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Abstract
Let G be a 4k-regular graph with k ≥ 2. We show that G can be decomposed into k 4-regular spanning subgraphs
G1, G2, . . . , Gk, each of which does not contain an induced subgraph that is isomorphic to K5 or K5− e. We then use a result
of Heinrich et al. [J. Graph Theory 31 (1999) 135–143] which provides a triangle-free Euler tour in each of G1, G2, . . . , Gk to
show that G has a triangle-free Euler tour. In the case when m is even, our results imply a result by Oksimets [Ph.D thesis,
Umeå University, Umeå, 2003] which states that every connected 2m-regular graph G with m ≥ 2 and |E(G)| divisible by 3
can be decomposed into paths of length 3.
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). We denote the degree of a vertex v ∈ V (G) by deg(v,G). For
S ⊆ V (G) we denote by 〈S〉 the subgraph of G induced by S. A k-decomposition of G is a partition of its edge set into
edge-disjoint subgraphs H1, H2, . . . ,Hk of G; if each Hi, i = 1, 2, . . . , k is isomorphic to H then we have an H-decomposition
of G and we say that H decomposes G. It is well known that every connected graph G, each of whose vertices has even
degree, has an Euler tour; we call such a graph Eulerian. A triangle-free Euler tour in G is an Euler tour in which no
three consecutive edges form a triangle in G. For graphs G and H we say that G is H-free if G does not contain an induced
subgraph that is isomorphic to H. We refer the reader to [3] and [8] for all terminology and notation that is not defined in
this paper.

In this paper we prove the following two theorems. Theorem 1.1 is a decomposition theorem for 4k-regular graphs into
k 4-regular spanning subgraphs that do not contain dense subgraphs. Bertram and Horak [1] showed that the problem
of determining whether a 4-regular graph can be decomposed into two triangle-free 2-regular graphs can be solved in
polynomial time. A natural extension of this is to ask when an 8-regular graph can be decomposed into K5-free 4-regular
graphs. Theorem 1.1 shows that this is always possible, and in fact we can say much more.

Theorem 1.1. Every 4k-regular graph with k ≥ 2 can be decomposed into k 4-regular spanning subgraphs, each of which
is K5-free and (K5 − e)-free.

Theorem 1.2 allows us to concatenate two triangle-free Euler tours to obtain a larger triangle-free Euler tour.

Theorem 1.2. Let G be a graph with a decomposition into subgraphs G1 and G2, each having a triangle-free Euler tour. If
there exists v ∈ V (G) with deg(v,G1) ≥ 4 and deg(v,G2) ≥ 4 then G has a triangle-free Euler tour.

Heinrich et al. [4] proved the following theorem giving necessary and sufficient conditions for the existence of a triangle-
free Euler tour in a 4-regular graph.

Theorem 1.3. [4] A connected 4-regular graph G has a triangle-free Euler tour if and only if G is K5-free and (K5−e)-free.

Let P4 denote the path on 4 vertices. We note that our results in Theorems 1.1 and 1.2 together with Theorem 1.3 yield
the following corollary.

Corollary 1.1. Let G be a connected 4k-regular graph with k ≥ 2. Then G has a P4-decomposition if and only if |E(G)| is
divisible by 3.
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We note that the above corollary is a special case of the following result of Oksimets [5] when m is even. Oksimets’ proof
of Theorem 1.4 is long and available only in her PhD thesis. Theorems 1.1 and 1.2, besides being of independent interest,
also yield a streamlined proof of Oksimets’ result in the case when m is even.

Theorem 1.4. [5] Let G be a connected 2m-regular graph with m ≥ 2. Then G has a P4-decomposition if and only if |E(G)|
is divisible by 3.

2. Proofs of Theorems 1.1 and 1.2

A 2-factor of a graph is a spanning subgraph with each vertex having degree two. We will use the following classic theorem
of Petersen [6].

Theorem 2.1. [6] Every 2k-regular graph can be decomposed into k 2-factors.

A halving of a graph G = (V,E) is a decomposition of G into spanning subgraphs G1 and G2 (called halves) with
deg(v,G1) = deg(v,G2) = 1

2deg(v,G) for each v ∈ V (G). Given a graph H, we say that a halving of G is H-free if each half
of the halving is H-free. Placing alternate edges of an Eulerian graph G into two halves gives the following lemma.

Lemma 2.1. Let G be an Eulerian multigraph. Then G has a halving if and only if |E(G)| is even.

We now prove Theorem 1.1 from the Introduction.

Proof of Theorem 1.1. We first note that it suffices to prove the theorem for k = 2. If k > 2 then Theorem 2.1 gives a
decomposition ofG into an 8-regular spanning subgraphG0 ofG and a 4(k−2)-regular spanning subgraphH ofG. Applying
the theorem for k = 2 to G0 gives a spanning 4-regular subgraph G1 of G that is K5-free and (K5 − e)-free. Now, G \E(G1)

is 4(k − 1)-regular and the result follows inductively. We prove the following stronger statement of Theorem 1.1 for k = 2.

Lemma 2.2. Let G be a graph with the degree of each of its vertices being 0, 4 or 8. Then G has a K5-free and (K5 − e)-free
halving.

The proof is by induction on the number of vertices of degree 8. Clearly the lemma is true if there are no vertices of degree
8, because then in every halving of G, each vertex has degree at most 2. Now, let G be a graph with j > 0 vertices of degree
8 that satisfies the conditions of the lemma, and assume inductively that the lemma is true for any such graph with less
than j vertices of degree 8. Each component of G is Eulerian with its number of edges being even. Clearly, it suffices to
prove the lemma for each component of G, so assume from here on that G is connected.
Lemma 2.1 implies that G has a halving. If both parts in such a decomposition are K5-free and K5e-free, we are done; so
assume every halving of G contains either K5 or K5e in at least one of its halves. Thus G itself must contain a set S of five
vertices that induce K5 or K5 − e; also all vertices of S have degree 8 in G. Let S = {v1, v2, v3, v4, v5}.

Case 1. There is a set S such that 〈S〉 is isomorphic to K5.

Let G0 = G−E(K5) be the graph obtained by deleting all 10 edges of 〈S〉. All vertices in S have their degrees reduced by 4,
so the induction hypothesis holds for G0. In order to avoid a problem condition, we perform an additional reduction in one
special case. Suppose that there exist disjoint edges xy and uv in G0, where x, y, u, v are not in S, but such that x, y, u,and v

are all adjacent to the same set of three vertices S3 ⊂ S. Note that these 14 edges (the 12 edges out of S3 and the edges xy

and uv) induce a 4-regular subgraph, call it W . In this case we remove these edges and call the resulting graph G0−E(W ).
If there is no such additional reduction, we consider any (K5 and K5 − e)-free halving of G0 into graphs A and B. If there
was such a reduction, we first take a (K5 and K5− e)-free halving of G0−E(W ) into graphs A and B. It is easy to see that
the 4-regular graph W has a decomposition into Hamilton cycles; we place the edges from one cycle into A, the other into
B, to get once again a halving of G0 into A,B. In any such decomposition, edges xy and uv get placed into different graphs.
We claim that adding these 14 edges keep A and B free of any K5 or K5 − e subgraph. To see this, observe that vertices in
S3 cannot be in a forbidden K5 or K5 − e subgraph in A or B, because these vertices have degree 4 in G0, and, adding for
example, xy to A will not form a copy of K5 or K5 − e because x and y are each incident to one of the vertices of S3 in A.
To complete our desired splitting of G, we will partition the edges of 〈S〉 ' K5 into two 5-cycles C1 and C2, and add those
edges to A and B respectively. This could form a forbidden graph K5 or K5 − e in A and/or B, but we claim we can make
adjustments to avoid such subgraphs.
Suppose wlog that in A after adding these 5-cycles we have a forbidden subgraph Z. Subgraph Z has 9 or 10 edges, and
some of those edges must be in C1 because A was previously (K5 and K5 − e)-free. It is easy to see that it is impossible for
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exactly one of the edges of C1, say v1v2, to be in Z, for then v1 and v2 each have degree at most three in Z, which implies
that Z contains at most 8 edges. Arguing in a similar fashion, it is straightforward to check that the only way subgraph
Z can have more than eight edges in A is if Z contains exactly three vertices (call this set of vertices V1) from S; the two
vertices x′, y′ not in V1 must be adjacent to each other in A, and to each vertex of V1 in A. Observe that there can be only
one such structure in A, because a second such structure would need to contain one of the three vertices v of V1, and thus
its two neighbors in A, etc. Similarly, at most one such structure can exist in B, and such a structure contains a set V2

of three vertices from S and two vertices u′, v′ not in S3 that are distinct from x′, y′. We refer to these subgraphs before
adding the 5-cycles as A-critical and B-critical subgraphs.
If A and B previously had no critical subgraph, then the final graphs after adding the 5-cycles give us the desired halving.
If only one of A and B previously had a critical subgraph, and we get a subgraph isomorphic to K5− e, we reverse the roles
of C1 and C2 to get the desired halving. Finally, suppose the splitting of G0 into A and B has both A-critical and B-critical
subgraphs. The sets V1 and V2 must overlap; we consider the possible size of that overlap in turn.
If |V1

⋂
V2| = 1, suppose wlog V1 = {v1, v2, v3} and V2 = {v1, v4, v5}. Letting C1 = v1v5v2v3v4v1 adds only one edge between

the vertices of V1 in A, and similarly the remaining edges in C2 add only one edge between the vertices of V2, so the desired
halving is formed.
If |V1

⋂
V2| = 2, wlog let V1 = {v1, v2, v3} and V2 = {v1, v2, v4}. Then letting C1 = v1v2v4v3v5v1 , we get the desired halving

by similar reasoning.
Lastly, suppose that |V1

⋂
V2| = 3, so V1 and V2 are identical. In this case, the critical structures in A and B together form

a subgraph W ∗ that is identical to W , so the additional reduction of W at the start must have previously occurred using a
set V of 3 vertices in S. Clearly S3 must have at least one vertex, call it v∗ in common with V1 = V2. We claim that in fact,
this cannot happen. In both W and W ∗, v∗ has degree 4, and is incident with {x, y, u, v} and {x′, y′, u′, v′} respectively, so
{x, y, u, v} = {x′, y′, u′, v′}. But in A, x′ must be adjacent to exactly the four vertices consisting of y′ and the three vertices of
V1. But then either x′y′ = xy or x′y′ = uv, because the edges xy and uv are in different graphs A,B; wlog say x′y′ = xy. We
then get a contradiction because the vertices x, y, v∗ form a triangle inA, but the edges ofW form 7-cycles in each ofA andB.

Case 2. G contains no K5 subgraph, but does contain a subgraph isomorphic to K5 − e.

Let S be a set of vertices in G that induce K5 − e. Let V (〈S〉) = {v1, v2, v3, v4, v5}, and let v1 and v2 be the two vertices
that are non-adjacent in 〈S〉. Let G1 = G−E(〈S〉). Let M be the graph with 7 edges and with vertices {x1, x2, y1, y2, y3} in
which each of x1 and x2 is adjacent with each of y1, y2, y3, and x1 is also adjacent to x2. Then, let G∗ = G1

⋃
M with the six

additional edges from {v1, v2} to {y1, y2, y3}.
Now all vertices of G∗ have degree 4 or 8, so that by the induction hypothesis, there is a halving of G∗ into graphs A and B

that are both (K5 and K5 − e)-free. In any such splitting, the seven edges of M are split in a 3-4 fashion between the two
graphs because x1 and x2 must have degree 2 in both A and B; wlog we assume 3 edges are in A, an 4 are in B. Thus it
follows that wlog either of the following two subcases must occur.

Subcase 1. Exactly two edges from v1 to {y1, y2, y3} are in A, and exactly two of the edges from v2 to {y1, y2, y3} are in
A.

Subcase 2. The 3 edges from v1 to {y1, y2, y3} are in A, and exactly one of the edges from v2 to {y1, y2, y3} is in A.

We consider these two subcases separately.

Subcase 1. Exactly two edges from v1 to {y1, y2, y3} are in A, and exactly two of the edges from v2 to {y1, y2, y3} are in
A.

We delete the vertices of M and all incident edges, and add back the 9 edges deleted from G. To complete the halving
of G, we need to split these edges between A and B such that at each of v1 and v2 exactly two of the three added incident
edges are in A, and similarly for v3, v4 and v5 exactly two of the four added incident edges are in A.
Let Z be a copy of K5 − e (isomorphic to 〈S〉) with non-adjacent vertices labeled v1, v2 , and the remaining vertices labeled
a, b, c. To do so, we need to show a 1-1 correspondence between the vertices a, b, c and vertices v3, v4, v5 that completes our
splitting into (K5 and K5 − e)-free halves. Decompose the edges of Z into graphs A and B so that there are four edges
v1c, v2b, ac, ab, in B ; the remaining 5 edges are placed in A. Note that v1 and v2 will now have the desired degree split
between A and B, as will the remaining vertices. When we replace 〈S〉 by Z, we need to avoid forming a copy of K5 − e in
A or in B. Clearly, no subset of 5 vertices from G that contains 4 or 5 vertices of Z will induce such a forbidden subgraph,
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because that set of vertices will induce edges in both A and B.
Now suppose a set of 5 vertices induces the forbidden K5 − e in A or B and contains exactly three vertices of Z. Every
triangle in Z has edges in both A and B and incident edges from both A and B, so the only possibility here is that the three
vertices from Z are v1, v2 and a (because the edges to a are both in A). If such a situation occurs, there must be vertices
p, q in G but not in Z such that a, v1, v2 are all adjacent to p and q in A. Clearly, only one of the vertices v3, v4, v5, (assume
wlog v5) can match this description of vertex a ; therefore, we assign vertex a the label v3 and avoid this forbidden graph.
Next suppose a set of 5 vertices induces the forbidden K5 − e in A or B and contains exactly two vertices of Z. The two
vertices must be adjacent in Z, and if that edge is in A (respectively B), there can be at most one other edge from A (re-
spectively B) incident with it in Z. Thus the only possible singleton edges of this type are the edges v1c and v2b, which
are both in B. Then, if the other 3 vertices in this forbidden graph are r, s, t, we must have v1 adjacent to each of those
vertices in B, and c adjacent to two of the vertices r, s, t in B. Clearly at most one vertex from v4, v5, call it c∗, can have the
property of this c vertex. Similar reasoning shows that at most one vertex from v4, v5 can have the property required to
form a forbidden subgraph that uses that vertex and v2; call it b∗. Finally we note that c∗ must be different from b∗, since
the vertices are incident with only 4 vertices in B. Thus we can designate {v4, v5} to correspond to {b, c} in such a way so
as to avoid the forbidden subgraph, and the result follows.

Subcase 2. The 3 edges from v1 to {y1, y2, y3} are in A, and exactly one of the edges from v2 to {y1, y2, y3} is in A.

Delete the vertices of M and all incident edges, and add back the 9 edges deleted from G. To complete the halving of
G, we need to split these edges between A and B such that at v1 all three of the added incident edges are in A, at v2 exactly
one of the added edges is in A, and at v3, v4 and v5 exactly two of the four added incident edges are in A. As before, let Z
be a copy of K5 − e (isomorphic to 〈S〉) with non-adjacent vertices labeled v1, v2 , and the remaining vertices labeled a, b, c.
We need to show a 1-1 correspondence between the vertices a, b, c and vertices v3, v4, v5 that completes our splitting into
(K5 and K5 − e)-free halves. Decompose the edges of Z into graphs A and B so that the four edges v2a, v2b, ac, bc are in B ;
the remaining 5 edges are placed in A. Note that v1, v2 will now have the desired degree split between A and B, as will the
remaining vertices. When we replace 〈S〉 by Z, we need to avoid forming a copy of K5− e in A or in B. Clearly no subset of
5 vertices from G that contain 4 or 5 vertices of Z will induce such a forbidden subgraph, because that set of vertices will
induce edges in both A and B.
Now suppose a set of 5 vertices induces the forbidden K5 − e in A or in B and contains exactly three vertices of Z. Unlike
Subcase 1, v1 and v2 cannot be two of these vertices, since too many edges from A would be adjacent to the set. However,
it is possible that Z is formed using the vertices {v1, a, b} because those three vertices form a triangle in A and have only
one other A edge incident in Z. If such a situation occurs, there must be vertices p, q in G but not in Z such that v1p is an
edge in A, as are all edges induced by {a, b, p, q}. Clearly, only one pair of the vertices from {v3, v4, v5} (wlog v3 and v4) can
match this description of vertices {a, b} ; therefore, we must avoid assigning the set of two vertices {a, b} to {v3, v4}.
Finally suppose a set of 5 vertices induces the forbidden K5−e in A or in B and contains exactly two vertices of Z. Arguing
as in Subcase 1, the only possible singleton edge of this type is the edge v2c, which is in A. Then if the other 3 vertices
in this forbidden graph are r, s, t we must have that v2 is adjacent to each of r, s, t in A, and that c is adjacent to two of
the vertices r, s, t in A. Clearly at most one vertex from {v3, v4, v5}, call it c∗, can have the property of this vertex c. We
then match vertex c with a vertex of {v3, v4} that is different from c∗, and match a and b with the remaining two vertices
of {v3, v4, v5}. This gives the desired splitting.

We now prove Theorem 1.2 from the Introduction.

Proof of Theorem 1.2. First suppose that either deg(v,G1) ≥ 6 or deg(v,G2) ≥ 6; without loss of generality assume that
deg(v,G1) ≥ 6 . Let E1 = a1b1c1d1 . . . a2b2c2d2 . . . a3b3c3d3 . . . , be the edges of a triangle-free Euler tour in G1 with bi, ci

being incident with v, i = 1, 2, 3. Similarly let E2 = w1x1y1z1 . . . w2x2y2z2 . . . be a triangle-free Euler tour in G2 with xi, yi

being incident with v, i = 1, 2. Let E′2 denote the triangle-free Euler tour in G2 obtained by traversing E2 in reverse order.
We claim that we can get a triangle-free Euler tour in G by inserting E2 or E′2 into E1 in an appropriate way. Specifically,
we claim that one of the following Euler tours in G must be triangle-free.

(1) Insert E2 beginning with edge y1 into E1 after edge b1.

(2) Insert E2 beginning with edge y2 into E1 after edge b1.

(3) Insert E2 beginning with edge y1 into E1 after edge b2.
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(4) Insert E2 beginning with edge y2 into E1 after edge b2.

(5) Insert E2 beginning with edge y1 into E1 after edge b3.

(6) Insert E2 beginning with edge y2 into E1 after edge b3.

(7) Insert E′2 beginning with edge x1 into E1 after edge b1.

(8) Insert E′2 beginning with edge x2 into E1 after edge b1.

(9) Insert E′2 beginning with edge x1 into E1 after edge b2.

(10) Insert E′2 beginning with edge x2 into E1 after edge b2.

(11) Insert E′2 beginning with edge x1 into E1 after edge b3.

(12) Insert E′2 beginning with edge x2 into E1 after edge b3.

Since E1 and E2 are triangle-free Euler tours, the only possible triangles in any of these 12 Euler tours must include vertex
v and two consecutive edges from either E1 or E2 and one from the other. So, for example, the only possible triangles in
Euler tour 1 above consist of the following connection triples of edges: a1b1y1, b1y1z1, w1x1c1, and x1c1d1. Thus, one of the 12
Euler tours listed above must be triangle-free unless at least one of the 4 corresponding connection triples forms a triangle
for each Euler tour. Note that no connection triple appears in the list for more than one Euler tour. Moreover, each of the
10 pairs of consecutive edges aibi, cidi, i = 1, 2, 3 and wjxj , yjzj , j = 1, 2 can appear in only one triangle. It follows that at
most 10 out of the 12 Euler tours above can have a triangle. Thus, one (actually at least two) of the 12 Euler tours must
be triangle-free as desired.
Now suppose that deg(v,G1) = deg(v,G2) = 4. Let E1 = a1b1c1d1 . . . a2b2c2d2 . . . be a triangle-free Euler tour in G1 with bi, ci

being incident with v, i = 1, 2, and let E2 = w1x1y1z1 . . . w2x2y2z2 . . . be a triangle-free Euler tour in G2 with xi, yi being
incident with v, i = 1, 2. Then, the 8 tours above numbered 1-4 and 7-10 are Euler tours in G; moreover, at least one of
these 8 Euler tours is triangle-free unless at least one of the following forms a triangle in each of the corresponding tours.

(1) a1b1y1 or b1y1z1 or w1x1c1 or x1c1d1

(2) a1b1y2 or b1y2z2 or w2x2c1 or x2c1d1

(3) a2b2y1 or b2y1z1 or w1x1c2 or x1c2d2

(4) a2b2y2 or b2y2z2 or w2x2c2 or x2c2d2

and

(7) a1b1x1 or b1x1w1 or z1y1c1 or z1c1d1

(8) a1b1x2 or b1x2w2 or z2y2c1 or z2c1d1

(9) a2b2x1 or b2x1w1 or z1y1c2 or z1c2d2

(10) a2b2x2 or b2x2w2 or z2y2c2 or z2c2d2

No triple appears more than once in the list above, and each of the 8 consecutive pairs of edges aibi, cidi, wixi, yizi, i = 1, 2

can appear in only one triangle. Thus, if none of the 8 Euler tours listed above are triangle-free, we can assume that each of
the 8 Euler tours has exactly one triangle and each of the consecutive pairs of edges listed above is in one of these triangles.
We show that under these assumptions, the two v − v “half-tours” of E1 given by c1d1 . . . a2b2 and c2d2 . . . a1b1, and the two
corresponding half-tours of E2 can be combined (possibly with a reverse traversal) to get a triangle-free Euler tour of G.
To see this, we construct a graph Z on 8 vertices that represent the 8 consecutive pairs of edges mentioned above; thus,
the vertices of Z are {aibi}, {cidi}, {wixi}, {yizi}, i = 1, 2. Join two vertices in Z by an edge if their corresponding half-
tours do not form a triangle when combined as indicated by the two vertices of Z (for example, a1b1 and c1d1) or if the
edges are in the same half-tour (for example, c1d1 and a2b2). Since E1 and E2 are triangle-free, H contains two 4-cycles:
a1b1 − c1d1 − a2d2 − c2d2 − a1b1 and w1x1 − y1z1 − w2x2 − y2x2 − w1x1.
For simplicity we rename the vertices in these 4-cycles and represent the 4-cycles by ABCDA and EFGHE. It is straight-
forward to check thatG has a desired triangle-free Euler tour ifZ has a Hamilton cycle containing the edges of the matching
{M1,M2,M3,M4}, where M1 = BC,M2 = DA,M3 = FG,M4 = HE. By our assumptions, the complement Z∗ of Z has 8
edges. Let U = {A,B,C,D}, and W = {E,F,G,H}.
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Now suppose that no such Hamilton cycle exists in Z. Then for each edge of Z that joins vertices in U with W , there is a
corresponding edge between U and W that must be in the complement Z∗. For example, if AE is in Z, then DH must be in
Z∗, else Z has the desired Hamilton cycle AEFGHDCBA. Therefore all eight edges of Z∗ join U and W , so the vertices of
U and W both induce complete subgraphs in Z. It follows that the desired Hamilton cycle in H will exist if there are two
edges between U and W that together are incident with all four of the edges M1,M2,M3,and M4. But because there are
exactly 8 edges between U and W in Z, and because each vertex has degree at least 1 in Z∗, no single edge Mi, i = 1, 2, 3, 4

can be incident with all 8 of these edges. It follows that two edges with the desired property exist, and therefore the desired
Hamilton cycle exists. The result now follows.

We thank a referee for noting that if a 4k-regular graph has a decomposition into Hamilton cycles, then pairing these
cycles gives a decomposition into k 4-regular graphs, each of which has at most 8 edges in any subgraph with five vertices.
Robinson and Wormald [7] showed that for each even fixed r ≥ 4, almost all r-regular graphs have a decomposition into
Hamilton cycles, and Csaba, Kühn, Lo, Osthus and Treglown [2] showed that for any r-regular graph G of order n suffi-
ciently large, if r is even and r ≥ n

2 , G has a decomposition into Hamilton cycles. These two results immediately yield the
following.

Theorem 2.2. For fixed r = 4k (k > 1), almost all r-regular graphs have a decomposition into k 4-regular graphs, each
having the property that any five vertices induce at most 8 edges.

Theorem 2.3. For n sufficiently large, and r = 4k ≥ n
2 , every r-regular graph has a decomposition into k 4-regular sub-

graphs, each having the property that any five vertices induce at most 8 edges.

Our Theorem 1.1 extends these results to all 4k-regular graphs. We conjecture this extends naturally to larger sub-
graphs, and provide the statement for the next case.

Conjecture. Every 6k-regular (k > 1) graph has a decomposition into k 6-regular subgraphs, each having the property
that any seven vertices induce at most 18 edges.
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