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Abstract
We study a new kind of symmetric polynomials Pn(x1, . . . , xm) of degree n in m real variables, which have arisen in the
theory of numerical semigroups. We establish their basic properties and find their representation through the power sums
Ek =

∑m
j=1 x

k
j . We observe a visual similarity between normalized polynomials Pn(x1, . . . , xm)/χm, where χm =

∏m
j=1 xj ,

and a polynomial part of a partition function W (s, {d1, . . . , dm}), which gives the number of partitions of s ≥ 0 into m
positive integers dj , and we put forward a conjecture about their relationship.
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1. Symmetric polynomials Pn(xm) and their factorization

In 2017, while studying the polynomial identities of arbitrary degree for syzygies degrees of the numerical semigroups
〈d1, . . . , dm〉, we introduced a new kind of symmetric polynomials Pn(x1, . . . , xm) of degree n in m real variables xj (see [1],
Section 5.1):

Pn(xm) =

m∑
j=1

xnj −
m∑

1≤j<r

(xj + xr)
n
+

m∑
1≤j<r<i

(xj + xr + xi)
n − . . .− (−1)m

 m∑
j=1

xj

n

, (1)

where xm = {x1, . . . , xm} and Pn(xm) is invariant under the action of the symmetric group Sm on a set of variables
{x1, . . . , xm} by their permutations. Such polynomials arise in the rational representation of the Hilbert series for the
complete intersection semigroup ring associated with a symmetric semigroup 〈d1, . . . , dm〉. According to [1], the polynomi-
als in (1) satisfy

Pn(xm) = 0, 1 ≤ n ≤ m− 1 and Pm(xm) = (−1)m+1m!

m∏
j=1

xj . (2)

In this paper, we study a factorization of Pn(xm) for n > m and by making use of this property, we find a representation
of Pn(xm) through the power sums Ek =

∑m
j=1 x

k
j , i.e., Pn(xm) = Pn(E1, . . . , Em).

Lemma 1.1. The polynomial Pn(xm) vanishes if at least one of the variables xj vanishes.

Proof. Since Pn(xm) is invariant under all permutations of variables {x1, . . . , xm}, we have to prove

Pn(0, x2, . . . , xm) = 0.

Denote Pn(0, x2, . . . , xm) = Pn(0,xm−1) and substitute x1 = 0 into (1),

Pn(0,xm−1)=
m∑
j=2

xnj −

 m∑
j=2

xnj +

m∑
2≤r<j

(xj + xr)
n

+
 m∑
2≤r<j

(xj + xr)
n
+

m∑
2≤i<r<j

(xj + xr + xi)
n


−

 m∑
2≤i<r<j

(xj + xr + xi)
n
+

m∑
2≤i<r<j<t

(xt + xj + xr + xi)
n

+ . . .

+(−1)m
 m∑
j=2

(
m∑
r=2

xj + xr

)n
+

 m∑
j=2

xj

n− (−1)m
 m∑
j=2

xj

n

.
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Recasting the terms in the last sum in m pairs, we obtain

Pn(0,xm−1)=

 m∑
j=2

xnj −
m∑
j=2

xnj

−
 m∑
2≤r<j

(xj+xr)
n−

m∑
2≤r<j

(xj+xr)
n

+
 m∑
2≤i<r<j

(xj+xr+xi)
n

−
m∑

2≤i<r<j

(xj + xr + xi)
n

− . . .+ (−1)m
 m∑

j=2

xj

n

−

 m∑
j=2

xj

n = 0,

and Lemma 1.1 is proven.

Corollary 1.1. The polynomial Pn(xm) is divisible by the product χm =
∏m
j=1 xj .

Proof. Since Pn(xm) is invariant under all permutations of variables {x1, . . . , xm}, by Lemma 1.1 it holds that

Pn(0, x2, . . . , xm) = Pn(x1, 0, . . . , xm) = . . . = Pn(x1, x2, . . . , 0) = 0.

Thus, the equation Pn(x1, . . . , xm) = 0 has at least m independent roots x1 = x2 = . . .= xm = 0. Then, by the polynomial
factor theorem, Pn(xm) is divisible by the product χm.

In full agreement with (2), by Corollary 1.1, it follows that Pn(xm)=0 if n<m and Pm(xm)/χm does not depend on xj .

Lemma 1.2. The polynomial Pn(xm) is divisible by the sum E1 =
∑m
j=1 xj if n−m ≡ 1 (mod 2).

Proof. Rewrite Pn(xm) as follows

Pn(xm) =

m∑
j=1

xnj −
m∑

1≤j2<j1

(
2∑
k=1

xjk

)n
+

m∑
1≤j3<j2<j1

(
3∑
k=1

xjk

)n
− . . .

−(−1)m
m∑

1≤j2<j1

(
E1 −

2∑
k=1

xjk

)n
+ (−1)m

m∑
j=1

(E1 − xj)n − (−1)mEn1 ,

and substitute there E1 = 0,

Pn(xm) =

m∑
j=1

xnj −
m∑

1≤j2<j1

(
2∑
k=1

xjk

)n
+

m∑
1≤j3<j2<j1

(
3∑
k=1

xjk

)n
− . . .

+(−1)m+n
m∑

1≤j3<j2<j1

(
3∑
k=1

xjk

)n
− (−1)m+n

m∑
1≤j2<j1

(
2∑
k=1

xjk

)n
+ (−1)m+n

m∑
j=1

xnj .

Recast the terms in the last sum as follows,

Pn(xm) =
[
1 + (−1)m+n

]
R1.n(xm) +

(−1)µ

2
[1 + (−1)m]R2,n(xm), (3)

R1.n(xm) =

m∑
j=1

xnj −
m∑

1≤j2<j1

(
2∑
k=1

xjk

)n
+ . . .− (−1)µ

m∑
1≤jµ<...<j2<j1

(
µ∑
k=1

xjk

)n
,

R2,n(xm) =

m∑
1≤jµ+1<...<j2<j1

(
µ+1∑
k=1

xjk

)n
, µ =

⌊
m− 1

2

⌋
, (4)

where bac denotes the integer part of a.
According to (3), if m + n ≡ 1 (mod 2) and m ≡ 1 (mod 2), then Pn(xm) = 0. Consider another case when m + n ≡ 1

(mod 2) and m ≡ 0 (mod 2). Put m = 2q and n = 2l + 1 in (3) and (4), and obtain

P2l+1

(
x2q
)
= (−1)q−1

2q∑
1≤jq<...<j2<j1

(
q∑

k=1

xjk

)2l+1

. (5)

In (5), a summation in the external sum
∑2q
j1>j2>...>jq=1 runs over all (2q)!/(q!)2 permutations of 2q variables xj in terms

(
∑q
k=1 xjk)

2l+1. That is why every such term has in (5) its counterpart,(
xj1 + xj2 + . . .+ xjq

)2l+1 ←→
(
xi1 + xi2 + . . .+ xiq

)2l+1
,

57



L. G. Fel / Discrete Math. Lett. 5 (2021) 56–62 58

{
xj1 , . . . , xjq

}
∩
{
xi1 , . . . , xiq

}
= ∅,

#
{
xj1 , . . . , xjq

}
= #

{
xi1 , . . . , xiq

}
= q,

q∑
k=1

xjk +

q∑
k=1

xik = E1. (6)

Recomposing the external sum in (5) as a sum over pairs, described in (6),(
q∑

k=1

xjk

)2l+1

+

(
q∑

k=1

xik

)2l+1

and making use of the last equality in (6), where E1 = 0, we arrive at P2l+1

(
x2q
)
= 0.

Thus, the polynomial Pn (xm) is divisible by E1 if n +m ≡ 1 (mod 2). That finishes the proof of Lemma 1.2 since the
two equalities, n+m ≡ 1 (mod 2) and n−m ≡ 1 (mod 2), are equivalent.

Lemma 1.3. If xi > 0 for all i, then Pn (xm), n ≥ m, satisfies the following inequalities,

Pn (xm) > 0, m ≡ 1 (mod 2); Pn (xm) < 0, m ≡ 0 (mod 2). (7)

Proof. We prove (7) by induction. First, start with three simple inequalities,

Pn
(
x2
)
= xn1 + xn2 − (x1 + x2)

n
< 0, n ≥ 2, x1, x2 > 0, (8)

Pn
(
x3
)
= −

n−1∑
k=1

(
n

k

)
xn−k3 xk1 −

n−1∑
k=1

(
n

k

)
xn−k3 xk2 +

n−1∑
k=1

(
n

k

)
xn−k3 (x1 + x2)

k

= −
n−1∑
k=1

(
n

k

)
xn−k3 Pk

(
x2
)
> 0, n ≥ 3, x1, x2, x3 > 0,

Pn
(
x4
)
= −

n−1∑
k=1

(
n

k

)
xn−k4 xk1 −

n−1∑
k=1

(
n

k

)
xn−k4 xk2 −

n−1∑
k=1

(
n

k

)
xn−k4 xk3 +

n−1∑
k=1

(
n

k

)
xn−k4 (x1 + x2)

k
+

n−1∑
k=1

(
n

k

)
xn−k4 (x2 + x3)

k
+

n−1∑
k=1

(
n

k

)
xn−k4 (x3 + x1)

k−
n−1∑
k=1

(
n

k

)
xn−k4 (x1 + x2 + x3)

k

= −
n−1∑
k=1

(
n

k

)
xn−k4 Pk

(
x3
)
< 0, n ≥ 4, x1, x2, x3, x4 > 0.

Next, establish an identity for Pn (xm) relating the last one with symmetric polynomials Pk
(
xm−1

)
of a smaller tuple

xm−1 = {x1, . . . , xm−1},

Pn (xm)=−
n−1∑
k=1

(
n

k

)
xn−km

m−1∑
j=1

xkj+

n−1∑
k=1

(
n

k

)
xn−km

m−1∑
1≤j<r

(xj+xr)
k− . . .±

n−1∑
k=1

(
n

k

)
xn−km

m−1∑
j=1

xj

k
or

Pn (xm) = −
n−1∑
k=1

(
n

k

)
xn−km Pk

(
xm−1

)
, n ≥ m, x1, . . . , xm > 0, (9)

which follows by careful recasting the terms in (1) and further simplification.
According to (9), if Pk

(
xm−1

)
> 0 irrespectively to k, then Pk (xm) < 0, and vice versa, if Pk

(
xm−1

)
< 0, then Pk (xm) > 0.

On the other hand, the first terms (8) of the alternating sequence Pn(xm) with growing m satisfy (7). Then, by induction,
inequalities (7) hold for every m.

2. Representation of the polynomial Pn(xm)

In this section, we emphasize a hidden relationship between the polynomial Pn (xm) and the polynomial part W1(s,dm)

of a restricted partition function. To provide Pn(xm) with properties (2) and satisfy Corollary 1.1, we choose the following
representation for the polynomial,

Pn(xm) =
(−1)m+1n!

(n−m)!
χmTn−m (xm) , (10)
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where Tr (xm) is a polynomial of degree r in m variables xj . Combining (10) and Lemma 1.3, we obtain

Tr (xm) > 0, xi > 0 for all i. (11)

A straightforward calculation (with help of Mathematica software) of the first eight polynomials Tr(xm) results in the
following expressions,

T0(xm) = 1, (12)

T1(xm) =
1

2
E1,

T2(xm) =
1

3

3E2
1 + E2

4
,

T3(xm) =
1

4

E2
1 + E2

2
E1,

T4(xm) =
1

5

15E4
1 + 30E2

1E2 + 5E2
2 − 2E4

48
,

T5(xm) =
1

6

3E4
1 + 10E2

1E2 + 5E2
2 − 2E4

16
E1,

T6(xm) =
1

7

63E6
1 + 315E4

1E2 + 315E2
1E

2
2 − 126E2

1E4 + 35E3
2 − 42E2E4 + 16E6

576
,

T7(xm) =
1

8

9E6
1 + 63E4

1E2 + 105E2
1E

2
2 − 42E2

1E4 + 35E3
2 − 42E2E4 + 16E6

144
E1.

Formulas (12) for Tr(xm) are valid irrespective to the ratio r/m, or, in other words, to the fact how many power sums
Ek are algebraically independent. In fact, if r > m then expressions may be compactified by supplementary relations
Ek=Ek(E1, . . . , Em), k > m.

Unlike to elementary symmetric polynomials
∑m
i1<i2<...<ir

xi1xi2 . . . xir and power sums Er(xm), the symmetric polyno-
mials Tr(xm), 0 ≤ r ≤ 7, are algebraically dependent. Indeed, by (12) we get

T3(xm)

T 3
1 (xm)

= 3
T2(xm)

T 2
1 (xm)

− 2, (13)

T5(xm)

T 5
1 (xm)

= 5
T4(xm)

T 4
1 (xm)

− 20
T2(xm)

T 2
1 (xm)

+ 16,

T7(xm)

T 7
1 (xm)

= 7
T6(xm)

T 6
1 (xm)

− 70
T4(xm)

T 4
1 (xm)

+ 336
T2(xm)

T 2
1 (xm)

− 272.

It is unlikely to arrive at a general formula for Tr(xm) with arbitrary r by observation of the fractions in (12). However,
one can recognize a visual similarity between (12) and the other known expressions of special polynomials arisen in the
theory of partition [5].

Recall formulas for a polynomial part W1(s,dm) of a restricted partition function W (s,dm), where dm = {d1, . . . , dm},
which gives the number of partitions of s ≥ 0 into m positive integers (d1, . . . , dm) and vanishes, if such partition does not
exist. Following formulas (3.16), (7.1) in [1], we obtain

W1(s,dm)=
1

(m− 1)! πm

m−1∑
r=0

(
m− 1

r

)
fr(dm)sm−1−r, fr(dm)=

(
σ1 +

m∑
i=1

B di

)r
, (14)

where πm =
∏m
j=1 dj and σ1 =

∑m
j=1 dj . In (14) the formula for fr(dm) presumes a symbolic exponentiation [4]: after

binomial expansion the powers (B di)r are converted into the powers of di multiplied by Bernoulli’s numbers Br, i.e., driBr.
A straightforward calculation of first eight polynomials fr(dm)= fr(σ1, . . . , σr) in terms of power sums σk=

∑m
j=1 d

k
j were

performed in [1], formulas (7.2),

f0(dm) = 1, (15)

f1(dm) =
1

2
σ1,

f2(dm) =
1

3

3σ2
1 − σ2
4

,
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f3(dm) =
1

4

σ2
1 − σ2
2

σ1,

f4(dm) =
1

5

15σ4
1 − 30σ2

1σ2 + 5σ2
2 + 2σ4

48
,

f5(dm) =
1

6

3σ4
1 − 10σ2

1σ2 + 5σ2
2 + 2σ4

16
σ1,

f6(dm) =
1

7

63σ6
1 − 315σ4

1σ2 + 315σ2
1σ

2
2 + 126σ2

1σ4 − 35σ3
2 − 42σ2σ4 − 16σ6

576
,

f7(dm) =
1

8

9σ6
1 − 63σ4

1σ2 + 105σ2
1σ

2
2 + 42σ2

1σ4 − 35σ3
2 − 42σ2σ4 − 16σ6

144
σ1.

An absence of power sums σk with odd indices k are strongly related to the presence of Bernoulli’s numbers Br in formula
(14). A simple comparison of formulas (12) and (15) manifests a visual similarity between polynomials Tr(xm) and fr(dm),
which we resume in the next conjecture.

Conjecture 2.1. Let Tr(xm) and fr(xm) be symmetric polynomials, defined in (10) and (14), respectively. Then, the following
relation holds

Tr(E1, E2, . . . , Er) = fr(E1,−E2, . . . ,−Er), r ≥ 2, (16)

where signs of arguments Ej are changed only at E2, . . . , Er.

3. Parity properties of W1(s,dm) and generalization of identities for Tr(xm)

The polynomials Tr(xm) and fr(dm) possess one more kind of similarity besides of formulas in (12) and (15). It is easy to
verify that identities (13) hold for functions fr(dm) by replacing Tr(xm) → fr(dm). Keeping in mind such similarity, let
us find a general form of identities for fr(dm). Making use of a recursive relation in [5], formula (12), for their generating
function W1(s,dm),

W1(s,dm) =W1(s− dm,dm) +W1

(
s,dm−1

)
, dm−1 = {d1, . . . , dm−1}, (17)

prove the parity properties

W1

(
s− σ1

2
,d2m

)
=−W1

(
−s− σ1

2
,d2m

)
, W1

(
s− σ1

2
,d2m+1

)
=W1

(
−s− σ1

2
,d2m+1

)
, (18)

following a similar proof for the whole partition function W (s,dm) in [3], Lemma 4.1. Indeed, the recursive relation (17)
may be rewritten for V1 (s,dm) =W1 (s− σ1/2,dm), where σ1/2 = f1(dm),

V1 (s,dm) = V1 (s− dm,dm) + V1

(
s− dm

2
,dm−1

)
.

Making use of a new variable q = s− dm/2, the last relation reads

V1

(
q,dm−1

)
= V1

(
q +

dm
2
,dm

)
− V1

(
q − dm

2
,dm

)
,

−V1
(
−q,dm−1

)
= V1

(
−q − dm

2
,dm

)
− V1

(
−q + dm

2
,dm

)
.

Hence, if V1(q,dm) is an even function of q, then V1

(
q,dm−1

)
is an odd one, and vice versa. But, according to (14), for

m = 1 we have V1
(
q,d1

)
= W1

(
q − d1/2,d1

)
= 1/d1, where d1 = {d1}, or in other words, the function V1

(
q,d1

)
is even in

q. Therefore we obtain

V1

(
s,d2m

)
= −V1

(
−s,d2m

)
, V1

(
s,d2m+1

)
= V1

(
−s,d2m+1

)
,

that finally leads to (18).
Identities (18) impose a set of relations on fr(dm). To find them, we have to cancel in a series expansion (14) for

W1

(
s−f1(d2m),d2m

)
all terms with even degrees of s

s2m−1−r
r∑

k=0

(−1)k
(
2m− 1

r − k

)(
2m− 1− r + k

k

)
fk1

(
d2m

)
fr−k

(
d2m

)
, (19)
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and for W1

(
s−f1(d2m+1),d2m+1

)
all terms with odd degrees of s

s2m−r
r∑

k=0

(−1)k
(

2m

r − k

)(
2m− r + k

k

)
fk1

(
d2m+1

)
fr−k

(
d2m+1

)
. (20)

Making use of identity for binomial coefficients(
A− 1

B − 1− C

)(
A−B + C

C

)
=

(
A− 1

B − 1

)(
B − 1

C

)
, A > B > C ≥ 0,

and substituting r = 2n− 1 into (19) and (20), and equating them to zero, we obtain, respectively,

s2(m−n)
(
2m− 1

2n− 1

) 2n−1∑
k=0

(−1)k
(
2n− 1

k

)
fk1

(
d2m

)
f2n−1−k

(
d2m

)
= 0, (21)

s2(m−n)+1

(
2m

2n− 1

) 2n−1∑
k=0

(−1)k
(
2n− 1

k

)
fk1

(
d2m+1

)
f2n−1−k

(
d2m+1

)
= 0. (22)

By comparison (21) and (22) and keeping in mind f1 (dm) 6= 0, we arrive at universal relation irrespectively to the parity
of m,

f2n−1 (dm)

f2n−11 (dm)
=

2n−1∑
k=1

(−1)k+1

(
2n− 1

k

)
f2n−1−k (dm)

f2n−1−k1 (dm)
. (23)

Note, that for n = 1 equality (23) holds identically. Applying a recursive procedure to formula (23), the last expression may
be represented as follows,

f2n−1 (dm)

f2n−11 (dm)
=

n∑
k1=1

(
2n− 1

2k1 − 1

)
f2(n−k1) (d

m)

f
2(n−k1)
1 (dm)

− (24)

n∑
k1,k2=1

(
2n− 1

2k1

)(
2(n− k1)− 1

2k2 − 1

)
f2(n−k1−k2) (d

m)

f
2(n−k1−k2)
1 (dm)

+

n∑
k1,k2,k3=1

(
2n− 1

2k1

)(
2(n− k1)− 1

2k2

)(
2(n− k1 − k2)− 1

2k3 − 1

)
f2(n−k1−k2−k3) (d

m)

f
2(n−k1−k2−k3)
1 (dm)

− . . .

where the number of summation is equal n. Finally, formula (24) may be presented in a simpler way

f2n−1 (dm)

f2n−11 (dm)
=

n∑
r=1

(−1)r+1Cn,r
f2(n−r)(dm)

f
2(n−r)
1 (dm)

, Cn,r ∈ Z>, (25)

where coefficients Cn,r with r = 1, 2, 3, 4 are calculated below

Cn,1 =

(
2n− 1

1

)
, (26)

Cn,2 =

(
2n− 1

2

)(
2n− 3

1

)
−
(
2n− 1

3

)
,

Cn,3 =

(
2n− 1

2

)(
2n− 3

2

)(
2n− 5

1

)
−
(
2n− 1

2

)(
2n− 3

3

)
−
(
2n− 1

4

)(
2n− 5

1

)
+

(
2n− 1

5

)
,

Cn,4 =

(
2n− 1

2

)(
2n− 3

2

)(
2n− 5

2

)(
2n− 7

1

)
−
(
2n− 1

2

)(
2n− 3

4

)(
2n− 7

1

)
−

(
2n− 1

4

)(
2n− 5

2

)(
2n− 7

1

)
−
(
2n− 1

2

)(
2n− 3

2

)(
2n− 5

3

)
+(

2n− 1

2

)(
2n− 3

5

)
+

(
2n− 1

4

)(
2n− 5

3

)
+

(
2n− 1

6

)(
2n− 7

1

)
−
(
2n− 1

7

)
,

and the higher Cn,r have to be determined recursively by (24). The total number of terms (products of binomial coefficients)
contributing to formula (26) for Cn,r is given by 2r−1.

It is easy to verify that formulas (25) do nicely provide the integer coefficients in (13) for n = 2, 3, 4 successively. That
observation leads us to the conjecture.
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Conjecture 3.1. Let Tr(xm) be symmetric polynomials, defined in (10), then Tr(xm) satisfy the identities,

T2n−1 (xm)

T 2n−1
1 (xm)

=

2n−1∑
k=1

(−1)k+1

(
2n− 1

k

)
T2n−1−k (xm)

T 2n−1−k
1 (xm)

,

T2n−1 (dm)

T 2n−1
1 (dm)

=

n∑
r=1

(−1)r+1Cn,r
T2(n−r)(dm)

T
2(n−r)
1 (dm)

,

n∑
r=1

(−1)r+1Cn,r = 1.

If Conjecture 3.1 is true, then we can continue the list (13) of identities for polynomials Tr(xm), e.g.,

T9(xm)

T 9
1 (xm)

= 9
T8(xm)

T 8
1 (xm)

−168 T6(x
m)

T 6
1 (xm)

+2016
T4(xm)

T 4
1 (xm)

−9792 T2(x
m)

T 2
1 (xm)

+7936, (27)

T11(xm)

T 11
1 (xm)

= 11
T10(xm)

T 10
1 (xm)

−330 T8(x
m)

T 8
1 (xm)

+7392
T6(xm)

T 6
1 (xm)

−89760 T4(x
m)

T 4
1 (xm)

+436480
T2(xm)

T 2
1 (xm)

−353792,

even in the absence of explicit formulas for Tr(xm), r = 8, 9, 10, 11, in (12).
By observation of formulas (13) and (27), a sequence Cn,r, 1 ≤ r ≤ n, is unimodal and log-concave for 2 ≤ n ≤ 6. We left

open a question whether these properties are preserved for any n.

4. Concluding remarks

The present paper is devoted to the study of polynomials Pn(xm) possessing nice algebraic properties and a hidden re-
lationship with restricted partition functions. We put forward two conjectures about such relationship and left open a
problem to continue it in different aspects.

There is another reason to study polynomials Pn(xm) and their associates, symmetric polynomials Tn−m(xm), that put
them in some wider context. Recent studies [2] of algebraic relations between higher genera† of numerical semigroups
with arbitrary embedding dimension, multiplicity and inner symmetries (non-Gorenstein’s, Gorenstein’s and complete
intersection) has shown an important role of polynomials Tr(xm), which are involved in these relations (see formulas (22)
and (27) in [2]). This makes them interesting objects in commutative algebra.
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