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Abstract

Let G be a graph with n vertices. The PI-Estrada index of G is an invariant that is calculated from the eigenvalues of the
vertex-PI matrix of G. The main purpose of this paper is to establish upper and lower bounds for the PI-Estrada index of a
graph in terms of the number of vertices, edges, triangles and pendant vertices.
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1. Introduction

Let G = (V,E) be a simple undirected graph with vertex set V (G) and edge set E(G). The integers n = |V | and m = |E| are
the number of vertices and edges of the graph G, respectively. Let U be a subset of V (G). We denote by 〈U〉 the subgraph
of G induced by U . A clique of G is a subset of mutually adjacent vertices of V (G). A clique is called maximal if it is not
contained in any other clique. A clique is said to be maximum if it has the maximum cardinality. The size of a maximum
clique in G is called the clique number of G and is denoted by ω(G). A walk from a vertex u to a vertex v is a finite
alternating sequence v0(= u)e1v1e2 . . . vk−1ekvk(= v) of vertices and edges such that ei = vi−1vi for i = 1, 2, . . . , k where the
number k is the length of the walk. A graph is connected if each pair of vertices in a graph is joined by at least one walk.
As usual, denote by Pn, Kn and Kn the path, the complete graph, and the complement of complete graph with n vertices,
respectively. The distance between two arbitrary vertices u and v ofG, denoted by d(u, v), is defined as the number of edges
in the shortest path connecting the vertices u and v. The adjacency matrix A(G) of G is a matrix with entries aij = 1 if
vivj ∈ E(G) and 0 otherwise. We denote by λ1, λ2, . . . , λn the eigenvalues of A(G).

The Estrada index, put forward by Ernesto Estrada [11], is defined as

EE = EE(G) =

n∑
i=1

eλi .

The Estrada index is used to quantify the degree of folding of long-chain molecules, especially proteins [11] and complex
networks [29–31]. Additional applications of the Estrada index can be found in [7,12–15].

The mathematical aspects of the Estrada index have been intensively studied. Several upper and lower bounds and
new Estrada indices were obtained in [1, 2, 25–28, 32]. One of the most important properties of the Estrada index is as
following:

EE =

∞∑
k=1

Mk(G)

k!
, (1)

where Mk =Mk(G) is the k-th moment of the graph G, i.e.,

Mk =Mk(G) =

n∑
i=1

λki .

It is well known that Mk(G) is equal to the number of closed walks of length k in G.
The investigation of topological indices has been shown to give a high degree of predictability of pharmaceutical prop-

erties. Among the several existing graph-based molecular structure descriptors [33, 34], the Randić index is certainly
the most widely applied in chemistry and pharmacology, in particular for designing in the quantitative structure-activity
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relationship models (QSPR) used in the chemical, biological science, and quantitative structure-property relationships
(QSAR). Due to the importance and practicality of these topological indices, Bozkurt et al. [6] in 2012, introduced the
Randić energy and the Randić Estrada index of a graph, which has been of interest to many researchers.

Let e = uv be an edge of G. Then, nu (e|G) is the number of edges lying closer to u than to v and nv (e|G) is defined
analogously. The Padmakar-Ivan (PI) index of a graph G is defined [21] as

PI(G) =
∑

uv∈E(G)

(nu(e|G) + nv(e|G)) .

For details on this invariant, see some of the most cited papers [19–22,24]. The PI index promises to be a useful parameter
in the QSPR/QSAR studies. A more favorable comparison with other representative indices such as the Randić index has
already been made in order to establish the predictive ability of the PI index, and the results have shown that in several
cases the PI index gave better results. Considering the importance of this index and being better than the Randić index,
Arani [3] in 2011, introduced the PI-energy. In this paper, we introduce the PI-Estrada index and examine some of its
properties.

The vertex-PI matrix (see [3]) of G, denoted by PI(G), is defined as a matrix whose (i, j)-entry is dij , where

dij =

{
nui(e|G) + nvj (e|G) if uivj ∈ E(G),

0 otherwise.

Since PI(G) is a real and symmetric matrix, its eigenvalues are real numbers, and we label them in non-increasing order
by δ1 > δ2 > . . . > δn. Their collection is called the PI-spectrum of G. The spectral radius of G, denoted by δ1(G), is the
largest eigenvalue of PI(G).

A spectral invariant of the matrix PI(G) is the vertex-PI energy of G, which is defined [3] as

EPI = EPI(G) =

n∑
i=1

|δi|.

Recently, several analogous concepts such as Zagreb Estrada index [26], Harmonic Estrada index [18], Albertson-Estrada
index [16] and Hermitian Estrada index [17] of graphs and digraphs were put forward.

On the other hand, the vertex-PI index is a distance-based molecular structure descriptor, that recently found numerous
chemical applications. In this paper, we introduce the PI-Estrada index and denote it by EEPI .

Definition 1.1. Let G be a graph of order n whose PI-eigenvalues are δ1 > δ2 > . . . > δn. The PI-Estrada index of G is
defined as

EEPI = EEPI(G) =

n∑
i=1

eδi .

Also, we define

Nk =

n∑
i=1

δki . (2)

Similar to the Estrada index in (1), we have

EEPI(G) =

∞∑
k=1

Nk
k!
.

This paper is organized as follows. In Section 2, we give a list of some previously known results. In Section 3, we
establish upper and lower bounds for the PI-Estrada index.

2. Preliminaries and known results

In this section, we give some preliminary results useful for the proof of the our results. Arani et al. [4], proved the following
result.

Lemma 2.1. [4] Let G be a graph with n vertices. Then

δ1 >
2PI
n
.

Deng [9], showed the following result.
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Lemma 2.2. [9] Let G be a simple connected graph with m edges. Then

PI(G) > M1(G)− 2m,

where M1(G) =

n∑
i=1

d2i .

In [8], Das et al. obtained the following result.

Lemma 2.3. [8] Let G be a connected graph with n vertices, m edges, p pendent vertices, and clique number ω (ω > 3).
Then

PI(G) > 2m+ (n− 2)p+ (n− ω)(ω − 1).

Khadikar et al. [23], proved the following results.

Lemma 2.4. [23] Let T be a tree with n vertices, n > 2. Then

PI(T ) = (n− 1)(n− 2).

Lemma 2.5. [23] Let Cn be a cycle graph with n > 3. Then

PI(C2n+1) = 2n(2n+ 1),

PI(C2n) = 4n(n− 1).

Lemma 2.6. [5] For any real x, one has ex > 1 + x+ x2

2 + x3

3! . Equality holds if and only if x = 0.

Lemma 2.7. For any non-negative numbers x1, x2, . . . , xn and k > 2, we have
n∑
i=1

(xi)
k 6 (

n∑
i=1

xi
2)

k
2 . (3)

Remark 2.1. For any real x, the power-series expansion of ex, is the following

ex =
∑
k>0

xk

k!
. (4)

The following results come from [4].

Lemma 2.8. [4] Let G be a graph with n vertices, m edges, t triangles and δ1, δ2, . . . , δn be a non-increasing arrangement
of PI-eigenvalues of G. Then

1)

n∑
i=1

δi = 0, (5)

2) 8m 6
n∑
i=1

δ2i 6 2mn2, (6)

3) 24t 6
n∑
i=1

δ3i 6 6tn3. (7)

Lemma 2.9. [4] Let G be a bipartite graph with n vertices. Then

EPI(G) 6 n
√
2mn.

Lemma 2.10. [4] Let G be a graph with n vertex and PI degree sequence {P1, P2, . . . , Pn}. Then

δ1 >

√
P 2
1 + P 2

2 + . . .+ P 2
n

n
.

Lemma 2.11. [4] Let G be a graph with n vertex, PI degree sequence {P1, P2, . . . , Pn} and second vertex PI degree sequence
{T1, T2, . . . , Tn}. Then

δ1 >

√
T 2
1 + T 2

2 + . . .+ T 2
n

P 2
1 + P 2

2 + . . .+ P 2
n

.
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3. Main results

In this section, we present upper and lower bounds for the PI-Estrada index in terms of the number of vertices, edges,
triangles, a bound in terms of the elements of the degree sequence, pendent vertices and clique number for a graph,
connected graphs, cycle graphs and tree graphs. Our first main result is the following.

Theorem 3.1. Let G be a graph with n vertices, m edges and t triangles. Then

EEPI(G) >
√
n2 + 8n(t+m). (8)

Equality holds if and only if G is the empty graph Kn.

Proof. Suppose that δ1, δ2, . . . , δn form the spectrum of the PI matrix. By definition of the PI-Estrada index and Lemma
2.6, we have

EEPI(G)
2 =

n∑
i=1

n∑
j=1

eδi+δj

>
n∑
i=1

n∑
j=1

(
1 + δi + δj +

(δi + δj)
2

2
+

(δi + δj)
3

6

)

=

n∑
i=1

n∑
j=1

(
1 + δi + δj +

δ2i
2

+
δ2j
2

+ δiδj +
δ3i
6

+
δ3j
6

+
δ2i δj
2

+
δiδ

2
j

2

)
.

Now, by Equality (5),
n∑
i=1

n∑
j=1

(δi + δj) = n

n∑
i=1

δi + n

n∑
j=1

δj = 0.

n∑
i=1

n∑
j=1

δiδj = (

n∑
i=1

δi)
2 = 0.

By Inequality (6),
n∑
i=1

n∑
j=1

(
δ2i
2

+
δ2j
2
) =

n

2

n∑
i=1

δ2i +
n

2

n∑
j=1

δ2j = n

n∑
i=1

δ2i > 8mn.

Also, by Equality (5) and Inequality (6), it holds that
n∑
i=1

n∑
j=1

δ2i δj
2

=

n∑
i=1

n∑
j=1

δiδ
2
j

2
= 0.

Similarly by inequality (7),

n∑
i=1

n∑
j=1

(
δ3i
6

+
δ3j
6
) =

n

6

n∑
i=1

δ3i +
n

6

n∑
j=1

δ3j =

n

n∑
j=1

δ3j

3
> 8nt.

Combining the above relations, we get
EEPI(G) >

√
n2 + 8n(t+m).

So, the inequality of the theorem is proved. The equality holds if and only if all δi are zero that is G ∼= Kn.

Theorem 3.2. Let G be a graph with n vertices, m edges and t triangles. Then

EEPI(G) > n+ 8m+

(
sinh(1)− 1

)
24t+

(
cosh(1)− 1

)
N4, (9)

where N4 =

n∑
i=1

δ4i . Equality in (9) holds if and only if G is the empty graph Kn.

Proof. Note that N0 =

n∑
i=1

δ0i = n, N1 =

n∑
i=1

δi = 0 and N2 =

n∑
i=1

δ2i > 8m. Therefore, by definition of the PI-Estrada index,

we have

EEPI(G) =
∑
k>0

Nk
k!

> n+ 8m+
∑
k>1

N2k+1

(2k + 1)!
+
∑
k>1

N2k+2

(2k + 2)!
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> n+ 8m+
∑
k>1

N3

(2k + 1)!
+
∑
k>1

N4

(2k + 2)!

> n+ 8m+

(
sinh(1)− 1

)
24t+

(
cosh(1)− 1

)
N4.

The result follows easily. The equality holds if and only if all δi are zero that is G ∼= Kn.

Remark 3.1. Note that the above result can be written as:

EEPI(G) > n+ 8m+ 4.2t+ 0.54N4.

Theorem 3.3. Let G be a graph with n vertices and m edges. Then for any integer k0 > 2,

EEPI(G) 6 n− 1− n
√
2m+

k0∑
k=2

Nk(G)−
(
n
√
2m

)k
k!

+ en
√
2m. (10)

Equality holds if and only if G ∼= Kn.

Proof. Note that
n∑
i=1

δ2i 6 2mn2. By definition of the PI-Estrada index, we have

EEPI(G) =

k0∑
k=0

Nk(G)

k!
+

∑
k>k0+1

1

k!

n∑
i=1

δki

6
k0∑
k=0

Nk(G)

k!
+

∑
k>k0+1

1

k!

n∑
i=1

|δki | (11)

6
k0∑
k=0

Nk(G)

k!
+

∑
k>k0+1

1

k!
(

n∑
i=1

δ2i )
k
2 , by Inequality (3)

=

k0∑
k=0

Nk(G)

k!
+

∑
k>k0+1

(
n
√
2m

)k
k!

=

k0∑
k=0

Nk(G)

k!
+ en

√
2m −

k0∑
k=0

(
n
√
2m

)k
k!

. (12)

Considering k0 = 2 in (12), we have the following result that only depends on number of vertices and edges of the graph.
If G ∼= Kn it is easy to check that the equality in (10) holds. Suppose now that the equality holds in (10). Then all the
inequalities in the proof must be equalities. From Equation (3), we know that is valid if k even or all eigenvalues are
negative, but we know that k cannot be just even, so all eigenvalues must be negative, by equality (5), we have

∑n
i=1 δi = 0.

Therefore, we get δ1 = δ2 = . . . = δn = 0, hence G ∼= Kn.

Now, by using Theorem 3.3, we get the next result.

Corollary 3.1. Let G be a graph with n vertices and m edges. Then

EEPI(G) 6 n− 1− n
√
2m+ en

√
2m.

Lemma 3.1. Let G be a graph with n vertices and m edges. Then

δ1 >
8m

n
√
2nm

. (13)

Equality holds if and only if G ∼= K2.

Proof. Let ai, bi are decreasing non-negative sequences with a1, b1 6= 0 and wi a nonnegative sequence, for i = 1, 2, . . . , n.
The following inequality is valid (see [10], p. 85)

n∑
i=1

wia
2
i

n∑
i=1

wib
2
i 6 max

{
b1

n∑
i=1

wiai, a1

n∑
i=1

wibi

}
n∑
i=1

wiaibi. (14)
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For ai = bi := |δi|, and wi := 1, i = 1, 2, . . . , n, Inequality (14) becomes

n∑
i=1

δ2i

n∑
i=1

δ2i 6 max

{
δ1

n∑
i=1

|δi|, δ1
n∑
i=1

|δi|

}
n∑
i=1

δ2i .

Since
n∑
i=1

|δi| = EPI(G).

Then
δ1 >

∑n
i=1 δ

2
i

EPI(G)
.

Therefore, by Lemma 2.9 and Inequality (6), we have

δ1 >
8m

n
√
2nm

.

It is not difficult to see that equality holds in (13) if G ∼= K2.

Theorem 3.4. Let G be a graph with n vertices and m edges. Then

EEPI(G) > e
8m

n
√

2nm +
n− 1

e

8m
n
√

2nm
n−1

. (15)

Equality holds if and only if G ∼= K2.

Proof. By definition of the PI-Estrada index and using arithmetic-geometric mean inequality, we obtain

EEPI(G) = eδ1 + eδ2 + · · ·+ eδn

> eδ1 + (n− 1)

( n∏
i=2

eδi
) 1
n−1

= eδ1 + (n− 1)e

∑n
i=2 δi
n−1

= eδ1 + (n− 1)e
−δ1
n−1 .

Now, consider the following function
f(x) = ex +

n− 1

e
x
n−1

.

It is straightforward verified that f is an increasing function for x > 0. From the Lemma 3.1, we obtain

EEPI(G) > e
8m

n
√

2nm +
n− 1

e

8m
n
√

2nm
n−1

.

It is not difficult to see that equality holds in (15) if G ∼= K2.

Analogous, Theorem 3.4 also by Lemmas 2.10 and 2.11, we have the next results.

Lemma 3.2. Let G be a graph with n vertices. Then

EEPI(G) > e

√√√√P 2
1 + P 2

2 + . . .+ P 2
n

n +
n− 1

e

√
P 2
1 + P 2

2 + . . .+ P 2
n

n
n− 1

.

Lemma 3.3. Let G be a graph with n vertices. Then

EEPI(G) > e

√√√√ T 2
1 + T 2

2 + . . .+ T 2
n

P 2
1 + P 2

2 + . . .+ P 2
n +

n− 1

e

√
T 2
1 + T 2

2 + . . .+ T 2
n

P 2
1 + P 2

2 + . . .+ P 2
n

n− 1

.
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Now, by combining Lemma 2.1 with Lemmas 2.2, 2.3, 2.4, and 2.5, we give lower bounds for the PI-Estrada index of
connected graphs, cycle graphs and tree graphs.

Corollary 3.2. Let G be a connected graph with n vertices, m edges, p pendent vertices, and clique number ω (ω > 3). Then

1) EEPI(G) > eM1(G)−2m +
n− 1

e
M1(G)−2m

n−1

2) EEPI(G) > e2m+(n−2)p+(n−ω)(ω−1) +
n− 1

e
2m+(n−2)p+(n−ω)(ω−1)

n−1

.

Corollary 3.3. Let Cn be a cycle graph with n > 3 vertices. Then

1) EEPI(C2n+1) > e4(n−1) +
n− 1

e4

2) EEPI(C2n) > e2(2n+1) +
n− 1

e
2(2n+1)
n−1

.

Corollary 3.4. Let T be a tree with n vertices, n > 2. Then

EEPI(Tn) > e(n−1)(n−2) +
n− 1

e(n−2)
.

Theorem 3.5. Let G be a non-empty graph with n vertices and m edges. Then

EEPI(G) < en
√
2m. (16)

Proof. By definition of the PI-Estrada index and Inequalities (3) and (6), we have

EEPI(G) =

n∑
i=1

eδi <

n∑
i=1

e|δi| =

n∑
i=1

∑
k>0

(| δi |)k

k!

=
∑
k>0

1

k!

n∑
i=1

(| δi |)k

≤
∑
k>0

1

k!
(

n∑
i=1

(| δi |)2)
k
2

=
∑
k>0

1

k!
(

n∑
i=1

(δi)
2)

k
2

=
∑
k>0

1

k!

(
n
√
2m

)k
= en

√
2m.

4. Concluding remarks

In this paper, considering the eigenvalues of the PI-matrix, upper and lower bounds are established for the PI-Estrada
index of a graph as a function of various combinatorial and spectral invariants of the given graph. Considering this matrix,
a future problem is to obtain a generalization for directed graphs.
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