallel to the plane as far as the distances y′

become an integer y, then turn it about the common centerpoint to screw it back into the plane preserving the rigid edges
of length y, and the desired drawing is constructed. Altogether, we have the following result.

Theorem 5.1. There exist infinitely many primitive integral plane drawings for each of the five platonic solid graphs.

In general, we may expand the open problem [2,4] mentioned in the Introduction in the following way.

Conjecture 5.1. Every planar graph can have infinitely many primitive integral plane drawings and there is a maximum
diameter d = d0 for which such a drawing does not exist.

For the cube and dodecahedron d0 = 1 follows from the above constructions.
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