Research Article

Binomial sums about Bernoulli, Euler and Hermite polynomials

Xiaoyuan Wang ${ }^{1}$, Wenchang Chu ${ }^{2, *}$
${ }^{1}$ School of Science, Dalian Jiaotong University, Dalian 116028, P. R. China
${ }^{2}$ Department of Mathematics and Physics, University of Salento, Lecce 73100, Italy

(Received: 11 November 2020. Received in revised form: 14 December 2020. Accepted: 15 December 2020. Published online: 19 December 2020.)
(c) 2020 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/)

Abstract

Binomial sums about Bernoulli, Euler and Hermite polynomials are examined by making use of the symmetric summation theorem on polynomial differences, which is due to Chu and Magli [European J. Combin. 28 (2007) 921-930]. Several summation formulae are also obtained, including Barbero's recent one on Bernoulli polynomials reported in [Comptes Rendus Math. 358 (2020) 41-44].

Keywords: binomial coefficient; Bernoulli polynomial; Euler polynomial; Hermite polynomial; recurrence relation.
2020 Mathematics Subject Classification: 11B68, 05A10.

1. Introduction and motivation

In classical analysis and combinatorics, the Bernoulli and Euler numbers play an important role, that are defined respectively by

$$
\frac{\tau}{e^{\tau}-1}=\sum_{n \geq 0} B_{n} \frac{\tau^{n}}{n!} \quad \text { and } \quad \frac{2 e^{\tau}}{e^{2 \tau}+1}=\sum_{n \geq 0} E_{n} \frac{\tau^{n}}{n!}
$$

The corresponding polynomials have the following generating functions:

$$
\frac{\tau e^{x \tau}}{e^{\tau}-1}=\sum_{n \geq 0} B_{n}(x) \frac{\tau^{n}}{n!} \quad \text { and } \quad \frac{2 e^{x \tau}}{e^{\tau}+1}=\sum_{n \geq 0} E_{n}(x) \frac{\tau^{n}}{n!}
$$

Both Bernoulli and Euler polynomials can be expressed by the corresponding numbers through the binomial relations

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k} \quad \text { and } \quad E_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} E_{k}(0) x^{n-k}
$$

They can be characterized by the following general polynomials associated to an arbitrary sequence $\left\{a_{n}\right\}$ by the binomial sums

$$
\begin{equation*}
A_{n}(x)=\sum_{k=0}^{n} a_{k}\binom{n}{k} x^{n-k} \quad \text { for } \quad n=0,1,2, \cdots \tag{1}
\end{equation*}
$$

Chu and Magli [5] found that these polynomials satisfy the following general algebraic identity, which has interesting applications to classical combinatorial numbers and polynomials, such as Bernoulli and Euler polynomials (cf. [9]).

Lemma 1.1 (Symmetric Difference). For two variables x, y and three integer parameters m, n, ℓ with m, n being nonnegative, the following algebraic identity holds:

$$
\begin{aligned}
& \sum_{k=0}^{m}\binom{m}{k} \frac{A_{n+k+\ell}(x)}{(n+k+1)_{\ell}}(y-x)^{m-k}-\sum_{k=0}^{n}\binom{n}{k} \frac{A_{m+k+\ell}(y)}{(m+k+1)_{\ell}}(x-y)^{n-k} \\
& =\frac{m!n!\chi(\ell>0)}{(m+n+\ell)!} \sum_{k=1}^{\ell}\binom{m+n+\ell}{\ell-k}\binom{-k}{m} A_{\ell-k}(y)(x-y)^{m+n+k}
\end{aligned}
$$

Here and forth, χ denotes, for brevity, the logical function with χ (true) $=1$ and χ (false) $=0$, otherwise. For two integers i, j and a natural number m, the notation " $i \equiv_{m} j$ " stands for that " i is congruent to j modulo m ".

There exist numerous summation formulae and identities about the Bernoulli and Euler numbers and polynomials (cf. [1, 2, 4, 6, 7]). Recently, Barbero [3] discovered a new identity about Bernoulli polynomials. We find that Barbero's

[^0]identity is an implication of Lemma 1.1 when $\ell=1, m=n$ and $A_{n}(x)$ is specified to Bernoulli polynomial. This suggests us to examine further applications of Lemma 1.1. In the next section, we shall prove a general theorem about Bernoulli polynomials, which contains Barbero's identity as the special case $\ell=1$. Then in Section 3, an analogous theorem for Euler polynomials will be shown, where three interesting formulae corresponding to $\ell<1, \ell=1$ and $\ell=2$ will be highlighted. Finally, we illustrate an application to Hermite polynomials in Section 4, where some unusual identities are deduced.

2. Bernoulli polynomials

In Lemma 1.1, performing first the replacements $n \rightarrow m, y \rightarrow n-x$ and then specifying $A_{n}(x)$ to Bernoulli polynomial, we have the equality (cf. [9])

$$
\begin{align*}
& \sum_{k=0}^{m}\binom{m}{k} \frac{B_{m+k+\ell}(x)}{(m+k+1)_{\ell}}(n-2 x)^{m-k}-\sum_{k=0}^{m}\binom{m}{k} \frac{B_{m+k+\ell}(n-x)}{(m+k+1)_{\ell}}(2 x-n)^{m-k} \\
& =\frac{m!^{2} \chi(\ell>0)}{(2 m+\ell)!} \sum_{k=1}^{\ell}\binom{2 m+\ell}{\ell-k}\binom{-k}{m} B_{\ell-k}(n-x)(2 x-n)^{2 m+k} \tag{2}
\end{align*}
$$

By iterating the recurrence relation

$$
B_{m}(1+x)=B_{m}(x)+m x^{m-1}
$$

we can reformulate the polynomial

$$
\begin{aligned}
B_{m}(n-x) & =B_{m}(n-1-x)+m(n-1-x)^{m-1} \\
& =B_{m}(n-2-x)+m(n-1-x)^{m-1}+m(n-2-x)^{m-1} \\
& =B_{m}(1-x)+m \sum_{i=1}^{n-1}(n-x-i)^{m-1}
\end{aligned}
$$

According to the reciprocal relation

$$
B_{m}(1-x)=(-1)^{m} B_{m}(x),
$$

we deduce further the expression

$$
B_{m}(n-x)=(-1)^{m} B_{m}(x)+m \sum_{i=1}^{n-1}(i-x)^{m-1}
$$

Substituting this into (2) and then simplifying the resultant equation, we get the identity

$$
\begin{align*}
\Phi_{\ell}(m, n)= & 2 \chi\left(\ell \equiv_{2} 1\right) \sum_{k=0}^{m}\binom{m}{k} \frac{B_{m+k+\ell}(x)}{(m+k+1)_{\ell}}(n-2 x)^{m-k} \\
& -\frac{m!^{2} \chi(\ell>0)}{(2 m+\ell)!} \sum_{k=1}^{\ell}\binom{2 m+\ell}{\ell-k}\binom{-k}{m} B_{\ell-k}(n-x)(2 x-n)^{2 m+k} \tag{3}
\end{align*}
$$

where $\Phi_{\ell}(m, n)$ is a double sum defined by

$$
\begin{equation*}
\Phi_{\ell}(m, n)=\sum_{k=0}^{m}\binom{m}{k}(2 x-n)^{m-k} \sum_{i=1}^{n-1} \frac{(i-x)^{m+k+\ell-1}}{(m+k+1)_{\ell-1}} \tag{4}
\end{equation*}
$$

The rightmost fraction can be expressed as a multiple integral with the integration domain

$$
\left\{x \leq y_{\ell-1} \leq y_{\ell-2} \leq \cdots \leq y_{2} \leq y_{1} \leq i\right\}
$$

and then reformulated by reversing the integral order as

$$
\begin{aligned}
\frac{(i-x)^{m+k+\ell-1}}{(m+k+1)_{\ell-1}} & =\int_{x}^{i} d y_{\ell-1} \int_{y_{\ell-1}}^{i} d y_{\ell-2} \cdots \int_{y_{3}}^{i} d y_{2} \int_{y_{2}}^{i}\left(i-y_{1}\right)^{m+k} d y_{1} \\
& =\int_{x}^{i}\left(i-y_{1}\right)^{m+k} d y_{1} \int_{x}^{y_{1}} d y_{2} \cdots \int_{x}^{y_{\ell-3}} d y_{\ell-2} \int_{x}^{y_{\ell-2}} d y_{\ell-1} \\
& =\int_{x}^{i}\left(i-y_{1}\right)^{m+k} \frac{\left(y_{1}-x\right)^{\ell-2}}{(\ell-2)!} d y_{1}
\end{aligned}
$$

According to the binomial theorem, we get the expression

$$
\begin{align*}
\Phi_{\ell}(m, n) & =\sum_{i=1}^{n-1} \sum_{k=0}^{m}\binom{m}{k}(2 x-n)^{m-k} \int_{x}^{i}\left(i-y_{1}\right)^{m+k} \frac{\left(y_{1}-x\right)^{\ell-2}}{(\ell-2)!} d y_{1} \\
& =\sum_{i=1}^{n-1} \int_{x}^{i} \frac{\left(y_{1}-x\right)^{\ell-2}}{(\ell-2)!}\left(i-y_{1}\right)^{m}\left(2 x-n+i-y_{1}\right)^{m} d y_{1} . \tag{5}
\end{align*}
$$

Under the change of variable by $y_{1}=i-T(i-x)$, or equivalently $T=\frac{i-y_{1}}{i-x}$, the last integral becomes

$$
\begin{aligned}
& \int_{x}^{i}\left(y_{1}-x\right)^{\ell-2}\left(i-y_{1}\right)^{m}\left(2 x-n+i-y_{1}\right)^{m} d y_{1} \\
= & (i-x)^{m+\ell-1} \int_{0}^{1} T^{m}(1-T)^{\ell-2}\{2 x-n+T(i-x)\}^{m} d T .
\end{aligned}
$$

Expanding the binomial in the braces " $\{\cdots\}$ "

$$
\begin{aligned}
& \{2 x-n+T(i-x)\}^{m}=\{x-n+i-(1-T)(i-x)\}^{m} \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}(1-T)^{j}(i-x)^{j}(x-n+i)^{m-j}
\end{aligned}
$$

and then evaluating the beta integral by

$$
\int_{0}^{1} T^{m}(1-T)^{\ell+j-2} d T=\frac{m!(\ell+j-2)!}{(m+\ell+j-1)!}
$$

we find the following expression for the afore-displayed integral:

$$
\begin{aligned}
& \int_{x}^{i}\left(y_{1}-x\right)^{\ell-2}\left(i-y_{1}\right)^{m}\left(2 x-n+i-y_{1}\right)^{m} d y_{1} \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}(i-x)^{m+j+\ell-1}(x-n+i)^{m-j} \int_{0}^{1} T^{m}(1-T)^{\ell+j-2} d T \\
= & \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} \frac{(\ell+j-2)!}{(m+1)_{\ell+j-1}}(i-x)^{m+j+\ell-1}(x-n+i)^{m-j} .
\end{aligned}
$$

By substituting this into (5), we get another double sum expression

$$
\begin{equation*}
\Phi_{\ell}(m, n)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} \frac{(\ell-1)_{j}}{(m+1)_{\ell+j-1}} \Omega_{n}(m+j+\ell-1, m-j), \tag{6}
\end{equation*}
$$

where $\Omega_{n}(\lambda, \mu)$ denotes the convolution of arithmetic progressions:

$$
\Omega_{n}(\lambda, \mu)=\sum_{i=1}^{n-1}(i-x)^{\lambda}(i+x-n)^{\mu} .
$$

Summing up, we have established the following theorem.
Theorem 2.1. For any variable x and three integer parameters m, n, ℓ with m, n being nonnegative, the following algebraic identity holds:

$$
\begin{aligned}
\Phi_{\ell}(m, n)= & 2 \chi\left(\ell \equiv_{2} 1\right) \sum_{k=0}^{m}\binom{m}{k} \frac{B_{m+k+\ell}(x)}{(m+k+1)_{\ell}}(n-2 x)^{m-k} \\
& -\frac{m!^{2} \chi(\ell>0)}{(2 m+\ell)!} \sum_{k=1}^{\ell}\binom{2 m+\ell}{\ell-k}\binom{-k}{m} B_{\ell-k}(n-x)(2 x-n)^{2 m+k} .
\end{aligned}
$$

When $\ell<1$, Theorem 2.1 gives a simpler identity.
Corollary $2.1(\ell<1: m \geq 0$ and $n>0)$.

$$
\Phi_{\ell}(m, n)=2 \chi\left(\ell \equiv_{2} 1\right) \sum_{k=0}^{m}\binom{m}{k} \frac{B_{m+k+\ell}(x)}{(m+k+1)_{\ell}}(n-2 x)^{m-k}
$$

When $\ell=1$, the double sum $\Phi_{1}(m, n)$ reduces to a single term in view of (6). In this case, we recover from Theorem 2.1 the following identity.

Corollary $2.2(\ell=1: m \geq 0$ and $n>0)$.

$$
\Omega_{n}(m, m)=\frac{(-1)^{m}(n-2 x)^{2 m+1}}{(2 m+1)\binom{2 m}{m}}+2 \sum_{k=0}^{m}\binom{m}{k} \frac{B_{m+k+1}(x)}{m+k+1}(n-2 x)^{m-k}
$$

It is obvious that the formula due to Barbero [3, Theorem 1] is equivalent to Corollary 2.2 under the replacement $x \rightarrow \frac{n-y}{2}$. However, our formula looks more elegant.

When $\ell=2$, we find from Theorem 2.1, by taking into account that

$$
B_{0}(x)=1 \quad \text { and } \quad B_{1}(x)=x-\frac{1}{2}
$$

the following unusual double sum evaluation.
Corollary $2.3(\ell=2: m \geq 0$ and $n>0)$.

$$
\Phi_{2}(m, n)=\sum_{j=0}^{m} \frac{(-1)^{j}\langle m\rangle_{j}}{(m+1)_{j+1}} \Omega_{n}(m+j+1, m-j)=(-1)^{m} \frac{(n-1)(n-2 x)^{2 m+1}}{2(2 m+1)\binom{2 m}{m}}
$$

3. Euler polynomials

Analogously, making first the replacements $n \rightarrow m, y \rightarrow n-x$ and then specifying $A_{n}(x)$ to Euler polynomial in Lemma 1.1, we have another equality (cf. [9])

$$
\begin{align*}
& \sum_{k=0}^{m}\binom{m}{k} \frac{E_{m+k+\ell}(x)}{(m+k+1)_{\ell}}(n-2 x)^{m-k}-\sum_{k=0}^{m}\binom{m}{k} \frac{E_{m+k+\ell}(n-x)}{(m+k+1)_{\ell}}(2 x-n)^{m-k} \\
& =\frac{m!^{2} \chi(\ell>0)}{(2 m+\ell)!} \sum_{k=1}^{\ell}\binom{2 m+\ell}{\ell-k}\binom{-k}{m} E_{\ell-k}(n-x)(2 x-n)^{2 m+k} \tag{7}
\end{align*}
$$

By iterating the recurrence relation

$$
E_{m}(1+x)=2 x^{m}-E_{m}(x),
$$

we can reformulate the polynomial

$$
\begin{aligned}
E_{m}(n-x) & =2(n-x-1)^{m}-E_{m}(n-1-x) \\
& =2(n-x-1)^{m}-2(n-x-2)^{m}+E_{m}(n-2-x) \\
& =2 \sum_{i=1}^{n-1}(-1)^{i-1}(n-x-i)^{m}-(-1)^{n} E_{m}(1-x) .
\end{aligned}
$$

According to the reciprocal relation

$$
E_{m}(1-x)=(-1)^{m} E_{m}(x),
$$

we deduce further the expression

$$
E_{m}(n-x)=2 \sum_{i=1}^{n-1}(-1)^{1+n-i}(i-x)^{m}-(-1)^{m+n} E_{m}(x)
$$

Substituting this into (7) and then simplifying the resultant equation, we get the following counterpart identity of that in Theorem 2.1 for Euler polynomials.

Theorem 3.1. For any variable x and three integer parameters m, n, ℓ with m, n being nonnegative, the following algebraic identity holds:

$$
\begin{align*}
\Psi_{\ell}(m, n)= & 2 \chi\left(n+\ell \equiv_{2} 0\right) \sum_{k=0}^{m}\binom{m}{k} \frac{E_{m+k+\ell}(x)}{(m+k+1)_{\ell}}(n-2 x)^{m-k} \\
& -\frac{m!^{2} \chi(\ell>0)}{(2 m+\ell)!} \sum_{k=1}^{\ell}\binom{m+\ell}{\ell-k}\binom{-k}{m} E_{\ell-k}(n-x)(2 x-n)^{2 m+k} \tag{8}
\end{align*}
$$

where $\Psi_{\ell}(m, n)$ is a double sum defined by

$$
\begin{equation*}
\Psi_{\ell}(m, n)=2 \sum_{k=0}^{m}\binom{m}{k}(2 x-n)^{m-k} \sum_{i=1}^{n-1}(-1)^{n-i+1} \frac{(i-x)^{m+k+\ell}}{(m+k+1)_{\ell}} \tag{9}
\end{equation*}
$$

By carrying out exactly the same procedure as that from (4) to (6), we can write $\Psi_{\ell}(m, n)$ in terms of a multiple integral

$$
\begin{aligned}
\Psi_{\ell}(m, n)= & 2 \sum_{i=1}^{n-1} \sum_{k=0}^{m}(-1)^{n-i+1}\binom{m}{k}(2 x-n)^{m-k} \\
& \times \int_{x}^{i} d y_{\ell} \int_{y_{\ell}}^{i} d y_{\ell-1} \cdots \int_{y_{3}}^{i} d y_{2} \int_{y_{2}}^{i}\left(i-y_{1}\right)^{m+k} d y_{1}
\end{aligned}
$$

and then derive the following alternative expression

$$
\begin{equation*}
\Psi_{\ell}(m, n)=2 \sum_{j=0}^{m}(-1)^{n+j+1}\binom{m}{j} \frac{(\ell)_{j}}{(m+1)_{\ell+j}} \bar{\Omega}_{n}(m+j+\ell, m-j), \tag{10}
\end{equation*}
$$

where $\bar{\Omega}_{n}(\lambda, \mu)$ stands for the alternating convolution of arithmetic progressions:

$$
\bar{\Omega}_{n}(\lambda, \mu)=\sum_{i=1}^{n-1}(-1)^{i}(i-x)^{\lambda}(i+x-n)^{\mu} .
$$

Theorem 3.1 contains the following three interesting special cases.
Corollary 3.1 ($\ell<1: m \geq 0$ and $n>0)$.

$$
\Psi_{\ell}(m, n)=2 \chi\left(n+\ell \equiv_{2} 0\right) \sum_{k=0}^{m}\binom{m}{k} \frac{E_{m+k+\ell}(x)}{(m+k+1)_{\ell}}(n-2 x)^{m-k} .
$$

Corollary $3.2(\ell=1: m \geq 0$ and $n>0)$.

$$
\begin{aligned}
\Psi_{1}(m, n)= & \left.\frac{(-1)^{m}(n-2 x)^{2 m+1}}{(2 m+1)\left({ }_{2}^{2 m}\right.} \boldsymbol{m}\right) \\
& + \begin{cases}0, & n \equiv_{2} 0 ; \\
2 \sum_{k=0}^{m}\binom{m}{k} \frac{E_{m+k+1}(x)}{m+k+1}(n-2 x)^{m-k}, & n \equiv_{2} 1 .\end{cases}
\end{aligned}
$$

Corollary 3.3 ($\ell=2: m \geq 0$ and $n>0)$.

$$
\begin{aligned}
\Psi_{2}(m, n)= & \frac{(-1)^{m}(n-1)(n-2 x)^{2 m+1}}{2(2 m+1)\binom{2 m}{m}} \\
& + \begin{cases}0, & n \equiv_{2} 1 ; \\
2 \sum_{k=0}^{m}\binom{m}{k} \frac{E_{m+k+2}(x)}{(m+k+1)_{2}}(n-2 x)^{m-k}, & n \equiv_{2} 0 .\end{cases}
\end{aligned}
$$

4. Hermite polynomials

The Hermite polynomials are an important class of orthogonal polynomials (cf. Rainville [8, Chapter 11]). They are defined by the exponential generating function

$$
e^{2 x \tau-\tau^{2}}=\sum_{n=0}^{\infty} H_{n}(x) \frac{\tau^{n}}{n!} .
$$

- Explicit expression

$$
H_{n}(x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n}{2 k} \frac{(2 k)!}{k!}(2 x)^{n-2 k} .
$$

- Reciprocal relation

$$
H_{n}(-x)=(-1)^{n} H_{n}(x) .
$$

- Expansion formula

$$
H_{n}(x+y)=\sum_{k=0}^{n}(2 y)^{k}\binom{n}{k} H_{n-k}(x) .
$$

Comparing (1) with the explicit formula of $H_{n}(x)$, we can see that there exists a reciprocal relation corresponding to Lemma 1.1, where $A_{n}(x)$ is specified by $H_{n}(x / 2)$. Under the replacements $x \rightarrow 2 x$ and $y \rightarrow 2 y$, this reciprocity is stated in the following theorem.

Theorem 4.1. For two variables x, y and three integer parameters m, n, ℓ with m, n being nonnegative, the following algebraic identity holds:

$$
\begin{align*}
& \sum_{k=0}^{m}\binom{m}{k} \frac{H_{n+k+\ell}(x)}{(n+k+1)_{\ell}}(2 y-2 x)^{m-k}-\sum_{k=0}^{n}\binom{n}{k} \frac{H_{m+k+\ell}(y)}{(m+k+1)_{\ell}}(2 x-2 y)^{n-k} \tag{11}\\
& =\frac{m!n!\chi(\ell>0)}{(m+n+\ell)!} \sum_{k=1}^{\ell}\binom{m+n+\ell}{\ell-k}\binom{-k}{m} H_{\ell-k}(y)(2 x-2 y)^{m+n+k}
\end{align*}
$$

When $m=n$ and $x=-y$, this theorem gives the simpler expression below:

$$
\begin{equation*}
0=2 \chi\left(\ell \equiv_{2} 1\right) \sum_{k=0}^{n}(-4 y)^{n-k}\binom{n}{k} \frac{H_{n+k+\ell}(y)}{(n+k+1)_{\ell}}+\frac{n!^{2} \chi(\ell>0)}{(2 n+\ell)!} \sum_{k=1}^{\ell}(-4 y)^{2 n+k}\binom{2 n+\ell}{\ell-k}\binom{-k}{n} H_{\ell-k}(y) \tag{12}
\end{equation*}
$$

In particular, the following summation formulae are believed to be new.

- $\ell \equiv_{2} 0$ with $\ell>0$:

$$
\sum_{k=1}^{\ell}(-4 y)^{2 n+k}\binom{2 n+\ell}{\ell-k}\binom{-k}{n} H_{\ell-k}(y)=0
$$

- $\ell \equiv_{2} 1$ with $\ell \leq 0$:

$$
\sum_{k=0}^{n}(-4 y)^{n-k}\binom{n}{k} \frac{H_{n+k+\ell}(y)}{(n+k+1)_{\ell}}=0
$$

- $\ell \equiv_{2} 1$ with $\ell>0$:

$$
0=\sum_{k=1}^{\ell}(-4 y)^{2 n+k}\binom{2 n+\ell}{\ell-k}\binom{-k}{n} H_{\ell-k}(y)+\frac{2(2 n+\ell)!}{n!^{2}} \sum_{k=0}^{n}(-4 y)^{n-k}\binom{n}{k} \frac{H_{n+k+\ell}(y)}{(n+k+1)_{\ell}}
$$

Alternatively, for $n=m$ and $y=n-x$, the corresponding relation in Theorem 4.1 becomes

$$
\begin{align*}
& \sum_{k=0}^{m}\binom{m}{k} \frac{H_{m+k+\ell}(x)}{(m+k+1)_{\ell}}(2 n-4 x)^{m-k}-\sum_{k=0}^{m}\binom{m}{k} \frac{H_{m+k+\ell}(n-x)}{(m+k+1)_{\ell}}(4 x-2 n)^{m-k} \\
& =\frac{m!^{2} \chi(\ell>0)}{(2 m+\ell)!} \sum_{k=1}^{\ell}\binom{2 m+\ell}{\ell-k}\binom{-k}{m} H_{\ell-k}(n-x)(4 x-2 n)^{2 m+k} \tag{13}
\end{align*}
$$

Unlike Bernoulli and Euler polynomials, the last expression cannot further be reduced unfortunately. Even though by making use of the expansion

$$
H_{m}(n-x)=\sum_{j=0}^{m}(2 n)^{m-j}\binom{m}{j} H_{j}(-x)=\sum_{j=0}^{m}(-1)^{j}(2 n)^{m-j}\binom{m}{j} H_{j}(x)
$$

we can reformulate the second sum with respect to k in (13) as

$$
\begin{aligned}
& \sum_{k=0}^{m}\binom{m}{k} \frac{H_{m+k+\ell}(n-x)}{(m+k+1)_{\ell}}(4 x-2 n)^{m-k} \\
= & \sum_{k=0}^{m}\binom{m}{k} \frac{(4 x-2 n)^{m-k}}{(m+k+1)_{\ell}} \sum_{j=0}^{m+k+\ell}(-1)^{j}(2 n)^{m+k+\ell-j}\binom{m+k+\ell}{j} H_{j}(x) \\
= & \sum_{k=0}^{m}\binom{m}{k} \frac{(4 x-2 n)^{m-k}}{(m+k+1)_{\ell}} \sum_{i=-m-\ell}^{k}(-1)^{m+i+\ell}(2 n)^{k-i}\binom{m+k+\ell}{m+i+\ell} H_{m+i+\ell}(x) \\
= & \sum_{i=-m-\ell}^{m}(-1)^{m+i+\ell} H_{m+i+\ell}(x) \sum_{k=\max \{0, i\}}^{m}\binom{m}{k}\binom{m+k+\ell}{m+i+\ell} \frac{(2 n)^{k-i}(4 x-2 n)^{m-k}}{(m+k+1)_{\ell}} .
\end{aligned}
$$

However, it is not plausible to simplify this last double sum further.

Acknowledgment

This work is supported for the first author by the Scientific Research Fund of Liaoning Provincial Education Department, China (No. JDL2019028).

References

[1] T. Agoh, K. Dilcher, Convolution identities and lacunary recurrences for Bernoulli numbers, J. Number Theory 124 (2007) $105-122$.
[2] T. M. Apostol, A primer on Bernoulli numbers and polynomials, Math. Mag. 81 (2008) 178-190.
[3] J. F. Barbero, J. M. Bentabol, E. J. S. Villaseñor, A two-sided Faulhaber-like formula involving Bernoulli polynomials, Comptes Rendus Math. 358 (2020) 41-44.
[4] L. Carlitz, Multiplication formulas for generalized Bernoulli and Euler polynomials, Duke Math. J. 27 (1960) 537-545.
[5] W. Chu, P. Magli, Summation formulae on reciprocal sequences, European J. Combin. 28 (2007) 921-930.
[6] K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory 60 (1996) 23-41.
[7] B. Kurt and Y. Simsek, On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ. 2013 (2013) Art\# 1.
[8] E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
[9] X. Y. Wang, W. Chu, Reciprocal relations of Bernoulli and Euler numbers/polynomials, Integral Transforms Spec. Funct. 29 (2018) $831-841$.

[^0]: *Corresponding author (chu.wenchang@unisalento.it)

