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Abstract
Binomial sums about Bernoulli, Euler and Hermite polynomials are examined by making use of the symmetric summation
theorem on polynomial differences, which is due to Chu and Magli [European J. Combin. 28 (2007) 921–930]. Several sum-
mation formulae are also obtained, including Barbero’s recent one on Bernoulli polynomials reported in [Comptes Rendus
Math. 358 (2020) 41–44].
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1. Introduction and motivation

In classical analysis and combinatorics, the Bernoulli and Euler numbers play an important role, that are defined respec-
tively by

τ

eτ − 1
=
∑
n≥0

Bn
τn

n!
and 2eτ

e2τ + 1
=
∑
n≥0

En
τn

n!
.

The corresponding polynomials have the following generating functions:

τexτ

eτ − 1
=
∑
n≥0

Bn(x)
τn

n!
and 2exτ

eτ + 1
=
∑
n≥0

En(x)
τn

n!
.

Both Bernoulli and Euler polynomials can be expressed by the corresponding numbers through the binomial relations

Bn(x) =

n∑
k=0

(
n

k

)
Bkx

n−k and En(x) =

n∑
k=0

(
n

k

)
Ek(0)xn−k.

They can be characterized by the following general polynomials associated to an arbitrary sequence {an} by the binomial
sums

An(x) =

n∑
k=0

ak

(
n

k

)
xn−k for n = 0, 1, 2, · · · . (1)

Chu and Magli [5] found that these polynomials satisfy the following general algebraic identity, which has interesting
applications to classical combinatorial numbers and polynomials, such as Bernoulli and Euler polynomials (cf. [9]).

Lemma 1.1 (Symmetric Difference). For two variables x, y and three integer parametersm,n, `withm,n being nonnegative,
the following algebraic identity holds:

m∑
k=0

(
m

k

)
An+k+`(x)

(n+ k + 1)`
(y − x)m−k −

n∑
k=0

(
n

k

)
Am+k+`(y)

(m+ k + 1)`
(x− y)n−k

=
m!n!χ(` > 0)

(m+ n+ `)!

∑̀
k=1

(
m+ n+ `

`− k

)(
−k
m

)
A`−k(y)(x− y)m+n+k.

Here and forth, χ denotes, for brevity, the logical function with χ(true) = 1 and χ(false) = 0, otherwise. For two integers
i, j and a natural number m, the notation “i ≡m j” stands for that “i is congruent to j modulo m”.

There exist numerous summation formulae and identities about the Bernoulli and Euler numbers and polynomials
(cf. [1, 2, 4, 6, 7]). Recently, Barbero [3] discovered a new identity about Bernoulli polynomials. We find that Barbero’s
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identity is an implication of Lemma 1.1 when ` = 1, m = n and An(x) is specified to Bernoulli polynomial. This suggests
us to examine further applications of Lemma 1.1. In the next section, we shall prove a general theorem about Bernoulli
polynomials, which contains Barbero’s identity as the special case ` = 1. Then in Section 3, an analogous theorem for Euler
polynomials will be shown, where three interesting formulae corresponding to ` < 1, ` = 1 and ` = 2 will be highlighted.
Finally, we illustrate an application to Hermite polynomials in Section 4, where some unusual identities are deduced.

2. Bernoulli polynomials

In Lemma 1.1, performing first the replacements n→ m, y → n− x and then specifying An(x) to Bernoulli polynomial, we
have the equality (cf. [9])

m∑
k=0

(
m

k

)
Bm+k+`(x)

(m+ k + 1)`
(n− 2x)m−k −

m∑
k=0

(
m

k

)
Bm+k+`(n− x)

(m+ k + 1)`
(2x− n)m−k

=
m!2χ(` > 0)

(2m+ `)!

∑̀
k=1

(
2m+ `

`− k

)(
−k
m

)
B`−k(n− x)(2x− n)2m+k. (2)

By iterating the recurrence relation
Bm(1 + x) = Bm(x) +mxm−1,

we can reformulate the polynomial

Bm(n− x) = Bm(n− 1− x) +m(n− 1− x)m−1

= Bm(n− 2− x) +m(n− 1− x)m−1 +m(n− 2− x)m−1

= Bm(1− x) +m

n−1∑
i=1

(n− x− i)m−1.

According to the reciprocal relation
Bm(1− x) = (−1)mBm(x),

we deduce further the expression

Bm(n− x) = (−1)mBm(x) +m

n−1∑
i=1

(i− x)m−1.

Substituting this into (2) and then simplifying the resultant equation, we get the identity

Φ`(m,n) = 2χ(` ≡2 1)

m∑
k=0

(
m

k

)
Bm+k+`(x)

(m+ k + 1)`
(n− 2x)m−k

− m!2χ(` > 0)

(2m+ `)!

∑̀
k=1

(
2m+ `

`− k

)(
−k
m

)
B`−k(n− x)(2x− n)2m+k, (3)

where Φ`(m,n) is a double sum defined by

Φ`(m,n) =

m∑
k=0

(
m

k

)
(2x− n)m−k

n−1∑
i=1

(i− x)m+k+`−1

(m+ k + 1)`−1
. (4)

The rightmost fraction can be expressed as a multiple integral with the integration domain{
x ≤ y`−1 ≤ y`−2 ≤ · · · ≤ y2 ≤ y1 ≤ i

}
and then reformulated by reversing the integral order as

(i− x)m+k+`−1

(m+ k + 1)`−1
=

∫ i

x

dy`−1

∫ i

y`−1

dy`−2 · · ·
∫ i

y3

dy2

∫ i

y2

(i− y1)m+kdy1

=

∫ i

x

(i− y1)m+kdy1

∫ y1

x

dy2 · · ·
∫ y`−3

x

dy`−2

∫ y`−2

x

dy`−1

=

∫ i

x

(i− y1)m+k (y1 − x)`−2

(`− 2)!
dy1.
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According to the binomial theorem, we get the expression

Φ`(m,n) =

n−1∑
i=1

m∑
k=0

(
m

k

)
(2x− n)m−k

∫ i

x

(i− y1)m+k (y1 − x)`−2

(`− 2)!
dy1

=

n−1∑
i=1

∫ i

x

(y1 − x)`−2

(`− 2)!
(i− y1)m(2x− n+ i− y1)mdy1. (5)

Under the change of variable by y1 = i− T (i− x), or equivalently T = i−y1
i−x , the last integral becomes∫ i

x

(y1 − x)`−2(i− y1)m(2x− n+ i− y1)mdy1

=(i− x)m+`−1
∫ 1

0

Tm(1− T )`−2
{

2x− n+ T (i− x)
}m

dT.

Expanding the binomial in the braces “{· · · }”{
2x− n+ T (i− x)

}m
=
{
x− n+ i− (1− T )(i− x)

}m
=

m∑
j=0

(−1)j
(
m

j

)
(1− T )j(i− x)j(x− n+ i)m−j

and then evaluating the beta integral by∫ 1

0

Tm(1− T )`+j−2dT =
m!(`+ j − 2)!

(m+ `+ j − 1)!

we find the following expression for the afore-displayed integral:∫ i

x

(y1 − x)`−2(i− y1)m(2x− n+ i− y1)mdy1

=

m∑
j=0

(−1)j
(
m

j

)
(i− x)m+j+`−1(x− n+ i)m−j

∫ 1

0

Tm(1− T )`+j−2dT

=

m∑
j=0

(−1)j
(
m

j

)
(`+ j − 2)!

(m+ 1)`+j−1
(i− x)m+j+`−1(x− n+ i)m−j .

By substituting this into (5), we get another double sum expression

Φ`(m,n) =

m∑
j=0

(−1)j
(
m

j

)
(`− 1)j

(m+ 1)`+j−1
Ωn(m+ j + `− 1,m− j), (6)

where Ωn(λ, µ) denotes the convolution of arithmetic progressions:

Ωn(λ, µ) =

n−1∑
i=1

(i− x)λ(i+ x− n)µ.

Summing up, we have established the following theorem.

Theorem 2.1. For any variable x and three integer parameters m,n, ` with m,n being nonnegative, the following algebraic
identity holds:

Φ`(m,n) = 2χ(` ≡2 1)

m∑
k=0

(
m

k

)
Bm+k+`(x)

(m+ k + 1)`
(n− 2x)m−k

− m!2χ(` > 0)

(2m+ `)!

∑̀
k=1

(
2m+ `

`− k

)(
−k
m

)
B`−k(n− x)(2x− n)2m+k.

When ` < 1, Theorem 2.1 gives a simpler identity.

Corollary 2.1 (` < 1: m ≥ 0 and n > 0).

Φ`(m,n) = 2χ(` ≡2 1)

m∑
k=0

(
m

k

)
Bm+k+`(x)

(m+ k + 1)`
(n− 2x)m−k.
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When ` = 1, the double sum Φ1(m,n) reduces to a single term in view of (6). In this case, we recover from Theorem 2.1
the following identity.

Corollary 2.2 (` = 1: m ≥ 0 and n > 0).

Ωn(m,m) =
(−1)m(n− 2x)2m+1

(2m+ 1)
(
2m
m

) + 2

m∑
k=0

(
m

k

)
Bm+k+1(x)

m+ k + 1
(n− 2x)m−k.

It is obvious that the formula due to Barbero [3, Theorem 1] is equivalent to Corollary 2.2 under the replacement
x→ n−y

2 . However, our formula looks more elegant.
When ` = 2, we find from Theorem 2.1, by taking into account that

B0(x) = 1 and B1(x) = x− 1

2
,

the following unusual double sum evaluation.

Corollary 2.3 (` = 2: m ≥ 0 and n > 0).

Φ2(m,n) =

m∑
j=0

(−1)j〈m〉j
(m+ 1)j+1

Ωn(m+ j + 1,m− j) = (−1)m
(n− 1)(n− 2x)2m+1

2(2m+ 1)
(
2m
m

) .

3. Euler polynomials

Analogously, making first the replacements n→ m, y → n−x and then specifyingAn(x) to Euler polynomial in Lemma 1.1,
we have another equality (cf. [9])

m∑
k=0

(
m

k

)
Em+k+`(x)

(m+ k + 1)`
(n− 2x)m−k −

m∑
k=0

(
m

k

)
Em+k+`(n− x)

(m+ k + 1)`
(2x− n)m−k

=
m!2χ(` > 0)

(2m+ `)!

∑̀
k=1

(
2m+ `

`− k

)(
−k
m

)
E`−k(n− x)(2x− n)2m+k. (7)

By iterating the recurrence relation
Em(1 + x) = 2xm − Em(x),

we can reformulate the polynomial

Em(n− x) = 2(n− x− 1)m − Em(n− 1− x)

= 2(n− x− 1)m − 2(n− x− 2)m + Em(n− 2− x)

= 2

n−1∑
i=1

(−1)i−1(n− x− i)m − (−1)nEm(1− x).

According to the reciprocal relation
Em(1− x) = (−1)mEm(x),

we deduce further the expression

Em(n− x) = 2

n−1∑
i=1

(−1)1+n−i(i− x)m − (−1)m+nEm(x).

Substituting this into (7) and then simplifying the resultant equation, we get the following counterpart identity of that in
Theorem 2.1 for Euler polynomials.

Theorem 3.1. For any variable x and three integer parameters m,n, ` with m,n being nonnegative, the following algebraic
identity holds:

Ψ`(m,n) = 2χ(n+ ` ≡2 0)

m∑
k=0

(
m

k

)
Em+k+`(x)

(m+ k + 1)`
(n− 2x)m−k

− m!2χ(` > 0)

(2m+ `)!

∑̀
k=1

(
2m+ `

`− k

)(
−k
m

)
E`−k(n− x)(2x− n)2m+k, (8)

where Ψ`(m,n) is a double sum defined by

Ψ`(m,n) = 2

m∑
k=0

(
m

k

)
(2x− n)m−k

n−1∑
i=1

(−1)n−i+1 (i− x)m+k+`

(m+ k + 1)`
. (9)

8
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By carrying out exactly the same procedure as that from (4) to (6), we can write Ψ`(m,n) in terms of a multiple integral

Ψ`(m,n) = 2

n−1∑
i=1

m∑
k=0

(−1)n−i+1

(
m

k

)
(2x− n)m−k

×
∫ i

x

dy`

∫ i

y`

dy`−1 · · ·
∫ i

y3

dy2

∫ i

y2

(i− y1)m+kdy1

and then derive the following alternative expression

Ψ`(m,n) = 2

m∑
j=0

(−1)n+j+1

(
m

j

)
(`)j

(m+ 1)`+j
Ω̄n(m+ j + `,m− j), (10)

where Ω̄n(λ, µ) stands for the alternating convolution of arithmetic progressions:

Ω̄n(λ, µ) =

n−1∑
i=1

(−1)i(i− x)λ(i+ x− n)µ.

Theorem 3.1 contains the following three interesting special cases.

Corollary 3.1 (` < 1: m ≥ 0 and n > 0).

Ψ`(m,n) = 2χ(n+ ` ≡2 0)

m∑
k=0

(
m

k

)
Em+k+`(x)

(m+ k + 1)`
(n− 2x)m−k.

Corollary 3.2 (` = 1: m ≥ 0 and n > 0).

Ψ1(m,n) =
(−1)m(n− 2x)2m+1

(2m+ 1)
(
2m
m

)
+


0, n ≡2 0;

2

m∑
k=0

(
m

k

)
Em+k+1(x)

m+ k + 1
(n− 2x)m−k, n ≡2 1.

Corollary 3.3 (` = 2: m ≥ 0 and n > 0).

Ψ2(m,n) =
(−1)m(n− 1)(n− 2x)2m+1

2(2m+ 1)
(
2m
m

)
+


0, n ≡2 1;

2

m∑
k=0

(
m

k

)
Em+k+2(x)

(m+ k + 1)2
(n− 2x)m−k, n ≡2 0.

4. Hermite polynomials

The Hermite polynomials are an important class of orthogonal polynomials (cf. Rainville [8, Chapter 11]). They are defined
by the exponential generating function

e2xτ−τ
2

=

∞∑
n=0

Hn(x)
τn

n!
.

• Explicit expression

Hn(x) =

bn2 c∑
k=0

(−1)k
(
n

2k

)
(2k)!

k!
(2x)n−2k.

• Reciprocal relation
Hn(−x) = (−1)nHn(x).

• Expansion formula

Hn(x+ y) =

n∑
k=0

(2y)k
(
n

k

)
Hn−k(x).

9
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Comparing (1) with the explicit formula of Hn(x), we can see that there exists a reciprocal relation corresponding to
Lemma 1.1, where An(x) is specified by Hn(x/2). Under the replacements x→ 2x and y → 2y, this reciprocity is stated in
the following theorem.

Theorem 4.1. For two variables x, y and three integer parametersm,n, `withm,n being nonnegative, the following algebraic
identity holds:

m∑
k=0

(
m

k

)
Hn+k+`(x)

(n+ k + 1)`
(2y − 2x)m−k −

n∑
k=0

(
n

k

)
Hm+k+`(y)

(m+ k + 1)`
(2x− 2y)n−k

=
m!n!χ(` > 0)

(m+ n+ `)!

∑̀
k=1

(
m+ n+ `

`− k

)(
−k
m

)
H`−k(y)(2x− 2y)m+n+k.

(11)

When m = n and x = −y, this theorem gives the simpler expression below:

0 = 2χ(` ≡2 1)

n∑
k=0

(−4y)n−k
(
n

k

)
Hn+k+`(y)

(n+ k + 1)`
+
n!2χ(` > 0)

(2n+ `)!

∑̀
k=1

(−4y)2n+k
(

2n+ `

`− k

)(
−k
n

)
H`−k(y). (12)

In particular, the following summation formulae are believed to be new.

• ` ≡2 0 with ` > 0: ∑̀
k=1

(−4y)2n+k
(

2n+ `

`− k

)(
−k
n

)
H`−k(y) = 0.

• ` ≡2 1 with ` ≤ 0:
n∑
k=0

(−4y)n−k
(
n

k

)
Hn+k+`(y)

(n+ k + 1)`
= 0.

• ` ≡2 1 with ` > 0:

0 =
∑̀
k=1

(−4y)2n+k
(

2n+ `

`− k

)(
−k
n

)
H`−k(y) +

2(2n+ `)!

n!2

n∑
k=0

(−4y)n−k
(
n

k

)
Hn+k+`(y)

(n+ k + 1)`
.

Alternatively, for n = m and y = n− x, the corresponding relation in Theorem 4.1 becomes
m∑
k=0

(
m

k

)
Hm+k+`(x)

(m+ k + 1)`
(2n− 4x)m−k −

m∑
k=0

(
m

k

)
Hm+k+`(n− x)

(m+ k + 1)`
(4x− 2n)m−k

=
m!2χ(` > 0)

(2m+ `)!

∑̀
k=1

(
2m+ `

`− k

)(
−k
m

)
H`−k(n− x)(4x− 2n)2m+k. (13)

Unlike Bernoulli and Euler polynomials, the last expression cannot further be reduced unfortunately. Even though by
making use of the expansion

Hm(n− x) =

m∑
j=0

(2n)m−j
(
m

j

)
Hj(−x) =

m∑
j=0

(−1)j(2n)m−j
(
m

j

)
Hj(x),

we can reformulate the second sum with respect to k in (13) as
m∑
k=0

(
m

k

)
Hm+k+`(n− x)

(m+ k + 1)`
(4x− 2n)m−k

=

m∑
k=0

(
m

k

)
(4x− 2n)m−k

(m+ k + 1)`

m+k+`∑
j=0

(−1)j(2n)m+k+`−j
(
m+ k + `

j

)
Hj(x)

=

m∑
k=0

(
m

k

)
(4x− 2n)m−k

(m+ k + 1)`

k∑
i=−m−`

(−1)m+i+`(2n)k−i
(
m+ k + `

m+ i+ `

)
Hm+i+`(x)

=

m∑
i=−m−`

(−1)m+i+`Hm+i+`(x)

m∑
k=max{0,i}

(
m

k

)(
m+ k + `

m+ i+ `

)
(2n)k−i(4x− 2n)m−k

(m+ k + 1)`
.

However, it is not plausible to simplify this last double sum further.

10
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