Research Article

Decomposition of $4 k$-regular graphs into k 4-regular K_{5}-free and $\left(K_{5}-e\right)$-free subgraphs*

Rachel Johnson, David Mendell, Samantha Norris, Michael J. Plantholt ${ }^{\dagger}$, Shailesh K. Tipnis
Department of Mathematics, Illinois State University, Normal, IL 61790-4520, USA
(Received: 13 June 2020. Accepted: 20 July 2020. Published online: 11 March 2021.)
(c) 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a $4 k$-regular graph with $k \geq 2$. We show that G can be decomposed into $k 4$-regular spanning subgraphs $G_{1}, G_{2}, \ldots, G_{k}$, each of which does not contain an induced subgraph that is isomorphic to K_{5} or $K_{5}-e$. We then use a result of Heinrich et al. [J. Graph Theory 31 (1999) 135-143] which provides a triangle-free Euler tour in each of $G_{1}, G_{2}, \ldots, G_{k}$ to show that G has a triangle-free Euler tour. In the case when m is even, our results imply a result by Oksimets [Ph.D thesis, Umeå University, Umeå, 2003] which states that every connected $2 m$-regular graph G with $m \geq 2$ and $|E(G)|$ divisible by 3 can be decomposed into paths of length 3.

Keywords: decomposition; Eulerian; forbidden subgraph.
2020 Mathematics Subject Classification: 05C70.

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. We denote the degree of a vertex $v \in V(G)$ by $\operatorname{deg}(v, G)$. For $S \subseteq V(G)$ we denote by $\langle S\rangle$ the subgraph of G induced by S. A k-decomposition of G is a partition of its edge set into edge-disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ of G; if each $H_{i}, i=1,2, \ldots, k$ is isomorphic to H then we have an H-decomposition of G and we say that H decomposes G. It is well known that every connected graph G, each of whose vertices has even degree, has an Euler tour; we call such a graph Eulerian. A triangle-free Euler tour in G is an Euler tour in which no three consecutive edges form a triangle in G. For graphs G and H we say that G is H-free if G does not contain an induced subgraph that is isomorphic to H. We refer the reader to [3] and [8] for all terminology and notation that is not defined in this paper.

In this paper we prove the following two theorems. Theorem 1.1 is a decomposition theorem for $4 k$-regular graphs into k 4-regular spanning subgraphs that do not contain dense subgraphs. Bertram and Horak [1] showed that the problem of determining whether a 4-regular graph can be decomposed into two triangle-free 2-regular graphs can be solved in polynomial time. A natural extension of this is to ask when an 8-regular graph can be decomposed into K_{5}-free 4 -regular graphs. Theorem 1.1 shows that this is always possible, and in fact we can say much more.

Theorem 1.1. Every $4 k$-regular graph with $k \geq 2$ can be decomposed into k 4-regular spanning subgraphs, each of which is K_{5}-free and $\left(K_{5}-e\right)$-free.

Theorem 1.2 allows us to concatenate two triangle-free Euler tours to obtain a larger triangle-free Euler tour.
Theorem 1.2. Let G be a graph with a decomposition into subgraphs G_{1} and G_{2}, each having a triangle-free Euler tour. If there exists $v \in V(G)$ with $\operatorname{deg}\left(v, G_{1}\right) \geq 4$ and $\operatorname{deg}\left(v, G_{2}\right) \geq 4$ then G has a triangle-free Euler tour.

Heinrich et al. [4] proved the following theorem giving necessary and sufficient conditions for the existence of a trianglefree Euler tour in a 4-regular graph.

Theorem 1.3. [4] A connected 4-regular graph G has a triangle-free Euler tour if and only if G is K_{5}-free and ($\left.K_{5}-e\right)$-free.
Let P_{4} denote the path on 4 vertices. We note that our results in Theorems 1.1 and 1.2 together with Theorem 1.3 yield the following corollary.

Corollary 1.1. Let G be a connected $4 k$-regular graph with $k \geq 2$. Then G has a P_{4}-decomposition if and only if $|E(G)|$ is divisible by 3.

[^0]We note that the above corollary is a special case of the following result of Oksimets [5] when m is even. Oksimets' proof of Theorem 1.4 is long and available only in her PhD thesis. Theorems 1.1 and 1.2 , besides being of independent interest, also yield a streamlined proof of Oksimets' result in the case when m is even.

Theorem 1.4. [5] Let G be a connected $2 m$-regular graph with $m \geq 2$. Then G has a P_{4}-decomposition if and only if $|E(G)|$ is divisible by 3 .

2. Proofs of Theorems 1.1 and 1.2

A 2-factor of a graph is a spanning subgraph with each vertex having degree two. We will use the following classic theorem of Petersen [6].

Theorem 2.1. [6] Every $2 k$-regular graph can be decomposed into $k 2$-factors.
A halving of a graph $G=(V, E)$ is a decomposition of G into spanning subgraphs G_{1} and G_{2} (called halves) with $\operatorname{deg}\left(v, G_{1}\right)=\operatorname{deg}\left(v, G_{2}\right)=\frac{1}{2} \operatorname{deg}(v, G)$ for each $v \in V(G)$. Given a graph H, we say that a halving of G is H-free if each half of the halving is H-free. Placing alternate edges of an Eulerian graph G into two halves gives the following lemma.

Lemma 2.1. Let G be an Eulerian multigraph. Then G has a halving if and only if $|E(G)|$ is even.
We now prove Theorem 1.1 from the Introduction.
Proof of Theorem 1.1. We first note that it suffices to prove the theorem for $k=2$. If $k>2$ then Theorem 2.1 gives a decomposition of G into an 8 -regular spanning subgraph G_{0} of G and a $4(k-2)$-regular spanning subgraph H of G. Applying the theorem for $k=2$ to G_{0} gives a spanning 4-regular subgraph G_{1} of G that is K_{5}-free and ($K_{5}-e$)-free. Now, $G \backslash E\left(G_{1}\right)$ is $4(k-1)$-regular and the result follows inductively. We prove the following stronger statement of Theorem 1.1 for $k=2$.

Lemma 2.2. Let G be a graph with the degree of each of its vertices being 0,4 or 8 . Then G has a K_{5}-free and ($K_{5}-e$)-free halving.

The proof is by induction on the number of vertices of degree 8. Clearly the lemma is true if there are no vertices of degree 8 , because then in every halving of G, each vertex has degree at most 2 . Now, let G be a graph with $j>0$ vertices of degree 8 that satisfies the conditions of the lemma, and assume inductively that the lemma is true for any such graph with less than j vertices of degree 8 . Each component of G is Eulerian with its number of edges being even. Clearly, it suffices to prove the lemma for each component of G, so assume from here on that G is connected.
Lemma 2.1 implies that G has a halving. If both parts in such a decomposition are K_{5}-free and K_{5} e-free, we are done; so assume every halving of G contains either K_{5} or $K_{5} e$ in at least one of its halves. Thus G itself must contain a set S of five vertices that induce K_{5} or $K_{5}-e$; also all vertices of S have degree 8 in G. Let $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$.

Case 1. There is a set S such that $\langle S\rangle$ is isomorphic to K_{5}.
Let $G_{0}=G-E\left(K_{5}\right)$ be the graph obtained by deleting all 10 edges of $\langle S\rangle$. All vertices in S have their degrees reduced by 4, so the induction hypothesis holds for G_{0}. In order to avoid a problem condition, we perform an additional reduction in one special case. Suppose that there exist disjoint edges $x y$ and $u v$ in G_{0}, where x, y, u, v are not in S, but such that x, y, u, and v are all adjacent to the same set of three vertices $S_{3} \subset S$. Note that these 14 edges (the 12 edges out of S_{3} and the edges $x y$ and $u v$) induce a 4 -regular subgraph, call it W. In this case we remove these edges and call the resulting graph $G_{0}-E(W)$. If there is no such additional reduction, we consider any (K_{5} and $K_{5}-e$)-free halving of G_{0} into graphs A and B. If there was such a reduction, we first take a (K_{5} and $K_{5}-e$)-free halving of $G_{0}-E(W)$ into graphs A and B. It is easy to see that the 4-regular graph W has a decomposition into Hamilton cycles; we place the edges from one cycle into A, the other into B, to get once again a halving of G_{0} into A, B. In any such decomposition, edges $x y$ and $u v$ get placed into different graphs. We claim that adding these 14 edges keep A and B free of any K_{5} or $K_{5}-e$ subgraph. To see this, observe that vertices in S_{3} cannot be in a forbidden K_{5} or $K_{5}-e$ subgraph in A or B, because these vertices have degree 4 in G_{0}, and, adding for example, $x y$ to A will not form a copy of K_{5} or $K_{5}-e$ because x and y are each incident to one of the vertices of S_{3} in A. To complete our desired splitting of G, we will partition the edges of $\langle S\rangle \simeq K_{5}$ into two 5 -cycles C_{1} and C_{2}, and add those edges to A and B respectively. This could form a forbidden graph K_{5} or $K_{5}-e$ in A and/or B, but we claim we can make adjustments to avoid such subgraphs.
Suppose wlog that in A after adding these 5 -cycles we have a forbidden subgraph Z. Subgraph Z has 9 or 10 edges, and some of those edges must be in C_{1} because A was previously (K_{5} and $K_{5}-e$)-free. It is easy to see that it is impossible for
exactly one of the edges of C_{1}, say $v_{1} v_{2}$, to be in Z, for then v_{1} and v_{2} each have degree at most three in Z, which implies that Z contains at most 8 edges. Arguing in a similar fashion, it is straightforward to check that the only way subgraph Z can have more than eight edges in A is if Z contains exactly three vertices (call this set of vertices V_{1}) from S; the two vertices x^{\prime}, y^{\prime} not in V_{1} must be adjacent to each other in A, and to each vertex of V_{1} in A. Observe that there can be only one such structure in A, because a second such structure would need to contain one of the three vertices v of V_{1}, and thus its two neighbors in A, etc. Similarly, at most one such structure can exist in B, and such a structure contains a set V_{2} of three vertices from S and two vertices u^{\prime}, v^{\prime} not in S_{3} that are distinct from x^{\prime}, y^{\prime}. We refer to these subgraphs before adding the 5 -cycles as A-critical and B-critical subgraphs.
If A and B previously had no critical subgraph, then the final graphs after adding the 5 -cycles give us the desired halving. If only one of A and B previously had a critical subgraph, and we get a subgraph isomorphic to $K_{5}-e$, we reverse the roles of C_{1} and C_{2} to get the desired halving. Finally, suppose the splitting of G_{0} into A and B has both A-critical and B-critical subgraphs. The sets V_{1} and V_{2} must overlap; we consider the possible size of that overlap in turn.
If $\left|V_{1} \bigcap V_{2}\right|=1$, suppose wlog $V_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $V_{2}=\left\{v_{1}, v_{4}, v_{5}\right\}$. Letting $C_{1}=v_{1} v_{5} v_{2} v_{3} v_{4} v_{1}$ adds only one edge between the vertices of V_{1} in A, and similarly the remaining edges in C_{2} add only one edge between the vertices of V_{2}, so the desired halving is formed.
If $\left|V_{1} \bigcap V_{2}\right|=2$, wlog let $V_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, v_{4}\right\}$. Then letting $C_{1}=v_{1} v_{2} v_{4} v_{3} v_{5} v_{1}$, we get the desired halving by similar reasoning.
Lastly, suppose that $\left|V_{1} \bigcap V_{2}\right|=3$, so V_{1} and V_{2} are identical. In this case, the critical structures in A and B together form a subgraph W^{*} that is identical to W, so the additional reduction of W at the start must have previously occurred using a set V of 3 vertices in S. Clearly S_{3} must have at least one vertex, call it v^{*} in common with $V_{1}=V_{2}$. We claim that in fact, this cannot happen. In both W and W^{*}, v^{*} has degree 4 , and is incident with $\{x, y, u, v\}$ and $\left\{x^{\prime}, y^{\prime}, u^{\prime}, v^{\prime}\right\}$ respectively, so $\{x, y, u, v\}=\left\{x^{\prime}, y^{\prime}, u^{\prime}, v^{\prime}\right\}$. But in A, x^{\prime} must be adjacent to exactly the four vertices consisting of y^{\prime} and the three vertices of V_{1}. But then either $x^{\prime} y^{\prime}=x y$ or $x^{\prime} y^{\prime}=u v$, because the edges $x y$ and $u v$ are in different graphs A, B; wlog say $x^{\prime} y^{\prime}=x y$. We then get a contradiction because the vertices x, y, v^{*} form a triangle in A, but the edges of W form 7-cycles in each of A and B.

Case 2. G contains no K_{5} subgraph, but does contain a subgraph isomorphic to $K_{5}-e$.

Let S be a set of vertices in G that induce $K_{5}-e$. Let $V(\langle S\rangle)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$, and let v_{1} and v_{2} be the two vertices that are non-adjacent in $\langle S\rangle$. Let $G_{1}=G-E(\langle S\rangle)$. Let M be the graph with 7 edges and with vertices $\left\{x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right\}$ in which each of x_{1} and x_{2} is adjacent with each of y_{1}, y_{2}, y_{3}, and x_{1} is also adjacent to x_{2}. Then, let $G^{*}=G_{1} \bigcup M$ with the six additional edges from $\left\{v_{1}, v_{2}\right\}$ to $\left\{y_{1}, y_{2}, y_{3}\right\}$.
Now all vertices of G^{*} have degree 4 or 8 , so that by the induction hypothesis, there is a halving of G^{*} into graphs A and B that are both (K_{5} and $K_{5}-e$)-free. In any such splitting, the seven edges of M are split in a 3-4 fashion between the two graphs because x_{1} and x_{2} must have degree 2 in both A and B; wlog we assume 3 edges are in A, an 4 are in B. Thus it follows that wlog either of the following two subcases must occur.

Subcase 1. Exactly two edges from v_{1} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ are in A, and exactly two of the edges from v_{2} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ are in A.

Subcase 2. The 3 edges from v_{1} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ are in A, and exactly one of the edges from v_{2} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ is in A.
We consider these two subcases separately.

Subcase 1. Exactly two edges from v_{1} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ are in A, and exactly two of the edges from v_{2} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ are in A.

We delete the vertices of M and all incident edges, and add back the 9 edges deleted from G. To complete the halving of G, we need to split these edges between A and B such that at each of v_{1} and v_{2} exactly two of the three added incident edges are in A, and similarly for v_{3}, v_{4} and v_{5} exactly two of the four added incident edges are in A.
Let Z be a copy of $K_{5}-e$ (isomorphic to $\langle S\rangle$) with non-adjacent vertices labeled v_{1}, v_{2}, and the remaining vertices labeled a, b, c. To do so, we need to show a 1-1 correspondence between the vertices a, b, c and vertices v_{3}, v_{4}, v_{5} that completes our splitting into (K_{5} and $K_{5}-e$)-free halves. Decompose the edges of Z into graphs A and B so that there are four edges $v_{1} c, v_{2} b, a c, a b$, in B; the remaining 5 edges are placed in A. Note that v_{1} and v_{2} will now have the desired degree split between A and B, as will the remaining vertices. When we replace $\langle S\rangle$ by Z, we need to avoid forming a copy of $K_{5}-e$ in A or in B. Clearly, no subset of 5 vertices from G that contains 4 or 5 vertices of Z will induce such a forbidden subgraph,
because that set of vertices will induce edges in both A and B.
Now suppose a set of 5 vertices induces the forbidden $K_{5}-e$ in A or B and contains exactly three vertices of Z. Every triangle in Z has edges in both A and B and incident edges from both A and B, so the only possibility here is that the three vertices from Z are v_{1}, v_{2} and a (because the edges to a are both in A). If such a situation occurs, there must be vertices p, q in G but not in Z such that a, v_{1}, v_{2} are all adjacent to p and q in A. Clearly, only one of the vertices v_{3}, v_{4}, v_{5}, (assume wlog v_{5}) can match this description of vertex a; therefore, we assign vertex a the label v_{3} and avoid this forbidden graph. Next suppose a set of 5 vertices induces the forbidden $K_{5}-e$ in A or B and contains exactly two vertices of Z. The two vertices must be adjacent in Z, and if that edge is in A (respectively B), there can be at most one other edge from A (respectively B) incident with it in Z. Thus the only possible singleton edges of this type are the edges $v_{1} c$ and $v_{2} b$, which are both in B. Then, if the other 3 vertices in this forbidden graph are r, s, t, we must have v_{1} adjacent to each of those vertices in B, and c adjacent to two of the vertices r, s, t in B. Clearly at most one vertex from v_{4}, v_{5}, call it c^{*}, can have the property of this c vertex. Similar reasoning shows that at most one vertex from v_{4}, v_{5} can have the property required to form a forbidden subgraph that uses that vertex and v_{2}; call it b^{*}. Finally we note that c^{*} must be different from b^{*}, since the vertices are incident with only 4 vertices in B. Thus we can designate $\left\{v_{4}, v_{5}\right\}$ to correspond to $\{b, c\}$ in such a way so as to avoid the forbidden subgraph, and the result follows.

Subcase 2. The 3 edges from v_{1} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ are in A, and exactly one of the edges from v_{2} to $\left\{y_{1}, y_{2}, y_{3}\right\}$ is in A.

Delete the vertices of M and all incident edges, and add back the 9 edges deleted from G. To complete the halving of G, we need to split these edges between A and B such that at v_{1} all three of the added incident edges are in A, at v_{2} exactly one of the added edges is in A, and at v_{3}, v_{4} and v_{5} exactly two of the four added incident edges are in A. As before, let Z be a copy of $K_{5}-e$ (isomorphic to $\langle S\rangle$) with non-adjacent vertices labeled v_{1}, v_{2}, and the remaining vertices labeled a, b, c. We need to show a 1-1 correspondence between the vertices a, b, c and vertices v_{3}, v_{4}, v_{5} that completes our splitting into (K_{5} and $K_{5}-e$)-free halves. Decompose the edges of Z into graphs A and B so that the four edges $v_{2} a, v_{2} b, a c, b c$ are in B; the remaining 5 edges are placed in A. Note that v_{1}, v_{2} will now have the desired degree split between A and B, as will the remaining vertices. When we replace $\langle S\rangle$ by Z, we need to avoid forming a copy of $K_{5}-e$ in A or in B. Clearly no subset of 5 vertices from G that contain 4 or 5 vertices of Z will induce such a forbidden subgraph, because that set of vertices will induce edges in both A and B .
Now suppose a set of 5 vertices induces the forbidden $K_{5}-e$ in A or in B and contains exactly three vertices of Z. Unlike Subcase $1, v_{1}$ and v_{2} cannot be two of these vertices, since too many edges from A would be adjacent to the set. However, it is possible that Z is formed using the vertices $\left\{v_{1}, a, b\right\}$ because those three vertices form a triangle in A and have only one other A edge incident in Z. If such a situation occurs, there must be vertices p, q in G but not in Z such that $v_{1} p$ is an edge in A, as are all edges induced by $\{a, b, p, q\}$. Clearly, only one pair of the vertices from $\left\{v_{3}, v_{4}, v_{5}\right\}$ (wlog v_{3} and v_{4}) can match this description of vertices $\{a, b\}$; therefore, we must avoid assigning the set of two vertices $\{a, b\}$ to $\left\{v_{3}, v_{4}\right\}$.
Finally suppose a set of 5 vertices induces the forbidden $K_{5}-e$ in A or in B and contains exactly two vertices of Z. Arguing as in Subcase 1, the only possible singleton edge of this type is the edge $v_{2} c$, which is in A. Then if the other 3 vertices in this forbidden graph are r, s, t we must have that v_{2} is adjacent to each of r, s, t in A, and that c is adjacent to two of the vertices r, s, t in A. Clearly at most one vertex from $\left\{v_{3}, v_{4}, v_{5}\right\}$, call it c^{*}, can have the property of this vertex c. We then match vertex c with a vertex of $\left\{v_{3}, v_{4}\right\}$ that is different from c^{*}, and match a and b with the remaining two vertices of $\left\{v_{3}, v_{4}, v_{5}\right\}$. This gives the desired splitting.

We now prove Theorem 1.2 from the Introduction.
Proof of Theorem 1.2. First suppose that either $\operatorname{deg}\left(v, G_{1}\right) \geq 6$ or $\operatorname{deg}\left(v, G_{2}\right) \geq 6$; without loss of generality assume that $\operatorname{deg}\left(v, G_{1}\right) \geq 6$. Let $E_{1}=a_{1} b_{1} c_{1} d_{1} \ldots a_{2} b_{2} c_{2} d_{2} \ldots a_{3} b_{3} c_{3} d_{3} \ldots$, be the edges of a triangle-free Euler tour in G_{1} with b_{i}, c_{i} being incident with $v, i=1,2,3$. Similarly let $E_{2}=w_{1} x_{1} y_{1} z_{1} \ldots w_{2} x_{2} y_{2} z_{2} \ldots$ be a triangle-free Euler tour in G_{2} with x_{i}, y_{i} being incident with $v, i=1,2$. Let E_{2}^{\prime} denote the triangle-free Euler tour in G_{2} obtained by traversing E_{2} in reverse order. We claim that we can get a triangle-free Euler tour in G by inserting E_{2} or E_{2}^{\prime} into E_{1} in an appropriate way. Specifically, we claim that one of the following Euler tours in G must be triangle-free.
(1) Insert E_{2} beginning with edge y_{1} into E_{1} after edge b_{1}.
(2) Insert E_{2} beginning with edge y_{2} into E_{1} after edge b_{1}.
(3) Insert E_{2} beginning with edge y_{1} into E_{1} after edge b_{2}.
(4) Insert E_{2} beginning with edge y_{2} into E_{1} after edge b_{2}.
(5) Insert E_{2} beginning with edge y_{1} into E_{1} after edge b_{3}.
(6) Insert E_{2} beginning with edge y_{2} into E_{1} after edge b_{3}.
(7) Insert E_{2}^{\prime} beginning with edge x_{1} into E_{1} after edge b_{1}.
(8) Insert E_{2}^{\prime} beginning with edge x_{2} into E_{1} after edge b_{1}.
(9) Insert E_{2}^{\prime} beginning with edge x_{1} into E_{1} after edge b_{2}.
(10) Insert E_{2}^{\prime} beginning with edge x_{2} into E_{1} after edge b_{2}.
(11) Insert E_{2}^{\prime} beginning with edge x_{1} into E_{1} after edge b_{3}.
(12) Insert E_{2}^{\prime} beginning with edge x_{2} into E_{1} after edge b_{3}.

Since E_{1} and E_{2} are triangle-free Euler tours, the only possible triangles in any of these 12 Euler tours must include vertex v and two consecutive edges from either E_{1} or E_{2} and one from the other. So, for example, the only possible triangles in Euler tour 1 above consist of the following connection triples of edges: $a_{1} b_{1} y_{1}, b_{1} y_{1} z_{1}, w_{1} x_{1} c_{1}$, and $x_{1} c_{1} d_{1}$. Thus, one of the 12 Euler tours listed above must be triangle-free unless at least one of the 4 corresponding connection triples forms a triangle for each Euler tour. Note that no connection triple appears in the list for more than one Euler tour. Moreover, each of the 10 pairs of consecutive edges $a_{i} b_{i}, c_{i} d_{i}, i=1,2,3$ and $w_{j} x_{j}, y_{j} z_{j}, j=1,2$ can appear in only one triangle. It follows that at most 10 out of the 12 Euler tours above can have a triangle. Thus, one (actually at least two) of the 12 Euler tours must be triangle-free as desired.
Now suppose that $\operatorname{deg}\left(v, G_{1}\right)=\operatorname{deg}\left(v, G_{2}\right)=4$. Let $E_{1}=a_{1} b_{1} c_{1} d_{1} \ldots a_{2} b_{2} c_{2} d_{2} \ldots$ be a triangle-free Euler tour in G_{1} with b_{i}, c_{i} being incident with $v, i=1,2$, and let $E_{2}=w_{1} x_{1} y_{1} z_{1} \ldots w_{2} x_{2} y_{2} z_{2} \ldots$ be a triangle-free Euler tour in G_{2} with x_{i}, y_{i} being incident with $v, i=1,2$. Then, the 8 tours above numbered 1-4 and 7-10 are Euler tours in G; moreover, at least one of these 8 Euler tours is triangle-free unless at least one of the following forms a triangle in each of the corresponding tours.
(1) $a_{1} b_{1} y_{1}$ or $b_{1} y_{1} z_{1}$ or $w_{1} x_{1} c_{1}$ or $x_{1} c_{1} d_{1}$
(2) $a_{1} b_{1} y_{2}$ or $b_{1} y_{2} z_{2}$ or $w_{2} x_{2} c_{1}$ or $x_{2} c_{1} d_{1}$
(3) $a_{2} b_{2} y_{1}$ or $b_{2} y_{1} z_{1}$ or $w_{1} x_{1} c_{2}$ or $x_{1} c_{2} d_{2}$
(4) $a_{2} b_{2} y_{2}$ or $b_{2} y_{2} z_{2}$ or $w_{2} x_{2} c_{2}$ or $x_{2} c_{2} d_{2}$
and
(7) $a_{1} b_{1} x_{1}$ or $b_{1} x_{1} w_{1}$ or $z_{1} y_{1} c_{1}$ or $z_{1} c_{1} d_{1}$
(8) $a_{1} b_{1} x_{2}$ or $b_{1} x_{2} w_{2}$ or $z_{2} y_{2} c_{1}$ or $z_{2} c_{1} d_{1}$
(9) $a_{2} b_{2} x_{1}$ or $b_{2} x_{1} w_{1}$ or $z_{1} y_{1} c_{2}$ or $z_{1} c_{2} d_{2}$
(10) $a_{2} b_{2} x_{2}$ or $b_{2} x_{2} w_{2}$ or $z_{2} y_{2} c_{2}$ or $z_{2} c_{2} d_{2}$

No triple appears more than once in the list above, and each of the 8 consecutive pairs of edges $a_{i} b_{i}, c_{i} d_{i}, w_{i} x_{i}, y_{i} z_{i}, i=1,2$ can appear in only one triangle. Thus, if none of the 8 Euler tours listed above are triangle-free, we can assume that each of the 8 Euler tours has exactly one triangle and each of the consecutive pairs of edges listed above is in one of these triangles. We show that under these assumptions, the two $v-v$ "half-tours" of E_{1} given by $c_{1} d_{1} \ldots a_{2} b_{2}$ and $c_{2} d_{2} \ldots a_{1} b_{1}$, and the two corresponding half-tours of E_{2} can be combined (possibly with a reverse traversal) to get a triangle-free Euler tour of G. To see this, we construct a graph Z on 8 vertices that represent the 8 consecutive pairs of edges mentioned above; thus, the vertices of Z are $\left\{a_{i} b_{i}\right\},\left\{c_{i} d_{i}\right\},\left\{w_{i} x_{i}\right\},\left\{y_{i} z_{i}\right\}, i=1,2$. Join two vertices in Z by an edge if their corresponding halftours do not form a triangle when combined as indicated by the two vertices of Z (for example, $a_{1} b_{1}$ and $c_{1} d_{1}$) or if the edges are in the same half-tour (for example, $c_{1} d_{1}$ and $a_{2} b_{2}$). Since E_{1} and E_{2} are triangle-free, H contains two 4-cycles: $a_{1} b_{1}-c_{1} d_{1}-a_{2} d_{2}-c_{2} d_{2}-a_{1} b_{1}$ and $w_{1} x_{1}-y_{1} z_{1}-w_{2} x_{2}-y_{2} x_{2}-w_{1} x_{1}$.
For simplicity we rename the vertices in these 4 -cycles and represent the 4-cycles by $A B C D A$ and $E F G H E$. It is straightforward to check that G has a desired triangle-free Euler tour if Z has a Hamilton cycle containing the edges of the matching $\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$, where $M_{1}=B C, M_{2}=D A, M_{3}=F G, M_{4}=H E$. By our assumptions, the complement Z^{*} of Z has 8 edges. Let $U=\{A, B, C, D\}$, and $W=\{E, F, G, H\}$.

Now suppose that no such Hamilton cycle exists in Z. Then for each edge of Z that joins vertices in U with W, there is a corresponding edge between U and W that must be in the complement Z^{*}. For example, if AE is in Z, then $D H$ must be in Z^{*}, else Z has the desired Hamilton cycle $A E F G H D C B A$. Therefore all eight edges of Z^{*} join U and W, so the vertices of U and W both induce complete subgraphs in Z. It follows that the desired Hamilton cycle in H will exist if there are two edges between U and W that together are incident with all four of the edges M_{1}, M_{2}, M_{3}, and M_{4}. But because there are exactly 8 edges between U and W in Z, and because each vertex has degree at least 1 in Z^{*}, no single edge $M_{i}, i=1,2,3,4$ can be incident with all 8 of these edges. It follows that two edges with the desired property exist, and therefore the desired Hamilton cycle exists. The result now follows.

We thank a referee for noting that if a $4 k$-regular graph has a decomposition into Hamilton cycles, then pairing these cycles gives a decomposition into k 4-regular graphs, each of which has at most 8 edges in any subgraph with five vertices. Robinson and Wormald [7] showed that for each even fixed $r \geq 4$, almost all r-regular graphs have a decomposition into Hamilton cycles, and Csaba, Kühn, Lo, Osthus and Treglown [2] showed that for any r-regular graph G of order n sufficiently large, if r is even and $r \geq \frac{n}{2}, G$ has a decomposition into Hamilton cycles. These two results immediately yield the following.

Theorem 2.2. For fixed $r=4 k(k>1)$, almost all r-regular graphs have a decomposition into k 4-regular graphs, each having the property that any five vertices induce at most 8 edges.

Theorem 2.3. For n sufficiently large, and $r=4 k \geq \frac{n}{2}$, every r-regular graph has a decomposition into $k 4$-regular subgraphs, each having the property that any five vertices induce at most 8 edges.

Our Theorem 1.1 extends these results to all $4 k$-regular graphs. We conjecture this extends naturally to larger subgraphs, and provide the statement for the next case.

Conjecture. Every $6 k$-regular $(k>1)$ graph has a decomposition into k 6-regular subgraphs, each having the property that any seven vertices induce at most 18 edges.

References

[1] E. Bertram, P. Horak, Decomposing 4-regular graphs into triangle-free 2-factors, SIAM J. Discrete Math. 10 (1997) $309-317$.
[2] B. Csaba, D. Kühn, A. Lo, D. Osthus, A. Treglown, Proof of the 1-factorization and Hamilton Decomposition Conjectures, Mem. Amer. Math. Soc. 244 (2016) Art\# 1154.
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
[4] K. Heinrich, J. Liu, M. Yu, P4-decompositions of regular graphs, J. Graph Theory 31 (1999) 135-143.
[5] N. Oksimets, A Characterization of Eulerian Graphs with Triangle-Free Euler Tours, Ph.D thesis, Umeå University, Umeå, 2003.
[6] J. Petersen, Die Theorie der regulären graphs, Acta Math. 15 (1891) 193-220, English translation in: N. L. Biggs, E. K. Lloyd, R. J. Wilson, Graph Theory 1736-1936, Clarendon Press, Oxford, 1986, p. 190.
[7] R. W. Robinson, N.C. Wormald, Almost alll regular graphs are Hamiltonian, Random Structures Algorithms 5 (1994) 363-374.
[8] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 2007.

[^0]: *Dedicated to Frank Harary, who introduced me (Michael J. Plantholt) and many others to the beauty of Graph Theory. He was a truly unique and unforgettable character: dance instructor, weather forecaster, and of course, "Mr. Graph Theory".
 ${ }^{\dagger}$ Corresponding author (mikep@ilstu.edu).

