www.dmlett.com

Research Article

Symmetric polynomials associated with numerical semigroups

Leonid G. Fel ${ }^{*}$

Department of Civil Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
(Received: 24 November 2020. Received in revised form: 18 March 2021. Accepted: 19 March 2021. Published online: 22 March 2021.)
(C) 2021 the author. This is an open access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

We study a new kind of symmetric polynomials $P_{n}\left(x_{1}, \ldots, x_{m}\right)$ of degree n in m real variables, which have arisen in the theory of numerical semigroups. We establish their basic properties and find their representation through the power sums $E_{k}=\sum_{j=1}^{m} x_{j}^{k}$. We observe a visual similarity between normalized polynomials $P_{n}\left(x_{1}, \ldots, x_{m}\right) / \chi_{m}$, where $\chi_{m}=\prod_{j=1}^{m} x_{j}$, and a polynomial part of a partition function $W\left(s,\left\{d_{1}, \ldots, d_{m}\right\}\right)$, which gives the number of partitions of $s \geq 0$ into m positive integers d_{j}, and we put forward a conjecture about their relationship.

Keywords: symmetric polynomials; numerical semigroups; theory of partition.
2020 Mathematics Subject Classification: 20M14, 11P81, $05 A 17$.

1. Symmetric polynomials $\boldsymbol{P}_{\boldsymbol{n}}\left(\mathbf{x}^{m}\right)$ and their factorization

In 2017, while studying the polynomial identities of arbitrary degree for syzygies degrees of the numerical semigroups $\left\langle d_{1}, \ldots, d_{m}\right\rangle$, we introduced a new kind of symmetric polynomials $P_{n}\left(x_{1}, \ldots, x_{m}\right)$ of degree n in m real variables x_{j} (see [1], Section 5.1):

$$
\begin{equation*}
P_{n}\left(\mathbf{x}^{m}\right)=\sum_{j=1}^{m} x_{j}^{n}-\sum_{1 \leq j<r}^{m}\left(x_{j}+x_{r}\right)^{n}+\sum_{1 \leq j<r<i}^{m}\left(x_{j}+x_{r}+x_{i}\right)^{n}-\ldots-(-1)^{m}\left(\sum_{j=1}^{m} x_{j}\right)^{n} \tag{1}
\end{equation*}
$$

where $\mathbf{x}^{m}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $P_{n}\left(\mathbf{x}^{m}\right)$ is invariant under the action of the symmetric group S_{m} on a set of variables $\left\{x_{1}, \ldots, x_{m}\right\}$ by their permutations. Such polynomials arise in the rational representation of the Hilbert series for the complete intersection semigroup ring associated with a symmetric semigroup $\left\langle d_{1}, \ldots, d_{m}\right\rangle$. According to [1], the polynomials in (1) satisfy

$$
\begin{equation*}
P_{n}\left(\mathbf{x}^{m}\right)=0, \quad 1 \leq n \leq m-1 \quad \text { and } \quad P_{m}\left(\mathbf{x}^{m}\right)=(-1)^{m+1} m!\prod_{j=1}^{m} x_{j} \tag{2}
\end{equation*}
$$

In this paper, we study a factorization of $P_{n}\left(\mathbf{x}^{m}\right)$ for $n>m$ and by making use of this property, we find a representation of $P_{n}\left(\mathbf{x}^{m}\right)$ through the power sums $E_{k}=\sum_{j=1}^{m} x_{j}^{k}$, i.e., $P_{n}\left(\mathbf{x}^{m}\right)=P_{n}\left(E_{1}, \ldots, E_{m}\right)$.

Lemma 1.1. The polynomial $P_{n}\left(\mathbf{x}^{m}\right)$ vanishes if at least one of the variables x_{j} vanishes.
Proof. Since $P_{n}\left(\mathbf{x}^{m}\right)$ is invariant under all permutations of variables $\left\{x_{1}, \ldots, x_{m}\right\}$, we have to prove

$$
P_{n}\left(0, x_{2}, \ldots, x_{m}\right)=0
$$

Denote $P_{n}\left(0, x_{2}, \ldots, x_{m}\right)=P_{n}\left(0, \mathbf{x}^{m-1}\right)$ and substitute $x_{1}=0$ into (1),

$$
\begin{aligned}
P_{n}\left(0, \mathbf{x}^{m-1}\right)= & \sum_{j=2}^{m} x_{j}^{n}-\left[\sum_{j=2}^{m} x_{j}^{n}+\sum_{2 \leq r<j}^{m}\left(x_{j}+x_{r}\right)^{n}\right]+\left[\sum_{2 \leq r<j}^{m}\left(x_{j}+x_{r}\right)^{n}+\sum_{2 \leq i<r<j}^{m}\left(x_{j}+x_{r}+x_{i}\right)^{n}\right] \\
& -\left[\sum_{2 \leq i<r<j}^{m}\left(x_{j}+x_{r}+x_{i}\right)^{n}+\sum_{2 \leq i<r<j<t}^{m}\left(x_{t}+x_{j}+x_{r}+x_{i}\right)^{n}\right]+\ldots \\
& +(-1)^{m}\left[\sum_{j=2}^{m}\left(\sum_{r=2}^{m} x_{j}+x_{r}\right)^{n}+\left(\sum_{j=2}^{m} x_{j}\right)^{n}\right]-(-1)^{m}\left(\sum_{j=2}^{m} x_{j}\right)^{n} .
\end{aligned}
$$

Recasting the terms in the last sum in m pairs, we obtain

$$
\begin{aligned}
P_{n}\left(0, \mathbf{x}^{m-1}\right)= & {\left[\sum_{j=2}^{m} x_{j}^{n}-\sum_{j=2}^{m} x_{j}^{n}\right]-\left[\sum_{2 \leq r<j}^{m}\left(x_{j}+x_{r}\right)^{n}-\sum_{2 \leq r<j}^{m}\left(x_{j}+x_{r}\right)^{n}\right]+\left[\sum_{2 \leq i<r<j}^{m}\left(x_{j}+x_{r}+x_{i}\right)^{n}\right.} \\
& \left.-\sum_{2 \leq i<r<j}^{m}\left(x_{j}+x_{r}+x_{i}\right)^{n}\right]-\ldots+(-1)^{m}\left[\left(\sum_{j=2}^{m} x_{j}\right)^{n}-\left(\sum_{j=2}^{m} x_{j}\right)^{n}\right]=0,
\end{aligned}
$$

and Lemma 1.1 is proven.
Corollary 1.1. The polynomial $P_{n}\left(\mathbf{x}^{m}\right)$ is divisible by the product $\chi_{m}=\prod_{j=1}^{m} x_{j}$.
Proof. Since $P_{n}\left(\mathbf{x}^{m}\right)$ is invariant under all permutations of variables $\left\{x_{1}, \ldots, x_{m}\right\}$, by Lemma 1.1 it holds that

$$
P_{n}\left(0, x_{2}, \ldots, x_{m}\right)=P_{n}\left(x_{1}, 0, \ldots, x_{m}\right)=\ldots=P_{n}\left(x_{1}, x_{2}, \ldots, 0\right)=0
$$

Thus, the equation $P_{n}\left(x_{1}, \ldots, x_{m}\right)=0$ has at least m independent roots $x_{1}=x_{2}=\ldots=x_{m}=0$. Then, by the polynomial factor theorem, $P_{n}\left(\mathbf{x}^{m}\right)$ is divisible by the product χ_{m}.

In full agreement with (2), by Corollary 1.1, it follows that $P_{n}\left(\mathbf{x}^{m}\right)=0$ if $n<m$ and $P_{m}\left(\mathbf{x}^{m}\right) / \chi_{m}$ does not depend on x_{j}.
Lemma 1.2. The polynomial $P_{n}\left(\mathbf{x}^{m}\right)$ is divisible by the sum $E_{1}=\sum_{j=1}^{m} x_{j}$ if $n-m \equiv 1(\bmod 2)$.
Proof. Rewrite $P_{n}\left(\mathbf{x}^{m}\right)$ as follows

$$
\begin{aligned}
P_{n}\left(\mathbf{x}^{m}\right)= & \sum_{j=1}^{m} x_{j}^{n}-\sum_{1 \leq j_{2}<j_{1}}^{m}\left(\sum_{k=1}^{2} x_{j_{k}}\right)^{n}+\sum_{1 \leq j_{3}<j_{2}<j_{1}}^{m}\left(\sum_{k=1}^{3} x_{j_{k}}\right)^{n}-\ldots \\
& -(-1)^{m} \sum_{1 \leq j_{2}<j_{1}}^{m}\left(E_{1}-\sum_{k=1}^{2} x_{j_{k}}\right)^{n}+(-1)^{m} \sum_{j=1}^{m}\left(E_{1}-x_{j}\right)^{n}-(-1)^{m} E_{1}^{n}
\end{aligned}
$$

and substitute there $E_{1}=0$,

$$
\begin{aligned}
P_{n}\left(\mathbf{x}^{m}\right)= & \sum_{j=1}^{m} x_{j}^{n}-\sum_{1 \leq j_{2}<j_{1}}^{m}\left(\sum_{k=1}^{2} x_{j_{k}}\right)^{n}+\sum_{1 \leq j_{3}<j_{2}<j_{1}}^{m}\left(\sum_{k=1}^{3} x_{j_{k}}\right)^{n}-\ldots \\
& +(-1)^{m+n} \sum_{1 \leq j_{3}<j_{2}<j_{1}}^{m}\left(\sum_{k=1}^{3} x_{j_{k}}\right)^{n}-(-1)^{m+n} \sum_{1 \leq j_{2}<j_{1}}^{m}\left(\sum_{k=1}^{2} x_{j_{k}}\right)^{n}+(-1)^{m+n} \sum_{j=1}^{m} x_{j}^{n} .
\end{aligned}
$$

Recast the terms in the last sum as follows,

$$
\begin{align*}
P_{n}\left(\mathbf{x}^{m}\right) & =\left[1+(-1)^{m+n}\right] R_{1 . n}\left(\mathbf{x}^{m}\right)+\frac{(-1)^{\mu}}{2}\left[1+(-1)^{m}\right] R_{2, n}\left(\mathbf{x}^{m}\right), \tag{3}\\
R_{1 . n}\left(\mathbf{x}^{m}\right) & =\sum_{j=1}^{m} x_{j}^{n}-\sum_{1 \leq j_{2}<j_{1}}^{m}\left(\sum_{k=1}^{2} x_{j_{k}}\right)^{n}+\ldots-(-1)^{\mu} \sum_{1 \leq j_{\mu}<\ldots<j_{2}<j_{1}}^{m}\left(\sum_{k=1}^{\mu} x_{j_{k}}\right)^{n}, \\
R_{2, n}\left(\mathbf{x}^{m}\right) & =\sum_{1 \leq j_{\mu+1}<\ldots<j_{2}<j_{1}}^{m}\left(\sum_{k=1}^{\mu+1} x_{j_{k}}\right)^{n}, \quad \mu=\left\lfloor\frac{m-1}{2}\right\rfloor \tag{4}
\end{align*}
$$

where $\lfloor a\rfloor$ denotes the integer part of a.
According to (3), if $m+n \equiv 1(\bmod 2)$ and $m \equiv 1(\bmod 2)$, then $P_{n}\left(\mathbf{x}^{m}\right)=0$. Consider another case when $m+n \equiv 1$ $(\bmod 2)$ and $m \equiv 0(\bmod 2)$. Put $m=2 q$ and $n=2 l+1$ in (3) and (4), and obtain

$$
\begin{equation*}
P_{2 l+1}\left(\mathbf{x}^{2 q}\right)=(-1)^{q-1} \sum_{1 \leq j_{q}<\ldots<j_{2}<j_{1}}^{2 q}\left(\sum_{k=1}^{q} x_{j_{k}}\right)^{2 l+1} \tag{5}
\end{equation*}
$$

In (5), a summation in the external sum $\sum_{j_{1}>j_{2}>\ldots>j_{q}=1}^{2 q}$ runs over all $(2 q)!/(q!)^{2}$ permutations of $2 q$ variables x_{j} in terms $\left(\sum_{k=1}^{q} x_{j_{k}}\right)^{2 l+1}$. That is why every such term has in (5) its counterpart,

$$
\left(x_{j_{1}}+x_{j_{2}}+\ldots+x_{j_{q}}\right)^{2 l+1} \longleftrightarrow\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}}\right)^{2 l+1}
$$

$$
\begin{align*}
& \left\{x_{j_{1}}, \ldots, x_{j_{q}}\right\} \cap\left\{x_{i_{1}}, \ldots, x_{i_{q}}\right\}=\emptyset \\
& \#\left\{x_{j_{1}}, \ldots, x_{j_{q}}\right\}=\#\left\{x_{i_{1}}, \ldots, x_{i_{q}}\right\}=q \\
& \sum_{k=1}^{q} x_{j_{k}}+\sum_{k=1}^{q} x_{i_{k}}=E_{1} \tag{6}
\end{align*}
$$

Recomposing the external sum in (5) as a sum over pairs, described in (6),

$$
\left(\sum_{k=1}^{q} x_{j_{k}}\right)^{2 l+1}+\left(\sum_{k=1}^{q} x_{i_{k}}\right)^{2 l+1}
$$

and making use of the last equality in (6), where $E_{1}=0$, we arrive at $P_{2 l+1}\left(\mathbf{x}^{2 q}\right)=0$.
Thus, the polynomial $P_{n}\left(\mathbf{x}^{m}\right)$ is divisible by E_{1} if $n+m \equiv 1(\bmod 2)$. That finishes the proof of Lemma 1.2 since the two equalities, $n+m \equiv 1(\bmod 2)$ and $n-m \equiv 1(\bmod 2)$, are equivalent.

Lemma 1.3. If $x_{i}>0$ for all i, then $P_{n}\left(\mathbf{x}^{m}\right), n \geq m$, satisfies the following inequalities,

$$
\begin{equation*}
P_{n}\left(\mathbf{x}^{m}\right)>0, \quad m \equiv 1 \quad(\bmod 2) ; \quad P_{n}\left(\mathbf{x}^{m}\right)<0, \quad m \equiv 0 \quad(\bmod 2) \tag{7}
\end{equation*}
$$

Proof. We prove (7) by induction. First, start with three simple inequalities,

$$
\begin{align*}
P_{n}\left(\mathbf{x}^{2}\right)= & x_{1}^{n}+x_{2}^{n}-\left(x_{1}+x_{2}\right)^{n}<0, \quad n \geq 2, \quad x_{1}, x_{2}>0, \tag{8}\\
P_{n}\left(\mathbf{x}^{3}\right) & =-\sum_{k=1}^{n-1}\binom{n}{k} x_{3}^{n-k} x_{1}^{k}-\sum_{k=1}^{n-1}\binom{n}{k} x_{3}^{n-k} x_{2}^{k}+\sum_{k=1}^{n-1}\binom{n}{k} x_{3}^{n-k}\left(x_{1}+x_{2}\right)^{k} \\
= & -\sum_{k=1}^{n-1}\binom{n}{k} x_{3}^{n-k} P_{k}\left(\mathbf{x}^{2}\right)>0, \quad n \geq 3, \quad x_{1}, x_{2}, x_{3}>0, \\
P_{n}\left(\mathbf{x}^{4}\right) & =-\sum_{k=1}^{n-1}\binom{n}{k} x_{4}^{n-k} x_{1}^{k}-\sum_{k=1}^{n-1}\binom{n}{k} x_{4}^{n-k} x_{2}^{k}-\sum_{k=1}^{n-1}\binom{n}{k} x_{4}^{n-k} x_{3}^{k}+\sum_{k=1}^{n-1}\binom{n}{k} x_{4}^{n-k}\left(x_{1}+x_{2}\right)^{k}+ \\
& \sum_{k=1}^{n-1}\binom{n}{k} x_{4}^{n-k}\left(x_{2}+x_{3}\right)^{k}+\sum_{k=1}^{n-1}\binom{n}{k} x_{4}^{n-k}\left(x_{3}+x_{1}\right)^{k}-\sum_{k=1}^{n-1}\binom{n}{k} x_{4}^{n-k}\left(x_{1}+x_{2}+x_{3}\right)^{k} \\
= & -\sum_{k=1}^{n-1}\binom{n}{k} x_{4}^{n-k} P_{k}\left(\mathbf{x}^{3}\right)<0, \quad n \geq 4, \quad x_{1}, x_{2}, x_{3}, x_{4}>0 .
\end{align*}
$$

Next, establish an identity for $P_{n}\left(\mathbf{x}^{m}\right)$ relating the last one with symmetric polynomials $P_{k}\left(\mathbf{x}^{m-1}\right)$ of a smaller tuple $\mathbf{x}^{m-1}=\left\{x_{1}, \ldots, x_{m-1}\right\}$,

$$
P_{n}\left(\mathbf{x}^{m}\right)=-\sum_{k=1}^{n-1}\binom{n}{k} x_{m}^{n-k} \sum_{j=1}^{m-1} x_{j}^{k}+\sum_{k=1}^{n-1}\binom{n}{k} x_{m}^{n-k} \sum_{1 \leq j<r}^{m-1}\left(x_{j}+x_{r}\right)^{k}-\ldots \pm \sum_{k=1}^{n-1}\binom{n}{k} x_{m}^{n-k}\left(\sum_{j=1}^{m-1} x_{j}\right)^{k}
$$

or

$$
\begin{equation*}
P_{n}\left(\mathbf{x}^{m}\right)=-\sum_{k=1}^{n-1}\binom{n}{k} x_{m}^{n-k} P_{k}\left(\mathbf{x}^{m-1}\right), \quad n \geq m, \quad x_{1}, \ldots, x_{m}>0 \tag{9}
\end{equation*}
$$

which follows by careful recasting the terms in (1) and further simplification.
According to (9), if $P_{k}\left(\mathbf{x}^{m-1}\right)>0$ irrespectively to k, then $P_{k}\left(\mathbf{x}^{m}\right)<0$, and vice versa, if $P_{k}\left(\mathbf{x}^{m-1}\right)<0$, then $P_{k}\left(\mathbf{x}^{m}\right)>0$. On the other hand, the first terms (8) of the alternating sequence $P_{n}\left(\mathbf{x}^{m}\right)$ with growing m satisfy (7). Then, by induction, inequalities (7) hold for every m.

2. Representation of the polynomial $P_{n}\left(\mathbf{x}^{m}\right)$

In this section, we emphasize a hidden relationship between the polynomial $P_{n}\left(\mathbf{x}^{m}\right)$ and the polynomial part $W_{1}\left(s, \mathbf{d}^{m}\right)$ of a restricted partition function. To provide $P_{n}\left(\mathbf{x}^{m}\right)$ with properties (2) and satisfy Corollary 1.1, we choose the following representation for the polynomial,

$$
\begin{equation*}
P_{n}\left(\mathbf{x}^{m}\right)=\frac{(-1)^{m+1} n!}{(n-m)!} \chi_{m} T_{n-m}\left(\mathbf{x}^{m}\right) \tag{10}
\end{equation*}
$$

where $T_{r}\left(\mathbf{x}^{m}\right)$ is a polynomial of degree r in m variables x_{j}. Combining (10) and Lemma 1.3, we obtain

$$
\begin{equation*}
T_{r}\left(\mathbf{x}^{m}\right)>0, \quad x_{i}>0 \quad \text { for all } \quad i \tag{11}
\end{equation*}
$$

A straightforward calculation (with help of Mathematica software) of the first eight polynomials $T_{r}\left(\mathbf{x}^{m}\right)$ results in the following expressions,

$$
\begin{align*}
T_{0}\left(\mathbf{x}^{m}\right) & =1 \tag{12}\\
T_{1}\left(\mathbf{x}^{m}\right) & =\frac{1}{2} E_{1}, \\
T_{2}\left(\mathbf{x}^{m}\right) & =\frac{1}{3} \frac{3 E_{1}^{2}+E_{2}}{4}, \\
T_{3}\left(\mathbf{x}^{m}\right) & =\frac{1}{4} \frac{E_{1}^{2}+E_{2}}{2} E_{1}, \\
T_{4}\left(\mathbf{x}^{m}\right) & =\frac{1}{5} \frac{15 E_{1}^{4}+30 E_{1}^{2} E_{2}+5 E_{2}^{2}-2 E_{4}}{48} \\
T_{5}\left(\mathbf{x}^{m}\right) & =\frac{1}{6} \frac{3 E_{1}^{4}+10 E_{1}^{2} E_{2}+5 E_{2}^{2}-2 E_{4}}{16} E_{1}, \\
T_{6}\left(\mathbf{x}^{m}\right) & =\frac{1}{7} \frac{63 E_{1}^{6}+315 E_{1}^{4} E_{2}+315 E_{1}^{2} E_{2}^{2}-126 E_{1}^{2} E_{4}+35 E_{2}^{3}-42 E_{2} E_{4}+16 E_{6}}{576}, \\
T_{7}\left(\mathbf{x}^{m}\right) & =\frac{1}{8} \frac{9 E_{1}^{6}+63 E_{1}^{4} E_{2}+105 E_{1}^{2} E_{2}^{2}-42 E_{1}^{2} E_{4}+35 E_{2}^{3}-42 E_{2} E_{4}+16 E_{6}}{144} E_{1} .
\end{align*}
$$

Formulas (12) for $T_{r}\left(\mathbf{x}^{m}\right)$ are valid irrespective to the ratio r / m, or, in other words, to the fact how many power sums E_{k} are algebraically independent. In fact, if $r>m$ then expressions may be compactified by supplementary relations $E_{k}=E_{k}\left(E_{1}, \ldots, E_{m}\right), k>m$.

Unlike to elementary symmetric polynomials $\sum_{i_{1}<i_{2}<\ldots<i_{r}}^{m} x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}}$ and power sums $E_{r}\left(\mathbf{x}^{m}\right)$, the symmetric polynomials $T_{r}\left(\mathbf{x}^{m}\right), 0 \leq r \leq 7$, are algebraically dependent. Indeed, by (12) we get

$$
\begin{align*}
\frac{T_{3}\left(\mathbf{x}^{m}\right)}{T_{1}^{3}\left(\mathbf{x}^{m}\right)} & =3 \frac{T_{2}\left(\mathbf{x}^{m}\right)}{T_{1}^{2}\left(\mathbf{x}^{m}\right)}-2 \tag{13}\\
\frac{T_{5}\left(\mathbf{x}^{m}\right)}{T_{1}^{5}\left(\mathbf{x}^{m}\right)} & =5 \frac{T_{4}\left(\mathbf{x}^{m}\right)}{T_{1}^{4}\left(\mathbf{x}^{m}\right)}-20 \frac{T_{2}\left(\mathbf{x}^{m}\right)}{T_{1}^{2}\left(\mathbf{x}^{m}\right)}+16 \\
\frac{T_{7}\left(\mathbf{x}^{m}\right)}{T_{1}^{7}\left(\mathbf{x}^{m}\right)} & =7 \frac{T_{6}\left(\mathbf{x}^{m}\right)}{T_{1}^{6}\left(\mathbf{x}^{m}\right)}-70 \frac{T_{4}\left(\mathbf{x}^{m}\right)}{T_{1}^{4}\left(\mathbf{x}^{m}\right)}+336 \frac{T_{2}\left(\mathbf{x}^{m}\right)}{T_{1}^{2}\left(\mathbf{x}^{m}\right)}-272
\end{align*}
$$

It is unlikely to arrive at a general formula for $T_{r}\left(\mathbf{x}^{m}\right)$ with arbitrary r by observation of the fractions in (12). However, one can recognize a visual similarity between (12) and the other known expressions of special polynomials arisen in the theory of partition [5].

Recall formulas for a polynomial part $W_{1}\left(s, \mathbf{d}^{m}\right)$ of a restricted partition function $W\left(s, \mathbf{d}^{m}\right)$, where $\mathbf{d}^{m}=\left\{d_{1}, \ldots, d_{m}\right\}$, which gives the number of partitions of $s \geq 0$ into m positive integers $\left(d_{1}, \ldots, d_{m}\right)$ and vanishes, if such partition does not exist. Following formulas (3.16), (7.1) in [1], we obtain

$$
\begin{equation*}
W_{1}\left(s, \mathbf{d}^{m}\right)=\frac{1}{(m-1)!\pi_{m}} \sum_{r=0}^{m-1}\binom{m-1}{r} f_{r}\left(\mathbf{d}^{m}\right) s^{m-1-r}, \quad f_{r}\left(\mathbf{d}^{m}\right)=\left(\sigma_{1}+\sum_{i=1}^{m} \mathcal{B} d_{i}\right)^{r} \tag{14}
\end{equation*}
$$

where $\pi_{m}=\prod_{j=1}^{m} d_{j}$ and $\sigma_{1}=\sum_{j=1}^{m} d_{j}$. In (14) the formula for $f_{r}\left(\mathbf{d}^{m}\right)$ presumes a symbolic exponentiation [4]: after binomial expansion the powers $\left(\mathcal{B} d_{i}\right)^{r}$ are converted into the powers of d_{i} multiplied by Bernoulli's numbers \mathcal{B}_{r}, i.e., $d_{i}^{r} \mathcal{B}_{r}$. A straightforward calculation of first eight polynomials $f_{r}\left(\mathbf{d}^{m}\right)=f_{r}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ in terms of power sums $\sigma_{k}=\sum_{j=1}^{m} d_{j}^{k}$ were performed in [1], formulas (7.2),

$$
\begin{align*}
f_{0}\left(\mathbf{d}^{m}\right) & =1 \tag{15}\\
f_{1}\left(\mathbf{d}^{m}\right) & =\frac{1}{2} \sigma_{1} \\
f_{2}\left(\mathbf{d}^{m}\right) & =\frac{1}{3} \frac{3 \sigma_{1}^{2}-\sigma_{2}}{4}
\end{align*}
$$

$$
\begin{aligned}
f_{3}\left(\mathbf{d}^{m}\right) & =\frac{1}{4} \frac{\sigma_{1}^{2}-\sigma_{2}}{2} \sigma_{1} \\
f_{4}\left(\mathbf{d}^{m}\right) & =\frac{1}{5} \frac{15 \sigma_{1}^{4}-30 \sigma_{1}^{2} \sigma_{2}+5 \sigma_{2}^{2}+2 \sigma_{4}}{48}, \\
f_{5}\left(\mathbf{d}^{m}\right) & =\frac{1}{6} \frac{3 \sigma_{1}^{4}-10 \sigma_{1}^{2} \sigma_{2}+5 \sigma_{2}^{2}+2 \sigma_{4}}{16} \sigma_{1} \\
f_{6}\left(\mathbf{d}^{m}\right) & =\frac{1}{7} \frac{63 \sigma_{1}^{6}-315 \sigma_{1}^{4} \sigma_{2}+315 \sigma_{1}^{2} \sigma_{2}^{2}+126 \sigma_{1}^{2} \sigma_{4}-35 \sigma_{2}^{3}-42 \sigma_{2} \sigma_{4}-16 \sigma_{6}}{576} \\
f_{7}\left(\mathbf{d}^{m}\right) & =\frac{1}{8} \frac{9 \sigma_{1}^{6}-63 \sigma_{1}^{4} \sigma_{2}+105 \sigma_{1}^{2} \sigma_{2}^{2}+42 \sigma_{1}^{2} \sigma_{4}-35 \sigma_{2}^{3}-42 \sigma_{2} \sigma_{4}-16 \sigma_{6}}{144} \sigma_{1}
\end{aligned}
$$

An absence of power sums σ_{k} with odd indices k are strongly related to the presence of Bernoulli's numbers \mathcal{B}_{r} in formula (14). A simple comparison of formulas (12) and (15) manifests a visual similarity between polynomials $T_{r}\left(\mathbf{x}^{m}\right)$ and $f_{r}\left(\mathbf{d}^{m}\right)$, which we resume in the next conjecture.

Conjecture 2.1. Let $T_{r}\left(\mathbf{x}^{m}\right)$ and $f_{r}\left(\mathbf{x}^{m}\right)$ be symmetric polynomials, defined in (10) and (14), respectively. Then, the following relation holds

$$
\begin{equation*}
T_{r}\left(E_{1}, E_{2}, \ldots, E_{r}\right)=f_{r}\left(E_{1},-E_{2}, \ldots,-E_{r}\right), \quad r \geq 2 \tag{16}
\end{equation*}
$$

where signs of arguments E_{j} are changed only at E_{2}, \ldots, E_{r}.

3. Parity properties of $W_{1}\left(s, \mathbf{d}^{m}\right)$ and generalization of identities for $T_{r}\left(\mathbf{x}^{m}\right)$

The polynomials $T_{r}\left(\mathbf{x}^{m}\right)$ and $f_{r}\left(\mathbf{d}^{m}\right)$ possess one more kind of similarity besides of formulas in (12) and (15). It is easy to verify that identities (13) hold for functions $f_{r}\left(\mathbf{d}^{m}\right)$ by replacing $T_{r}\left(\mathbf{x}^{m}\right) \rightarrow f_{r}\left(\mathbf{d}^{m}\right)$. Keeping in mind such similarity, let us find a general form of identities for $f_{r}\left(\mathbf{d}^{m}\right)$. Making use of a recursive relation in [5], formula (12), for their generating function $W_{1}\left(s, \mathbf{d}^{m}\right)$,

$$
\begin{equation*}
W_{1}\left(s, \mathbf{d}^{m}\right)=W_{1}\left(s-d_{m}, \mathbf{d}^{m}\right)+W_{1}\left(s, \mathbf{d}^{m-1}\right), \quad \mathbf{d}^{m-1}=\left\{d_{1}, \ldots, d_{m-1}\right\} \tag{17}
\end{equation*}
$$

prove the parity properties

$$
\begin{equation*}
W_{1}\left(s-\frac{\sigma_{1}}{2}, \mathbf{d}^{2 m}\right)=-W_{1}\left(-s-\frac{\sigma_{1}}{2}, \mathbf{d}^{2 m}\right), \quad W_{1}\left(s-\frac{\sigma_{1}}{2}, \mathbf{d}^{2 m+1}\right)=W_{1}\left(-s-\frac{\sigma_{1}}{2}, \mathbf{d}^{2 m+1}\right) \tag{18}
\end{equation*}
$$

following a similar proof for the whole partition function $W\left(s, \mathbf{d}^{m}\right)$ in [3], Lemma 4.1. Indeed, the recursive relation (17) may be rewritten for $V_{1}\left(s, \mathbf{d}^{m}\right)=W_{1}\left(s-\sigma_{1} / 2, \mathbf{d}^{m}\right)$, where $\sigma_{1} / 2=f_{1}\left(\mathbf{d}^{m}\right)$,

$$
V_{1}\left(s, \mathbf{d}^{m}\right)=V_{1}\left(s-d_{m}, \mathbf{d}^{m}\right)+V_{1}\left(s-\frac{d_{m}}{2}, \mathbf{d}^{m-1}\right)
$$

Making use of a new variable $q=s-d_{m} / 2$, the last relation reads

$$
\begin{aligned}
V_{1}\left(q, \mathbf{d}^{m-1}\right) & =V_{1}\left(q+\frac{d_{m}}{2}, \mathbf{d}^{m}\right)-V_{1}\left(q-\frac{d_{m}}{2}, \mathbf{d}^{m}\right) \\
-V_{1}\left(-q, \mathbf{d}^{m-1}\right) & =V_{1}\left(-q-\frac{d_{m}}{2}, \mathbf{d}^{m}\right)-V_{1}\left(-q+\frac{d_{m}}{2}, \mathbf{d}^{m}\right) .
\end{aligned}
$$

Hence, if $V_{1}\left(q, \mathbf{d}^{m}\right)$ is an even function of q, then $V_{1}\left(q, \mathbf{d}^{m-1}\right)$ is an odd one, and vice versa. But, according to (14), for $m=1$ we have $V_{1}\left(q, \mathbf{d}^{1}\right)=W_{1}\left(q-d_{1} / 2, \mathbf{d}^{1}\right)=1 / d_{1}$, where $\mathbf{d}^{1}=\left\{d_{1}\right\}$, or in other words, the function $V_{1}\left(q, \mathbf{d}^{1}\right)$ is even in q. Therefore we obtain

$$
V_{1}\left(s, \mathbf{d}^{2 m}\right)=-V_{1}\left(-s, \mathbf{d}^{2 m}\right), \quad V_{1}\left(s, \mathbf{d}^{2 m+1}\right)=V_{1}\left(-s, \mathbf{d}^{2 m+1}\right)
$$

that finally leads to (18).
Identities (18) impose a set of relations on $f_{r}\left(\mathbf{d}^{m}\right)$. To find them, we have to cancel in a series expansion (14) for $W_{1}\left(s-f_{1}\left(\mathbf{d}^{2 m}\right), \mathbf{d}^{2 m}\right)$ all terms with even degrees of s

$$
\begin{equation*}
s^{2 m-1-r} \sum_{k=0}^{r}(-1)^{k}\binom{2 m-1}{r-k}\binom{2 m-1-r+k}{k} f_{1}^{k}\left(\mathbf{d}^{2 m}\right) f_{r-k}\left(\mathbf{d}^{2 m}\right) \tag{19}
\end{equation*}
$$

and for $W_{1}\left(s-f_{1}\left(\mathbf{d}^{2 m+1}\right), \mathbf{d}^{2 m+1}\right)$ all terms with odd degrees of s

$$
\begin{equation*}
s^{2 m-r} \sum_{k=0}^{r}(-1)^{k}\binom{2 m}{r-k}\binom{2 m-r+k}{k} f_{1}^{k}\left(\mathbf{d}^{2 m+1}\right) f_{r-k}\left(\mathbf{d}^{2 m+1}\right) \tag{20}
\end{equation*}
$$

Making use of identity for binomial coefficients

$$
\binom{A-1}{B-1-C}\binom{A-B+C}{C}=\binom{A-1}{B-1}\binom{B-1}{C}, \quad A>B>C \geq 0
$$

and substituting $r=2 n-1$ into (19) and (20), and equating them to zero, we obtain, respectively,

$$
\begin{gather*}
s^{2(m-n)}\binom{2 m-1}{2 n-1} \sum_{k=0}^{2 n-1}(-1)^{k}\binom{2 n-1}{k} f_{1}^{k}\left(\mathbf{d}^{2 m}\right) f_{2 n-1-k}\left(\mathbf{d}^{2 m}\right)=0 \tag{21}\\
s^{2(m-n)+1}\binom{2 m}{2 n-1} \sum_{k=0}^{2 n-1}(-1)^{k}\binom{2 n-1}{k} f_{1}^{k}\left(\mathbf{d}^{2 m+1}\right) f_{2 n-1-k}\left(\mathbf{d}^{2 m+1}\right)=0 \tag{22}
\end{gather*}
$$

By comparison (21) and (22) and keeping in mind $f_{1}\left(\mathbf{d}^{m}\right) \neq 0$, we arrive at universal relation irrespectively to the parity of m,

$$
\begin{equation*}
\frac{f_{2 n-1}\left(\mathbf{d}^{m}\right)}{f_{1}^{2 n-1}\left(\mathbf{d}^{m}\right)}=\sum_{k=1}^{2 n-1}(-1)^{k+1}\binom{2 n-1}{k} \frac{f_{2 n-1-k}\left(\mathbf{d}^{m}\right)}{f_{1}^{2 n-1-k}\left(\mathbf{d}^{m}\right)} \tag{23}
\end{equation*}
$$

Note, that for $n=1$ equality (23) holds identically. Applying a recursive procedure to formula (23), the last expression may be represented as follows,

$$
\begin{align*}
\frac{f_{2 n-1}\left(\mathbf{d}^{m}\right)}{f_{1}^{2 n-1}\left(\mathbf{d}^{m}\right)}= & \sum_{k_{1}=1}^{n}\binom{2 n-1}{2 k_{1}-1} \frac{f_{2\left(n-k_{1}\right)}\left(\mathbf{d}^{m}\right)}{f_{1}^{2\left(n-k_{1}\right)}\left(\mathbf{d}^{m}\right)}- \tag{24}\\
& \sum_{k_{1}, k_{2}=1}^{n}\binom{2 n-1}{2 k_{1}}\binom{2\left(n-k_{1}\right)-1}{2 k_{2}-1} \frac{f_{2\left(n-k_{1}-k_{2}\right)}\left(\mathbf{d}^{m}\right)}{f_{1}^{2\left(n-k_{1}-k_{2}\right)}\left(\mathbf{d}^{m}\right)}+ \\
& \sum_{k_{1}, k_{2}, k_{3}=1}^{n}\binom{2 n-1}{2 k_{1}}\binom{2\left(n-k_{1}\right)-1}{2 k_{2}}\binom{2\left(n-k_{1}-k_{2}\right)-1}{2 k_{3}-1} \frac{f_{2\left(n-k_{1}-k_{2}-k_{3}\right)}\left(\mathbf{d}^{m}\right)}{f_{1}^{2\left(n-k_{1}-k_{2}-k_{3}\right)}\left(\mathbf{d}^{m}\right)}-\ldots
\end{align*}
$$

where the number of summation is equal n. Finally, formula (24) may be presented in a simpler way

$$
\begin{equation*}
\frac{f_{2 n-1}\left(\mathbf{d}^{m}\right)}{f_{1}^{2 n-1}\left(\mathbf{d}^{m}\right)}=\sum_{r=1}^{n}(-1)^{r+1} C_{n, r} \frac{f_{2(n-r)}\left(\mathbf{d}^{m}\right)}{f_{1}^{2(n-r)}\left(\mathbf{d}^{m}\right)}, \quad C_{n, r} \in \mathbb{Z}_{>} \tag{25}
\end{equation*}
$$

where coefficients $C_{n, r}$ with $r=1,2,3,4$ are calculated below

$$
\begin{align*}
C_{n, 1}= & \binom{2 n-1}{1} \tag{26}\\
C_{n, 2}= & \binom{2 n-1}{2}\binom{2 n-3}{1}-\binom{2 n-1}{3} \\
C_{n, 3}= & \binom{2 n-1}{2}\binom{2 n-3}{2}\binom{2 n-5}{1}-\binom{2 n-1}{2}\binom{2 n-3}{3}-\binom{2 n-1}{4}\binom{2 n-5}{1}+\binom{2 n-1}{5}, \\
C_{n, 4}= & \binom{2 n-1}{2}\binom{2 n-3}{2}\binom{2 n-5}{2}\binom{2 n-7}{1}-\binom{2 n-1}{2}\binom{2 n-3}{4}\binom{2 n-7}{1}- \\
& \binom{2 n-1}{4}\binom{2 n-5}{2}\binom{2 n-7}{1}-\binom{2 n-1}{2}\binom{2 n-3}{2}\binom{2 n-5}{3}+ \\
& \binom{2 n-1}{2}\binom{2 n-3}{5}+\binom{2 n-1}{4}\binom{2 n-5}{3}+\binom{2 n-1}{6}\binom{2 n-7}{1}-\binom{2 n-1}{7}
\end{align*}
$$

and the higher $C_{n, r}$ have to be determined recursively by (24). The total number of terms (products of binomial coefficients) contributing to formula (26) for $C_{n, r}$ is given by 2^{r-1}.

It is easy to verify that formulas (25) do nicely provide the integer coefficients in (13) for $n=2,3,4$ successively. That observation leads us to the conjecture.

Conjecture 3.1. Let $T_{r}\left(\mathbf{x}^{m}\right)$ be symmetric polynomials, defined in (10), then $T_{r}\left(\mathbf{x}^{m}\right)$ satisfy the identities,

$$
\begin{aligned}
& \frac{T_{2 n-1}\left(\mathbf{x}^{m}\right)}{T_{1}^{2 n-1}\left(\mathbf{x}^{m}\right)}=\sum_{k=1}^{2 n-1}(-1)^{k+1}\binom{2 n-1}{k} \frac{T_{2 n-1-k}\left(\mathbf{x}^{m}\right)}{T_{1}^{2 n-1-k}\left(\mathbf{x}^{m}\right)}, \\
& \frac{T_{2 n-1}\left(\mathbf{d}^{m}\right)}{T_{1}^{2 n-1}\left(\mathbf{d}^{m}\right)}=\sum_{r=1}^{n}(-1)^{r+1} C_{n, r} \frac{T_{2(n-r)}\left(\mathbf{d}^{m}\right)}{T_{1}^{2(n-r)}\left(\mathbf{d}^{m}\right)}, \quad \sum_{r=1}^{n}(-1)^{r+1} C_{n, r}=1 .
\end{aligned}
$$

If Conjecture 3.1 is true, then we can continue the list (13) of identities for polynomials $T_{r}\left(\mathbf{x}^{m}\right)$, e.g.,

$$
\begin{align*}
\frac{T_{9}\left(\mathbf{x}^{m}\right)}{T_{1}^{9}\left(\mathbf{x}^{m}\right)} & =9 \frac{T_{8}\left(\mathbf{x}^{m}\right)}{T_{1}^{8}\left(\mathbf{x}^{m}\right)}-168 \frac{T_{6}\left(\mathbf{x}^{m}\right)}{T_{1}^{6}\left(\mathbf{x}^{m}\right)}+2016 \frac{T_{4}\left(\mathbf{x}^{m}\right)}{T_{1}^{4}\left(\mathbf{x}^{m}\right)}-9792 \frac{T_{2}\left(\mathbf{x}^{m}\right)}{T_{1}^{2}\left(\mathbf{x}^{m}\right)}+7936 \tag{27}\\
\frac{T_{11}\left(\mathbf{x}^{m}\right)}{T_{1}^{11}\left(\mathbf{x}^{m}\right)} & =11 \frac{T_{10}\left(\mathbf{x}^{m}\right)}{T_{1}^{10}\left(\mathbf{x}^{m}\right)}-330 \frac{T_{8}\left(\mathbf{x}^{m}\right)}{T_{1}^{8}\left(\mathbf{x}^{m}\right)}+7392 \frac{T_{6}\left(\mathbf{x}^{m}\right)}{T_{1}^{6}\left(\mathbf{x}^{m}\right)}-89760 \frac{T_{4}\left(\mathbf{x}^{m}\right)}{T_{1}^{4}\left(\mathbf{x}^{m}\right)}+436480 \frac{T_{2}\left(\mathbf{x}^{m}\right)}{T_{1}^{2}\left(\mathbf{x}^{m}\right)}-353792,
\end{align*}
$$

even in the absence of explicit formulas for $T_{r}\left(\mathbf{x}^{m}\right), r=8,9,10,11$, in (12).
By observation of formulas (13) and (27), a sequence $C_{n, r}, 1 \leq r \leq n$, is unimodal and log-concave for $2 \leq n \leq 6$. We left open a question whether these properties are preserved for any n.

4. Concluding remarks

The present paper is devoted to the study of polynomials $P_{n}\left(\mathbf{x}^{m}\right)$ possessing nice algebraic properties and a hidden relationship with restricted partition functions. We put forward two conjectures about such relationship and left open a problem to continue it in different aspects.

There is another reason to study polynomials $P_{n}\left(\mathbf{x}^{m}\right)$ and their associates, symmetric polynomials $T_{n-m}\left(\mathbf{x}^{m}\right)$, that put them in some wider context. Recent studies [2] of algebraic relations between higher genera ${ }^{\dagger}$ of numerical semigroups with arbitrary embedding dimension, multiplicity and inner symmetries (non-Gorenstein's, Gorenstein's and complete intersection) has shown an important role of polynomials $T_{r}\left(\mathbf{x}^{m}\right)$, which are involved in these relations (see formulas (22) and (27) in [2]). This makes them interesting objects in commutative algebra.

Acknowledgement

The author is grateful to the referees for their valuable suggestions, which improved the article.

References

[1] L. G. Fel, Restricted partition functions and identities for degrees of syzygies in numerical semigroups, Ramanujan J. 43 (2017) $465-491$.
[2] L. G. Fel, Genera of numerical semigroups and polynomial identities for degrees of syzygies, arXiv:2012.13357 [math.AC], (2020).
[3] L. G. Fel, B. Y. Rubinstein, Sylvester waves in the Coxeter groups, Ramanujan J. 6 (2002) 307-329.
[4] S. M. Roman, G. C. Rota, The umbral calculus, Adv. Math. 27 (1978) 95-188.
[5] B. Y. Rubinstein, L. G. Fel, Restricted partition functions as Bernoulli and Euler polynomials of higher order, Ramanujan J. 11 (2006) $331-347$.

[^0]
[^0]: ${ }^{\dagger}$ Higher genera G_{r} of numerical semigroup $S_{m}=\left\langle d_{1}, \ldots, d_{m}\right\rangle$ are defined as $G_{r}=\sum_{s \in \Delta_{m}} s^{r}$, where $\Delta_{m}=\mathbb{Z}_{>} \backslash S_{m}$ and $\left\{d_{1}, \ldots, d_{m}\right\}$ denote a set of semigroup gaps and generators of semigroup, respectively. They were studied in the preprint [2], where a finite number of algebraic relations for G_{r} were found.

