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Abstract

A location function on a finite connected graph G takes as input any k-tuple of vertices (a profile) and outputs a single vertex.
If G is a fully-gated graph, then a target location function is defined by a predetermined vertex (the target) and outputs
the unique vertex belonging to the convex closure of the profile which is closest to the target. If G is a tree, which is such a
fully-gated graph, then any target function on G satisfies two conditions known in the literature as Weak Pareto Efficiency
and Replacement Domination. In the continuous case, where edges can be seen as segments with interior points, these
two conditions fully characterize the target functions. In previous work we proved that these two conditions do not suffice
to characterize the target functions on finite trees, and that a third condition is needed. In this note we study the location
functions on finite trees that are characterized by precisely these two conditions.
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1. Introduction

In this note we are concerned with location functions on a finite connected graphG = (V,E), where each user/customer i has
a unique most-preferred location xi ∈ V . The preferences of customer i with respect to the other vertices are determined
by the distance to xi: the farther away a vertex is from xi, the less it is preferred. Thus the preferences of i form a weak
order on V with xi at its peak, the vertices adjacent to xi in the next indifference class, the vertices at distance two from
xi in the next class, etcetera. In the literature, these weak orders have been called some variation of distance-determined,
symmetric, single-peaked preferences. Clearly every vertex determines a unique weak order of this type on the vertices of
the graph G, so we can represent it just by its peak. A profile of length k is a k-tuple of most preferred locations of a set
of k customers. We assume throughout that k ≥ 3. The goal of a location function is to select a vertex that represents the
best location given the customers individual preferences as displayed in the input profile. Simply put, a location function
is a mapping f : V k → V , where G = (V,E) is a finite connected graph representing an abstract geography of interest,
such as a road map.

A target function is a location function that is defined by a predetermined vertex, its target: the function outputs a
vertex belonging to the convex hull of the input profile that is closest to the target. The definition of fully-gated graphs
guarantees that this closest vertex exists, so that in this case target functions are well-defined. We refer to Colbourn and
Huybrechts [1] for more information on such graphs. Trees and n-cubes are prime examples of fully-gated graphs. In the
literature [4,5,7,13] various axiomatic characterizations of target functions on trees have been given. The two axioms for
the location function f that are prominent in these results are
(i) Weak Pareto Efficiency (WPE): For any profile π, the output f(π) lies in the convex hull of the vertices in π.
(ii) Replacement Domination (RD): Suppose we change the location of one customer xi in π into yi, thus creating a new
profile ρ that differs from π only in position i. Then, all other customers of π are either closer to f(ρ) or they are farther
from f(ρ) compared with f(π).

Vohra [13] studied tree networks, in which edges are considered to be continuous segments, and where internal points as
well as vertices are allowed as locations. The “distance-determined, symmetric, single-peaked preferences” of the customers
are defined in a similar way. Vohra proved that on a tree network the target functions are the only location functions
satisfying (WPE) and (RD).
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Gordon [4], when dealing with attribute spaces, considered finite trees. But in his case the preference ranking of a
customer is an arbitrary single-peaked weak order of the vertices, where each vertex is then the peak of many different
weak orders. Let RV be the set of all single-peaked weak orders on V . In this context a profile is a sequence of length k

consisting of weak orders in RV . Gordon proved that, on a tree G = (V,E), a location function f : Rk
V → V is a target

function if and only if f satisfies (WPE) and (RD).
In a previous paper [7], we studied the case of location functions on a tree with profiles in our sense, that is, the

symmetric single-peaked weak orders, so that profiles of preference relations can be taken as sequences of vertices. Note
that, in comparison with the Gordon case, we have only a very limited subclass of profiles, so that (RD) constitutes less of
a restriction on the function than in the Gordon case. It turns out that (WPE) and (RD) do not suffice to characterize the
target functions. An extra axiom is needed which we called the Neighborhood Condition. We refer to [7] for the necessary
details.

These results give rise to the following question: what happens in the case of the “distance-determined, symmetric,
single-peaked preferences” when we require only the two axioms (WPE) and (RD) for location functions on a finite tree?
Our main result answers this question. We get functions that are almost target functions satisfying one extra condition
on the convex hulls of profiles.

2. Definitions and main result

Throughout this note G = (V,E) is a finite tree with vertex set V and edge set E. For two vertices x and y, we denote the
path between x and y by [x, y]. Recall that a tree has the property that, for any three vertices u, v, w in G, there is a unique
vertex in [u, v] ∩ [v, w] ∩ [w, u]. The distance d(x, y) between x and y is the length of the path [x, y], that is, the number of
edges in [x, y]. A profile π = (x1, x2, . . . , xk) on G is a sequence of k vertices in G, where multiple occurrences are allowed.
We call x1, x2, . . . , xk the entries in π. The set of vertices contained in π is denoted by {π}. The set of all profiles on G is
denoted by V k. The convex hull 〈π〉 of π is the smallest subtree of G containing all vertices in π. Note that all leaves of
〈π〉 are vertices in π. For a vertex a ∈ V , the gate of a into 〈π〉 is the vertex in 〈π〉 closest to a. Our definitions here of
distance, convex hull and gate are just simplifications of the usual definitions to the tree case. If a ∈ 〈π〉, then obviously a
is its own gate. A location function on G is a mapping f : V k → V . We assume throughout that k ≥ 3.

A location function f : V k → V is Weakly Pareto Efficient, (WPE), if

f(π) ∈ 〈π〉, for every profile π.

On trees it is easy to show that (WPE) is equivalent with the classical property of Pareto Efficiency (or Pareto Optimality)
found in the economics literature, see [7].

For any j and for any profiles π = (x1, . . . , xk) and ρ = (y1, . . . , yk), we will say that π and ρ are equal except at j if

xj 6= yj and xi = yi for all i 6= j.

If π and ρ are equal except at some j we say they are almost equal.
A location function f : V k → V satisfies Replacement Domination, (RD), if, for profiles π = (x1, . . . , xk) and ρ =

(y1, . . . , yk) that are equal except at j, either

d(xi, f(π)) ≤ d(xi, f(ρ)) for all i 6= j

or
d(xi, f(ρ)) ≤ d(xi, f(π)) for all i 6= j.

It appears that this axiom was first considered by Moulin [8], who called it Agreement. Thomson [9–11] called it the
Replacement Principle, see also [12,13]. We follow Klaus [5], who seemed to have coined the term Replacement Domination,
see also [2–4,6].

Here is one way to obtain a violation of (RD), which is often useful in our proofs. There exist xr, xs ∈ {π} with r 6= j

and s 6= j such that f(π) and f(ρ) are two distinct vertices lying on the path between xr and xs. In this case, either

d(xr, f(π)) < d(xr, f(ρ)) and d(xs, f(π)) > d(xs, f(ρ))

or
d(xr, f(π)) > d(xr, f(ρ)) and d(xs, f(π)) < d(xs, f(ρ)).

We can express this situation as follows.
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Remark. If f(π) 6= f(ρ) and [f(π), f(ρ)] ⊆ [xr, xs] with r 6= j and s 6= j, then f does not satisfy (RD).

For the present paper, we will call the following property the convexity condition: If f(π) ∈ 〈ρ〉 and f(ρ) ∈ 〈π〉, then
f(π) = f(ρ), for any profiles π and ρ.

A location function on a connected fully-gated graph G = (V,E) is the target function with target a, denoted fa, if for
any profile π

fa(π) =

a if a ∈ 〈π〉,

g if a /∈ 〈π〉 and g is the gate of a into 〈π〉.

In [7] we showed that the axioms (WPE) and (RD) do not suffice to characterize target functions on finite trees as they
had in the continuous case, and so we had to add one additional axiom to get the target functions characterized. Now we
seek to find those location functions on trees that are completely specified by the two axioms (WPE) and (RD). In order to
analyze these functions, we need to extend the definition of target function. We only need this on trees, but the definition
is meaningful on any fully-gated graph.

Definition. A location function f : V k → V on a fully-gated graph with vertex set V is called a generalized target
function with target a ∈ V if, for any profile π,

• f(π) = a if a ∈ 〈π〉,

• f(π) is the gate of a in 〈π〉 or a neighbor in 〈π〉 of this gate if a 6∈ 〈π〉.

If f is a generalized target function, we always have f(π) ∈ 〈π〉. In addition either f(π) = fa(π) or f(π) is adjacent to fa(π),
where fa is the corresponding target function. For the case a 6∈ 〈π〉, since fa(π) is the gate of a into 〈π〉, we have

d(a, f(π)) ≤ d(a, fa(π)) + 1 ≤ d(a, y) + 1 for all y ∈ 〈π〉.

This inequality is obviously still true if a ∈ 〈π〉 since f(π) = a in this case. Clearly the target function fa with target a is
a generalized target function with target a, but the example at the end of this paper shows that the converse is not true.
Also note that there can be many different generalized target functions with the same target.

We are now ready to state our main result.

Theorem 2.1. Let f : V k → V be a location function on a finite tree with vertex set V . Then f satisfies (WPE) and (RD) if
and only if f is a generalized target function that satisfies the convexity condition.

3. Proof of the main result

Throughout this section G = (V,E) is a finite tree, and f : V k → V is a location function.
First assume that f satisfies (WPE) and (RD). We will prove that f is a generalized target function satisfying the

convexity condition. This will be done in a sequence of Lemmas 3.1 up to 3.8.
First we prove a very powerful lemma.

Lemma 3.1. If f(π) ∈ [xm, xn] with π = (x1, x2, . . . , xk) and xj with j 6= m,n is replaced by yj ∈ [xm, xn] to get a profile
π′ = (y1, y2, . . . , yk) which is equal to π except at j, then f(π′) = f(π).

Proof. Assume f(π′) 6= f(π). Since xm and xn are in π′, it follows that f(π) ∈ [xm, xn] ⊆ 〈π′〉. By (WPE) we have f(π′) ∈<
π′ >. So there exist yr, ys ∈ {π′} such that

[f(π′), f(π)] ⊆ [yr, ys].

If j 6= r and j 6= s, then xr = yr and xs = ys and we get our desired contradiction to (RD) from the Remark.
Now assume j = r and s 6= j, and so ys = xs. Thus,

[f(π′), f(π)] ⊆ [yj , xs].

Let t be the unique vertex belonging to the intersection [xm, xn] ∩ [xm, xs] ∩ [xn, xs]. Since t, yj ∈ [xm, xn], we may assume
without loss of generality that yj ∈ [xm, t]. Since t ∈ [xm, xs] implies that [xm, t] ⊆ [xm, xs] it follows that yj ∈ [xm, xs].
Similarly, yj ∈ [xm, xs] implies that [yj , xs] ⊆ [xm, xs]. Therefore,

[f(π′), f(π)] ⊆ [xm, xs]

and again we get a contradiction to (RD).

49



F. R. McMorris, H. M. Mulder, and R. C. Powers / Discrete Math. Lett. 6 (2021) 47–53 50

In [7] we proved the following lemma only for two profiles π and ρ that are almost equal. Also the proof was not as
complete as it should be. With Lemma 3.1 at hand, we can now prove the following stronger statement.

Lemma 3.2. If π and ρ are two profiles such that 〈π〉 = 〈ρ〉, then f(π) = f(ρ).

Proof. Let π and ρ be two profiles such that 〈π〉 = 〈ρ〉. Assume that f(π) 6= f(ρ). Then we can find two leaves u and v in
〈π〉 = 〈ρ〉 such that [f(π), f(ρ)] ⊆ [u, v]. Note that both u and v are entries in π as well as ρ.

First we consider f(π). Note that u = xm and v = xn, for some m and n, where xm and xn are entries in π. By Lemma
3.1, f(π) = f(π′), for the profile π′ obtained from π by replacing each xi with u, for all i 6= m,n. Clearly π′ is a profile
consisting of k − 1 entries u and one entry v in the n-th position.

If n < k, then, using Lemma 3.1, we can replace xk = u with v without changing the output, and then replace xn with u
without changing the output. So we may assume that π′ = (u, u, . . . , u, v), and we have shown that f(π) = f(u, u, . . . , u, v).

In the same way we prove that f(ρ) = f(u, u, . . . , u, v). Thus we have shown that f(π) = f(ρ).

We observe here that, by Lemma 3.2, f satisfies anonymity, which means that f(π) = f(ρ), for any profiles π and ρ, where
ρ is obtained from π by reordering the entries of π.

Next we introduce some notation that simplifies some of our proofs. Let (uv) denote an arbitrary profile of length k

where {(uv)} = {u, v}. i.e., (uv) consists only of u’s and v’s. We will write f(uv) instead of the correct but cumbersome
f((uv)). Note that since 〈(uv)〉 = [u, v], it follows that f(uv) is well-defined by Lemma 3.2. That is, when f(uv) = z for some
specific profile of type (uv), then f(uv) = z for all profiles of type (uv). In addition, let (xzy) denote the profile (x1, . . . , xk)

where x1 = x, xk = y and xi = z for all i /∈ {1, k}.
The next result is a modification of Lemma 9 from [7].

Lemma 3.3. Let {x, y, p} ⊂ V with x, y, p distinct vertices and p ∈ [x, y] with d(x, p) ≥ 2. If f(xp) = x, then f(xy) = x.

Proof. Since p ∈ [x, y], Lemma 3.2 gives f(xpy) = f(xy).
First assume that d(p, y) < d(p, x). Suppose that f(xp) = x but f(xpy) = f(xy) = z 6= x. By (WPE) we know that

z ∈ [x, y], and it follows that d(p, z) < d(p, x). Hence we have d(p, f(xpy)) < d(p, f(xpp)). On the other hand we have
d(x, f(xpy)) > d(x, f(xpp)) = 0, so we get a contradiction to (RD), considering that (xpy) and (xpp) are almost equal
profiles. Therefore f(xy) = x.

Next assume that d(p, x) ≤ d(p, y). Since d(x, p) ≥ 2, we have d(p, y) ≥ 2. We use induction on d(p, y). If d(p, y) = 2, then
d(x, p) = 2 as well, and so [x, y] is a 5-path xupvy. Consider vertex v. We have d(p, v) < d(p, x). So, applying the previous
argument on x, v instead of x, y gives us that f(xp) = x implies that f(xv) = x. Now we have v ∈ [x, y] and d(v, y) < d(v, x).
So, again by the previous argument, f(xv) = x implies that f(xy) = x. This settles the base for our induction.

For the induction step we may suppose that f(xp) = x implies f(xw) = x, for any [x,w], and p ∈ [x,w]with d(p, w) = r ≥ 2.
Consider a vertex y and a vertex p ∈ [x, y] with d(p, y) = r + 1. Let w be the neighbor of y in [p, y] ⊆ [x, y]. Then d(p, w) = r.
If f(xp) = x, the induction hypothesis gives f(xw) = x. Since d(w, y) = 1 < d(w, x), the first part of the proof implies that
f(xy) = x, and the proof is complete.

Lemma 3.4. Let π = (x1, . . . , xk) be a profile and let y be any element in 〈π〉 such that y 6= f(π). If f(π) = p, then f(yp) = p.

Proof. By (WPE), p = f(π) ∈ 〈π〉. Now {y, p} ⊆ 〈π〉 implies that there exists xr, xs ∈ {π} such that

[y, p] ⊆ [xr, xs].

We may assume that p lies on the unique path from y to xs. So p ∈ [y, xs] and y ∈ [xr, p].
Let j ∈ {1, . . . , k}\{r, s} and assume xj 6= p. Next, let π′ be the profile equal to π except that the jth entry is p. By Lemma

3.1, f(π′) = f(π). By repeating this argument a finite number of times we get a profile π′′ such that {π′′} = {xr, xs, p},
< π′′ >= [xr, xs], and f(π′′) = f(π) = p. If xs 6= p, then xs 6∈ [xr, p]. In this case, replace xs in π′′ with p to get a profile ρ
such that ρ is equal to π′′ except at s. By Lemma 3.1, f(ρ) = f(π′′) = p. Observe that {ρ} = {xr, p} and so f(xrp) = p. If
y = xr, then we are done. If y 6= xr, then, by Lemma 3.2, f(xryp) = p. Finally, since f(xryp) = p ∈ [y, p], we replace xr with
y to get f(yp) = p, by Lemma 3.1.

Next we prove that f satisfies the convexity condition.

Lemma 3.5. For any profiles π and ρ, if f(π) ∈ 〈ρ〉 and f(ρ) ∈ 〈π〉, then f(π) = f(ρ).

Proof. Assume that there exist profiles π and ρ such that f(π) ∈ 〈ρ〉, f(ρ) ∈ 〈π〉, and f(π) 6= f(ρ). If p = f(π) and q = f(ρ),
then, by Lemma 3.4, f(pq) = p and f(pq) = q, contrary to the fact that p 6= q.
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The next Lemma provides us with a candidate for the target of the generalized target function that we get when f

satisfies (WPE) and (RD). We need the following notation. For each x ∈ V ,

Af (x) = {y ∈ V | f(xy) = x}.

Lemma 3.6. There exists a vertex a ∈ V such that Af (a) = V .

Proof. Choose a ∈ V such that Af (a) is a maximal subset of V among sets of the form Af (z) with z ∈ V . We claim that
Af (a) = V . Assume to the contrary that Af (a) 6= V , and choose a y ∈ V \ Af (a) with d(a, y) minimum amongst such
vertices. Let p be the vertex in the path [a, y] adjacent to y. From the choice of y, we deduce that p ∈ Af (a), and thus
f(ap) = a. If d(a, p) ≥ 2, then Lemma 3.3 implies that f(ay) = a, which is contrary to y /∈ Af (a). Therefore d(a, p) ≤ 1, and
so d(a, y) ≤ 2.

First we prove that a ∈ Af (y). Assume that d(a, y) = 2, so that we have the 3-path apy. Then (WPE) and f(ay) 6= a give
f(ay) ∈ {p, y}. If f(ay) = p, then Lemma 3.2 gives us f(apy) = f(ay) = p and f(app) = f(ap) = a. Hence f(apy) 6= f(app).
Since neither p nor a is closer to both a and p, this contradicts (RD). So f(ay) = y. Next assume that d(a, y) = 1. Since
f(ay) 6= a, (WPE) gives f(ay) = y also in this case.

We now claim that Af (a) is a proper subset of Af (y), contradicting the maximality of Af (a). We know y ∈ Af (y)\Af (a),
so we need only show that, if z ∈ Af (a) then z ∈ Af (y).

Choose any z ∈ Af (a), so f(az) = a. Consider the profile π = (ayz). Since G is a tree, it follows that

〈π〉 = [a, y] ∪ [a, z].

By (WPE), we have f(π) ∈ 〈π〉. So it follows that

f(π) ∈ [a, y] ∪ [a, z].

For profiles (ay) and (az), we have < (ay) >= [a, y] and < (az) >= [a, z]. Therefore, either

f(π) ∈< (ay) > and f(ay) = y ∈ 〈π〉

or
f(π) ∈< (az) > and f(az) = a ∈ 〈π〉.

By Lemma 3.5, either f(π) = f(ay) = y or f(π) = f(az) = a. If f(π) = a, then f(π) ∈ [a, y] =< (ay) > and so, by Lemma 3.5
again, f(π) = f(ay) = y. Since a 6= y, we must have f(π) = y. By Lemma 3.5, f(π) = y ∈ [y, z] =< (yz) > and f(yz) ∈ 〈π〉
implies that f(yz) = y. Thus, z ∈ Af (y). This contradicts the maximality of the set Af (a), from which we deduce that
indeed Af (a) = V .

Observe that the vertex a with Af (a) = V is unique, because if there were a vertex b 6= a with Af (b) = V , then we would
have a = f(ab) = f(ba) = b.

Lemma 3.7. Let a be the vertex such that Af (a) = V , and let π be a profile with a ∈ 〈π〉. Then f(π) = a.

Proof. Assume f(π) 6= a and let p = f(π). Since a ∈ 〈π〉 it follows from Lemma ?? that f(ap) = p, contrary to Af (a) = V .
Hence, f(π) = a.

Lemma 3.8. Let a be the vertex such that Af (a) = V , and π a profile with a /∈ 〈π〉, and let g be the gate of a in 〈π〉. Then
f(π) ∈ 〈π〉 with d(f(π), g) ≤ 1.

Proof. Assume that there exists a profile π such that a /∈ 〈π〉 with d(f(π), g) ≥ 2. Since g ∈ 〈π〉 it follows from Lemma ??
that f(gp) = p where p = f(π). Observe that g ∈ [a, p], d(p, g) ≥ 2, and f(pg) = p. Therefore, by Lemma 3.3, f(pa) = p

contrary to Af (a) = V . Hence d(f(π), g) ≤ 1.

At this stage of the proof we have shown that if f is a location function on a tree G = (V,E) satisfying (WPE) and (RD),
then f is a generalized target function, where the target is the vertex a such that Af (a) = V . Moreover, f satisfies the
convexity condition. This is one implication in Theorem 2.1. The following lemma gives the converse of Theorem 2.1.

Lemma 3.9. Let f : V k → V be a generalized target function on a finite tree with vertex set V that satisfies the convexity
condition. Then f satisfies (WPE) and (RD).
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Proof. From the definition of a generalized target function it follows that f satisfies (WPE). Our final goal is to prove that
f satisfies (RD). So, let π = (x1, x2, . . . , xk) and ρ = (y1, y2, . . . , yk) be two profiles that are equal except at j. We have to
prove that

d(xi, f(π)) ≤ d(xi, f(ρ)), for all i 6= j, or

d(xi, f(ρ)) ≤ d(xi, f(π)), for all i 6= j.

If f(π) ∈ 〈ρ〉, and f(ρ) ∈ 〈π〉, then f(π) = f(ρ) by the convexity condition, and we are done.
Now consider the case where fa(π) = fa(ρ) and f(π) 6∈ 〈ρ〉. Let u = fa(π) = fa(ρ) and note that f(π) 6∈ 〈ρ〉 implies that

f(π) 6∈ [u, xi] for i 6= j. By the definition of a generalized target function, f(π) is adjacent to u. Therefore, since f(ρ) = u or
f(ρ) is adjacent to u,

d(xi, f(ρ)) ≤ d(xi, u) + 1 = d(xi, f(π)) for all i 6= j.

The case where fa(π) = fa(ρ) and f(ρ) 6∈ 〈π〉 is proved in a similar way. So at this point we may assume fa(π) 6= fa(ρ).
We do allow for the possibility that fa(π) = a. Let i 6= j belong to the set {1, . . . , k}. Since fa(π) is the gate for a in 〈π〉 and
xi ∈ 〈π〉 it follows that

fa(π) ∈ [a, xi].

Similarly, fa(ρ) being the gate for a in 〈ρ〉 along with xi = yi ∈ 〈ρ〉 implies that

fa(ρ) ∈ [a, xi].

So given that fa(π) 6= fa(ρ) and {fa(π), fa(ρ)} ⊆ [a, xi], we may assume without loss of generality that d(a, fa(π)) <
d(a, fa(ρ)). Since f(π) = fa(π) or f(π) is adjacent to fa(π) it follows that fa(ρ) ∈ [f(π), xi]. If fa(ρ) 6= f(π), then

d(f(ρ), xi) ≤ d(fa(ρ), xi) + 1 ≤ d(fa(ρ), xi) + d(fa(ρ), f(π)) = d(f(π), xi).

Since i was arbitrary we have shown that

d(xi, f(ρ)) ≤ d(xi, f(π)), for all i 6= j.

Hence f satisfies (RD).
The final case is when fa(ρ) = f(π). Note that thus we have f(π) ∈ 〈ρ〉. Since d(f(π), fa(π)) ≤ 1 and fa(π) 6= fa(ρ) it

follows that fa(π) and fa(ρ) are adjacent. If f(ρ) ∈ 〈π〉, then, by the convexity condition, f(π) = f(ρ) and we’re done. If
f(ρ) 6∈ 〈π〉, then f(ρ) 6∈ [fa(ρ), xi] for any i 6= j. Since f(ρ) is adjacent to fa(ρ) it follows that

d(xi, f(ρ)) = d(xi, f
a(ρ)) + 1 > d(xi, f

a(ρ)) = d(xi, f(π)) for all i 6= j.

In this final case, we have shown that f satisfies (RD) and we’re done.

To give a concrete illustration of what we have been working with, we close with an example of a generalized target
function satisfying the convexity condition.

Example. For n ≥ 2, let K1,n be the star with center x0 and leaves x1, x2, . . . , xn. Define f : V k → V as follows: for any
profile π, f(π) = xm where m = max {i : xi ∈ {π}}. The location function f is a generalized target function with xn the
target. Also, it is easy to check that for any profiles π and ρ, f(π) ∈ 〈ρ〉 along with f(ρ) ∈ 〈π〉 implies that f(π) = f(ρ).
Therefore, by Theorem 2.1, f satisfies (WPE) and (RD).

4. Concluding remarks

On finite trees we have characterized those location functions which satisfy two classical axioms that were used to charac-
terize target location functions on tree networks. In the finite case we obtain the generalized target function satisfying an
additional condition. We have an example, not given in this paper, showing Theorem 2.1 does not hold even for the 3-cube.
So future research will include a study of location functions on general fully-gated graphs that satisfy the two conditions
of Replacement Domination and Weakly Pareto Efficient. In addition, the new convexity condition merits further study.
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