Research Article

On 4-colorable robust critical graphs*

Mark Anderson ${ }^{1, \dagger}$, Robert Brigham ${ }^{2}$, Ronald D. Dutton ${ }^{3}$, Richard Vitray ${ }^{1}$, Jay Yellen ${ }^{1}$
${ }^{1}$ Department of Mathematics and Computer Science, Rollins College, Winter Park, FL 32789, USA
${ }^{2}$ Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
${ }^{3}$ Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA

(Received: 3 January 2020. Accepted: 18 May 2020. Published online: 11 March 2021.)
(c) 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Given a proper k-coloring of a graph G, a vertex v is locally recolorable if there is a proper k-coloring of the graph that changes the color of v and limits any other color changes to the neighbors of v. The coloring is robust if every vertex is locally recolorable. The robust chromatic number of $G, \chi_{R}(G)$, is the smallest number k for which G has a robust k-coloring. If $\chi_{R}(G)=\chi(G)$, the graph is χ-robust and if deleting any vertex of a χ-robust graph decreases $\chi_{R}(G)$, the graph is χ-robustcritical. We conjecture that only complete graphs are χ-robust-critical. This paper investigates this conjecture for $\chi=4$ and supports the conjecture for a large class of such graphs. Furthermore, conditions that must be satisfied for such graphs are determined.

Keywords: robust coloring; chromatic number; χ-robust-critical.
2020 Mathematics Subject Classification: 05C15.

1. Introduction

As introduced by Anderson, Brigham, Dutton and Vitray in 2014 [1], if c is a proper k-coloring of a graph G, a vertex v is locally recolorable with respect to \boldsymbol{c} if there is a proper k-coloring c^{v} of G such that $c^{v}(v) \neq c(v)$ and $c^{v}(x)=c(x)$ for all $x \in V(G)-N[v]\left(N(v)\right.$ and $N[v]$ are the open and closed neighborhoods, respectively, of a vertex v). The coloring c^{v} is called a local recoloring of v with respect to c. A proper coloring c is robust if every vertex of G is locally recolorable with respect to c, and G is k-robust if it has a robust k-coloring. The smallest k such that G has a robust k-coloring is the robust chromatic number of \boldsymbol{G}, denoted $\chi_{R}(G)$.

Any proper k-coloring of a graph is also a robust $(k+1)$-coloring of that graph, since the extra color can be used to locally recolor any vertex. Therefore,

$$
\chi(G) \leq \chi_{R}(G) \leq \chi(G)+1
$$

where $\chi(G)$ is the chromatic number of G. There are a number of results throughout graph theory where one parameter is known to be one of two consecutive numbers. Because of these inequalities, all graphs G fall into one of two classes. A graph G is χ-robust if $\chi_{R}(G)=\chi(G)$, and G is χ-robust-critical if G is both χ-robust and $\chi_{R}(G-v)<\chi_{R}(G)$ for all $v \in V(G)$. Note that, if G is χ-robust-critical, then it is vertex χ-critical, that is, $\chi(G-v)<\chi(G)$ for all $v \in V(G)$.

The complete graph K_{n} is χ-robust-critical for $n \geq 3$, since $\chi\left(K_{n}\right)=\chi_{R}\left(K_{n}\right)=n$ and $\chi_{R}\left(K_{n}-v\right)=n-1$ for any vertex v. A natural and useful relation between G and its induced subgraphs is expressed in the following proposition.

Proposition 1.1. If H is an induced subgraph of G, then $\chi_{R}(H) \leq \chi_{R}(G)$.
Proof. If H is an induced subgraph of G and c is a proper k-coloring of G, then the restriction $\left.c\right|_{H}$ of c to vertices in H is a proper coloring of H. Furthermore, for any vertex v of H, if c^{v} is a local recoloring of v with respect to c, then $\left.c^{v}\right|_{H}$ is a local recoloring of v with respect to c_{H}.

The previous proposition is not true without the word "induced." For the graph $K_{2} \times K_{3}$ in Figure 1, removing an edge can increase the robust chromatic number from three to four. This graph is vertex transitive, and, up to symmetry, has only one proper 3-coloring, illustrated as shown in Figure 1. Figure 1 also shows a local recoloring of the white vertex. So $\chi_{R}\left(K_{2} \times K_{3}\right)=3$. The non-induced subgraph shown in Figure 2 has two proper 3-colorings, up to symmetry, both shown. Neither is robust; the white vertex in each graph is not locally recolorable.

[^0]

Figure 1: Every proper 3-coloring of $K_{2} \times K_{3}$ is robust.

Figure 2: The two proper 3-colorings of a subgraph of $K_{2} \times K_{3}$. In each, the white vertex is not locally recolorable.

We use K_{n}^{-}to denote the graph K_{n} minus an edge. The robust chromatic number of K_{n}^{-}is n, implying the following result.

Proposition 1.2. If a graph G is $(n-1)$-robust, then G does not contain the graph K_{n}^{-}as a subgraph.
Proof. If G contains K_{n}^{-}as a subgraph, then either K_{n}^{-}or K_{n} is an induced subgraph of G and so, by Proposition 1.1, $\chi_{R}(G) \geq n$.

This leads to a result about χ-robust-critical graphs.
Corollary 1.1. If a χ-robust-critical graph G with chromatic number n contains K_{n}^{-}as a subgraph, then $G=K_{n}$.
If a bipartite graph G has a vertex v of degree two or larger, then for any 2-coloring of G, no neighbor of v is locallyrecolorable. Therefore, the only connected graphs which have robust chromatic number 2 are K_{1} and K_{2}. This implies there are no χ-robust-critical graphs with chromatic number 2. It also implies that deleting a vertex from a χ-robustcritical graph with chromatic number 3 will result in a graph with maximum degree less than or equal to 1 . Since K_{3} is the only connected, 3 -chromatic graph with this property, it is the only χ-robust-critical graph with chromatic number 3 . Failure to find any χ-robust-critical graphs other than complete graphs leads us to propose the following conjecture.

Conjecture 1.1. A graph is χ-robust-critical if and only if it is a complete graph on 3 or more vertices.
This paper supports Conjecture 1.1 for a large collection of graphs having chromatic number 4. If $\chi(G)=4, G$ is a χ-robust-critical graph, and $v \in V(G)$, then $G-v$ is 3-robust. Accordingly, the next section establishes results for 3-robust graphs.

2. Graphs with robust chromatic number 3

Throughout this section, we assume that H is a graph with $\chi_{R}(H)=3$.
Definition 2.1. Let v be a vertex in a triangle T and z an adjacent vertex not in T. Vertex z is a sidekick of \boldsymbol{T} at \boldsymbol{v} if v is the only vertex in T adjacent to z. A set of sidekicks of T is free if no two are adjacent to the same vertex in T.

In the graph in Figure 3, vertices t, x, y, and z are all sidekicks of triangle T at u, u, w, and v, respectively. The sets $\{x, y, z\}$, and $\{t, y, z\}$ are free, whereas $\{x, t\}$ is not. More informally, we say y and z are free sidekicks of T, whereas x and t are not.

Proposition 2.1. If c is a robust 3 -coloring of a triangle with two free sidekicks, then the two sidekicks must have different colors.

Proof. Let c be a robust 3 -coloring of a triangle T with two free sidekicks, x and y, as shown in Figure 4. Assume, by way of contradiction, that $c(x)=c(y)$. Since $c(v) \neq c(u)$ and $c(v) \neq c(w), c(v)=c(x)=c(y)$. It follows that, v is not locally recolorable, contradicting the robustness of c.

Figure 3: A triangle with four sidekicks.

Figure 4: A triangle with two free sidekicks.

Proposition 2.2. If c is a robust 3 -coloring of H and $\delta(H) \geq 3$, then
(i) any three free sidekicks of a triangle are assigned three different colors,
(ii) any set of sidekicks of a triangle at the same vertex have the same color,
(iii) no two triangles share a vertex, and
(iv) the set of sidekicks of a triangle at a single vertex forms an independent set.

Proof. (i) This is an immediate consequence of Proposition 2.1.
(ii) Let T be a triangle with vertices u, v, and w, and suppose t and x are sidekicks of T at vertex u, as in Figure 3. Since $\delta(H) \geq 3$, there is at least one sidekick y of T at w and one sidekick z at v, and by Proposition $1.2, y \neq z$. By (i), t, y and z have different colors and x, y and z have different colors. Therefore, since c is proper 3-coloring, $c(t)=c(x)$.
(iii) Suppose T_{1} and T_{2} are two different triangles containing u. By Proposition 1.2, no subgraph of H is isomorphic to K_{4}^{-}, and therefore, u is the only vertex common to both triangles. However, the two vertices in $V\left(T_{2}\right)-\{u\}$ are both sidekicks of T_{1} at u and therefore, by (ii), have the same color. This contradicts that c is a proper coloring.
(iv) This follows from (ii).

Due to Proposition 2.2, triangles in H come in two varieties.
Definition 2.2. Suppose c is a robust 3 -coloring of H with colors $0,1,2$. Let T be a triangle in H. If for every $u \in V(T)$, and every sidekick x of T at $u, c(x)=c(u)+1 \bmod 3$, we say T is $a+$ triangle. Similarly, T is $a-$ triangle when $c(x)=c(u)-1$ $\bmod 3$.

Proposition 2.3. If c is a robust 3-coloring of H and $\delta(H) \geq 3$, then
(i) every triangle in H is either + or - and
(ii) any two triangles in H containing adjacent vertices must be of opposite signs.

Proof. (i) Let T be a triangle in H with vertices u_{0}, u_{1}, u_{2} where $c\left(u_{i}\right)=i$ for $i \in\{0,1,2\}$. Since $\delta(H) \geq 3$, all three vertices in T are adjacent to some vertex not in T. Since H does not contain K_{4}^{-}as a subgraph, these vertices must be sidekicks. Suppose that x_{0} is a sidekick of T at u_{0} with $c\left(x_{0}\right)=1$. By Proposition 2.1, a sidekick of T at u_{2} cannot be colored 1 , hence, it must be colored 0. This implies, by Proposition 2.2(i), that a sidekick of T at u_{1} is colored 2. By Proposition 2.2(ii), T is + . Similarly, if $c\left(x_{0}\right)=2$, then T is -.
(ii) Let u and v be adjacent vertices in distinct triangles T_{u} and T_{v}, respectively. If T_{u} is + , then $c(v)=c(u)+1 \bmod 3$, which implies $c(u)=c(v)-1 \bmod 3$. Therefore, by (i), T_{v} is - . Similarly, if T_{u} is -, then T_{v} is + .

3. The main result

We will assume throughout this section that $\chi(G)=4, G$ is a χ-robust-critical graph not equal to K_{4}, and all colorings are proper.

The following lemma establishes a lower bound for the minimum degree of G. Since G is vertex χ-critical, $\delta(G) \geq$ $\chi(G)-1=\chi_{R}(G)-1$. Furthermore, $G \neq K_{4}$ implies G does not contain a subgraph isomorphic to K_{4}^{-}, by Corollary 1.1.

Lemma 3.1. If G is a χ-robust-critical graph not equal to K_{4} and $\chi(G)=4$, then $\delta(G) \geq 4$.
Proof. By the comment preceding the lemma, $\delta(G) \geq 3$. Suppose $v \in V(G)$ has degree 3. By definition of χ-robust-critical, there is a robust 3 -coloring of $G-v$. Since $N[v]$ cannot be K_{4}^{-}, some vertex of $N(v)$ is not adjacent to either of the others. By locally recoloring that vertex, if necessary, we can obtain a 3-coloring of $G-v$ which uses no more than 2 colors for the vertices in $N(v)$. By assigning the third color to v we obtain a 3 -coloring of G which contradicts $\chi(G)=4$.

Lemma 3.2. If G is a χ-robust-critical graph not equal to K_{4} and $\chi(G)=4$, then $|V(G)| \geq 10$.
Proof. The Grötzch graph [2], which has 11 vertices, is the smallest triangle-free graph with chromatic number 4; so, we may assume G contains a triangle T with vertices u_{0}, u_{1}, and u_{2}. By Lemma 3.1, there are two vertices x_{0} and y_{0} in $N\left(u_{0}\right)-V(T)$. Since K_{4}^{-}is not a subgraph of G, x_{0} and y_{0} are both sidekicks of T at u_{0}. Similarly, there exist sidekicks x_{1} and y_{1} of T at u_{1} and sidekicks x_{2} and y_{2} at u_{2}. Since $G-x_{1}$ has a robust 3 -coloring, x_{0} and y_{0} are not adjacent, by Lemma 2.2(iv). Likewise, x_{1} and y_{1} are not adjacent and x_{2} and y_{2} are not adjacent. There may, however, be edges between pairs of free sidekicks of T (between x_{1} and x_{2}, for example). In any event, $c\left(u_{i}\right)=i$ and $c\left(x_{i}\right)=c\left(y_{i}\right)=i+1 \bmod 3$ for $i \in\{0,1,2\}$ is a proper 3-coloring of the subgraph H induced by $N\left(u_{0}\right) \cup N\left(u_{1}\right) \cup N\left(u_{2}\right)$. However, if $|V(G)| \leq 9$ then $G=H$, which contradicts $\chi(G)=4$.

We will use the results of Section 2 by deleting a vertex z of G to produce a subgraph with a robust 3-coloring.
Proposition 3.1. If G is a χ-robust-critical graph not equal to K_{4} and $\chi(G)=4$, then
(i) every vertex of G is in at most one triangle, and
(ii) the set of sidekicks of a triangle at a single vertex is independent.

Proof. (i) Suppose vertex u is on two triangles. By Lemma 3.2, there is a vertex z that is not on either triangle. Since G is χ-robust-critical, $G-z$ has a robust 3 -coloring, and by Lemma 3.1, $\delta(G-z) \geq 3$. However, u is on two triangles in $G-z$, contradicting Proposition 2.2(iii).
(ii) This follows immediately from (i).

Note that if x is a sidekick of a triangle, then a local recoloring of x cannot alter the colors assigned to the vertices of that triangle.

Definition 3.1. A vertex is mono-triangular if it in exactly one triangle and each of its neighbors is also in exactly one triangle.

When a vertex v is in exactly one triangle, we use T_{v} to designate that triangle. If G has a mono-triangular vertex v, then by Lemma 3.1, the triangle T_{v} has at least two sidekicks x and y at v. The next lemma shows that there is always a vertex z, not in any of the triangles T_{v}, T_{x}, and T_{y}, whose deletion maintains the mono-triangularity of v.

Lemma 3.3. Suppose G is a χ-robust-critical graph and $\chi(G)=4$. If v is a mono-triangular vertex of G and $\{x, y\} \subseteq$ $N(v)-V\left(T_{v}\right)$ then there exists a vertex $z \in V(G)-\left(V\left(T_{v}\right) \cup V\left(T_{x}\right) \cup V\left(T_{y}\right)\right)$ such that v is a mono-triangular vertex of $G-z$.

Proof. By Lemma 3.2, $|V(G)| \geq 10$, which implies $V(G)-\left(V\left(T_{v}\right) \cup V\left(T_{x}\right) \cup V\left(T_{y}\right)\right) \neq \emptyset$. Suppose $N[v] \subseteq V\left(T_{v}\right) \cup V\left(T_{x}\right) \cup V\left(T_{y}\right)$ and let $z \in V(G)-\left(V\left(T_{v}\right) \cup V\left(T_{x}\right) \cup V\left(T_{y}\right)\right)$. Since T_{v}, T_{x}, and T_{y} are the only triangles containing a vertex in $N[v]$, v is a monotriangular vertex of $G-z$. On the other hand, if $N[v] \nsubseteq V\left(T_{v}\right) \cup V\left(T_{x}\right) \cup V\left(T_{y}\right)$, there exists $z \in N(v)-\left(V\left(T_{v}\right) \cup V\left(T_{x}\right) \cup V\left(T_{y}\right)\right)$. Since z is a sidekick of T_{v} at v and, by Proposition 3.1(ii), the set of all sidekicks of T_{v} at v is independent, $z \notin V\left(T_{u}\right)$, for any $u \in N[v]-\{z\}$ and so v is mono-triangular in $G-z$.

Using Proposition 2.3, we impose a structure on the set of triangles which contain vertices in the neighborhood of a mono-triangular vertex.

Corollary 3.1. Suppose G is a χ-robust-critical graph with $\chi(G)=4$ and v is a mono-triangular vertex of G. If x and y are distinct sidekicks of T_{v} at v, then $V\left(T_{x}\right) \cap V\left(T_{y}\right)=\emptyset$ and no vertex in T_{x} is adjacent to a vertex in T_{y}.

Proof. By Lemma 3.3, there exists $z \in V(G)-\left(V\left(T_{v}\right) \cup V\left(T_{x}\right) \cup V\left(T_{y}\right)\right)$ such that v is a mono-triangular vertex of $G-z$. Let c be a robust 3-coloring of $G-z$. Proposition 2.2(iii), with $H=G-z$, implies $V\left(T_{x}\right) \cap V\left(T_{y}\right)=\emptyset$. Now, suppose a vertex in T_{x} is adjacent to a vertex in T_{y}. By Proposition 2.3(ii), one of T_{x} and T_{y} must be + and the other must be - . Since x and y are in $N(v)$, Proposition 2.3(ii) also implies T_{v} is both - and + , an impossibility.

If T_{v} is + for some 3-coloring of G, then we can obtain a local recoloring of v without changing the colors of any vertices not in $V\left(T_{v}\right)$ (see Figure 5) by subtracting 1 from each of the colors on the triangle. Similarly, if T_{v} is -, we can add 1 to each color on the triangle. As indicated in the figure, these recolorings change a triangle from + to - and vice versa.

Figure 5: Recoloring signed triangles.

The colorings in Figure 5 play a key role in the proof of the next theorem.
Theorem 3.1. If G contains a mono-triangular vertex v, then G is not χ-robust-critical with chromatic number 4.
Proof. Suppose G has a mono-triangular vertex v and is χ-robust-critical with chromatic number 4. Let c be a robust 3-coloring of $G-v$. Let u and w be the other two vertices of T_{v}. Without loss of generality, assume $c(u)=0$ and $c(w)=1$. Let $P=\left\{r \in N(v)-\{u, w\}: c(r)=2\right.$ and T_{r} is +$\}$ and $M=\left\{r \in N(v)-\{u, w\}: c(r)=2\right.$ and T_{r} is - $\}$. See Figure 6(a).

We define a coloring c^{\prime} of G by,

$$
c^{\prime}(z)=\left\{\begin{array}{lll}
2 & \text { if } z=v \\
c(z)-1 & \bmod 3 & \text { if } z \in T_{r}, \text { where } r \in P \\
c(z)+1 & \bmod 3 & \text { if } z \in T_{r}, \text { where } r \in M \\
c(z) & \text { otherwise }
\end{array}\right.
$$

See Figure 6(b). Notice c^{\prime} assigns a color to v and changes the colors only of vertices in the triangles containing a vertex of $N(v)$ colored 2 by c.

Figure 6: Constructing a 3 -coloring of G.

We now show that c^{\prime} is a proper 3-coloring of G, contradicting the hypothesis that $\chi(G)=4$. Suppose x and y are adjacent vertices in G. All the arithmetic in the cases below is modulo 3.

Case 1. One of the vertices, say y, is equal to v. This implies $x \in N(v)$. If $c(x)=2$, then $x \in P \cup M$ and $c^{\prime}(x) \neq 2=c^{\prime}(v)$. On the other hand, if $c(x) \neq 2$, then $x \notin P \cup M$ and $c^{\prime}(x)=c(x) \neq 2=c^{\prime}(v)$.

Case 2. Neither x nor y is v.
Subcase 2a. Neither x nor y is in $V\left(T_{r}\right)$ for any $r \in P \cup M$. By definition of $c^{\prime}, c^{\prime}(x)=c(x) \neq c(y)=c^{\prime}(y)$.

Subcase 2b. Both x and y are in $V\left(T_{r}\right)$ for some $r \in P \cup M$. If $r \in P$, then $c^{\prime}(x)=c(x)-1$ and $c^{\prime}(y)=c(y)-1$. If $r \in M, c^{\prime}(x)=c(x)+1$ and $c^{\prime}(y)=c(y)+1$. In either case, we have $c^{\prime}(x) \neq c^{\prime}(y)$, since $c(x) \neq c(y)$.

Subcase 2c. For some $r \in P \cup M, x \in V\left(T_{r}\right)$, but $y \notin V\left(T_{r}\right)$ (i.e., y is a sidekick of T_{r} at x). By Corollary 3.1, $y \notin V\left(T_{r^{\prime}}\right)$ for any $r^{\prime} \in P \cup M$, and hence, $c^{\prime}(y)=c(y)$. If $r \in P$, then $c(y)=c(x)+1$ and $c^{\prime}(x)=c(x)-1$. Thus, $c^{\prime}(x) \neq c^{\prime}(y)$. Similarly, $c^{\prime}(x) \neq c^{\prime}(y)$ if $r \in M$.

Since $c^{\prime}(x) \neq c^{\prime}(y)$ in all cases, c^{\prime} is a proper 3-coloring of G, which contradicts G having chromatic number 4.
Definition 3.2. A graph G is called an MT-graph if every vertex in G is mono-triangular.
Theorem 3.1 shows that no MT-graph of chromatic number 4 is χ-robust-critical. The next theorem shows that all χ-robust-critical graphs with small maximum degree are MT-graphs.

Theorem 3.2. If $G \neq K_{4}$ is a χ-robust-critical graph with $\chi(G)=4$ and $\Delta(G) \leq 5$, then G is an MT-graph.
Proof. Let v be a vertex in G. By Proposition 3.1(i), v is in at most one triangle. Thus, it suffices to show that v is in at least one triangle, that is, that $N(v)$ is not an independent set. For any proper 3 -coloring of $G-v$, every color in $\{0,1,2\}$ is assigned to at least one vertex in $N(v)$, or else the coloring could be extended to a proper 3-coloring of G. Let c be a robust 3 -coloring of $G-v$. Since $\operatorname{deg}(v)<6$, there is some color i with $\left|c_{i} \cap N(v)\right|=1$. Let u be the vertex in $N(v)$ with $c(u)=i$. There is a local recoloring c^{u} of u with respect to c and some vertex w in $N(v)$ has $c^{u}(w)=i$, otherwise c^{u} could be extended to a 3-coloring of G. Therefore, u and w are adjacent and $N(v)$ is not independent.

Theorems 3.1 and 3.2 imply the following.
Theorem 3.3. If G is not K_{4} and G is χ-robust-critical with chromatic number 4 , then $\Delta(G) \geq 6$.

4. Open problems

1. Prove or disprove: there are no triangle-free χ-robust-critical graphs with chromatic number 4.
2. Prove or disprove: there are no χ-robust-critical graphs with $\Delta(G) \geq 6$ and chromatic number 4.
3. Find families of graphs that do or do not contain χ-robust-critical graphs.
4. Prove or disprove: there are no χ-robust-critical graphs with chromatic number 5 other than K_{5}.
5. Prove or disprove Conjecture 1.1.

Acknowledgment

The authors would like to express their appreciation to the referees for their helpful suggestions.

References

[1] M. Anderson, R. Brigham, R. Dutton, R. Vitray, Eternal chromatic number, Util. Math. 94 (2014) 287-302.
[2] V. Chvátal, The minimality of the Mycielski graph, In: R. A. Bari, F. Harary (Eds.), Graphs and Combinatorics (Lecture Notes in Mathematics 406), Springer, Berlin, 1974, pp. 243-246.

[^0]: *This paper is dedicated to the memory of Frank Harary.
 ${ }^{\dagger}$ Corresponding author (Manderson@Rollins.edu).

