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Abstract

Binomial sums about Bernoulli, Euler and Hermite polynomials are examined by making use of the symmetric summation
theorem on polynomial differences, which is due to Chu and Magli [European J. Combin. 28 (2007) 921-930]. Several sum-
mation formulae are also obtained, including Barbero’s recent one on Bernoulli polynomials reported in [Comptes Rendus
Math. 358 (2020) 41-44].
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1. Introduction and motivation

In classical analysis and combinatorics, the Bernoulli and Euler numbers play an important role, that are defined respec-
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The corresponding polynomials have the following generating functions:
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Both Bernoulli and Euler polynomials can be expressed by the corresponding numbers through the binomial relations
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They can be characterized by the following general polynomials associated to an arbitrary sequence {a,,} by the binomial

sums
n
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Chu and Magli [5] found that these polynomials satisfy the following general algebraic identity, which has interesting
applications to classical combinatorial numbers and polynomials, such as Bernoulli and Euler polynomials (cf. [9]).

Lemma 1.1 (Symmetric Difference). For two variables x,y and three integer parameters m, n, { with m,n being nonnegative,

the following algebraic identity holds:
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Here and forth, x denotes, for brevity, the logical function with x(true) = 1 and x(false) = 0, otherwise. For two integers
i, j and a natural number m, the notation “i =,,, j” stands for that “i is congruent to j; modulo m”.

There exist numerous summation formulae and identities about the Bernoulli and Euler numbers and polynomials
(cf. [1,2,4,6,7]). Recently, Barbero [3] discovered a new identity about Bernoulli polynomials. We find that Barbero’s
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identity is an implication of Lemma 1.1 when ¢ = 1, m = n and A, (z) is specified to Bernoulli polynomial. This suggests
us to examine further applications of Lemma 1.1. In the next section, we shall prove a general theorem about Bernoulli
polynomials, which contains Barbero’s identity as the special case ¢ = 1. Then in Section 3, an analogous theorem for Euler
polynomials will be shown, where three interesting formulae corresponding to ¢/ < 1,/ = 1 and ¢ = 2 will be highlighted.
Finally, we illustrate an application to Hermite polynomials in Section 4, where some unusual identities are deduced.

2. Bernoulli polynomials

In Lemma 1.1, performing first the replacements n — m, y — n — 2 and then specifying A, (x) to Bernoulli polynomial, we
have the equality (cf. [9])
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By iterating the recurrence relation
By(1 4 2) = By () +ma™
we can reformulate the polynomial
Bn(n—2)=Bp(n—1—z)+m(n—1—z)"!
B
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According to the reciprocal relation
Bn(1—x) = (=1)"Bp(z),

we deduce further the expression
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Substituting this into (2) and then simplifying the resultant equation, we get the identity
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where ®,(m,n) is a double sum defined by
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The rightmost fraction can be expressed as a multiple integral with the integration domain
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and then reformulated by reversing the integral order as
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According to the binomial theorem, we get the expression

n—1 m
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Under the change of variable by y, = i — T(i — ), or equivalently T' = ‘= L, the last integral becomes
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Expanding the binomial in the braces “{---}”
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and then evaluating the beta integral by
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we find the following expression for the afore-displayed integral:
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By substituting this into (5), we get another double sum expression
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where Q,, (A, 1) denotes the convolution of arithmetic progressions:
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Summing up, we have established the following theorem.

Theorem 2.1. For any variable x and three integer parameters m,n,{ with m,n being nonnegative, the following algebraic
identity holds:
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When ¢ < 1, Theorem 2.1 gives a simpler identity.

Corollary 2.1 (/ < 1: m > 0 and n > 0).
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When ¢ = 1, the double sum ®;(m,n) reduces to a single term in view of (6). In this case, we recover from Theorem 2.1
the following identity.

Corollary 2.2 (¢ =1: m > 0and n > 0).
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It is obvious that the formula due to Barbero [3, Theorem 1] is equivalent to Corollary 2.2 under the replacement
r — 5%, However, our formula looks more elegant.
When ¢ = 2, we find from Theorem 2.1, by taking into account that

Bo(x) =1 and Bj(x)=z— %,

the following unusual double sum evaluation.
Corollary 2.3 (¢{ =2: m > 0 and n > 0).
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3. Euler polynomials

Analogously, making first the replacements n — m, y — n—2 and then specifying A, (x) to Euler polynomial in Lemma 1.1,
we have another equality (cf. [9])
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By iterating the recurrence relation
E,(1+z)=22"— E,(x),
we can reformulate the polynomial
E,n—x)=2n—2z-1)"—-E,(n—-1-1)
:2(n—m—1)m—2(n—x )" + Ep(n—2 —x)
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According to the reciprocal relation
En(l—z) = (=1)"En(2),

we deduce further the expression
(n—x)=2 Z DG — )™ — (=)™ B, (z).

Substituting this into (7) and then simplifying the resultant equation, we get the following counterpart identity of that in
Theorem 2.1 for Euler polynomials.

Theorem 3.1. For any variable x and three integer parameters m,n, ! with m,n being nonnegative, the following algebraic
identity holds:
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where V,(m,n) is a double sum defined by
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By carrying out exactly the same procedure as that from (4) to (6), we can write ¥,(m,n) in terms of a multiple integral
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and then derive the following alternative expression
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where Q,, (), 1) stands for the alternating convolution of arithmetic progressions:
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Theorem 3.1 contains the following three interesting special cases.

Corollary 3.1 (/ < 1: m > 0 and n > 0).
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Corollary 3.2 ({ =1: m > 0 and n > 0).
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Corollary 3.3 (¢ =2: m > 0and n > 0).
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4. Hermite polynomials

The Hermite polynomials are an important class of orthogonal polynomials (cf. Rainville [8, Chapter 11]). They are defined
by the exponential generating function

20T —12 — 7_n
n=0

e Explicit expression
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e Reciprocal relation

e Expansion formula
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Comparing (1) with the explicit formula of H,,(z), we can see that there exists a reciprocal relation corresponding to
Lemma 1.1, where A, (z) is specified by H,,(z/2). Under the replacements = — 2z and y — 2y, this reciprocity is stated in
the following theorem.

Theorem 4.1. For two variables x,y and three integer parameters m,n, { with m,n being nonnegative, the following algebraic

identity holds:
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When m = n and 2 = —y, this theorem gives the simpler expression below:
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In particular, the following summation formulae are believed to be new.
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Unlike Bernoulli and Euler polynomials, the last expression cannot further be reduced unfortunately. Even though by
making use of the expansion

=) = 3 (n 2 (") 1) = S0y (M) ),

=0 =0

we can reformulate the second sum with respect to k£ in (13) as
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However, it is not plausible to simplify this last double sum further.
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