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Abstract

Given a commutative ring R, the zero divisor graph of R is the graph Γ(R) whose vertex set is the collection of non-zero zero
divisors of R and distinct vertices x and y are adjacent precisely when xy = 0. This article determines the complete list (up
to isomorphism) of finite commutative rings R with identity such that the metric dimension and upper dimension of Γ(R)
differ.
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1. Introduction

Given a commutative ring R with set of zero divisors Z(R), we define the zero divisor graph of R as the undirected graph
Γ(R) with vertex setZ(R)∗ = Z(R)−{0} and where distinct vertices x and y are adjacent precisely when xy = 0. The concept
of a zero divisor graph originated with Beck [3] and with Anderson and Naseer [2]. However, this article uses the definition
popularized by Anderson and Livingston [1], which uses only the non-zero zero divisors of the ring as vertices of Γ(R). Zero
divisor graphs are studied to explore the relationship between the algebraic properties of R and the graph properties of
Γ(R). While many authors have extended this concept to similar graphs on a variety of other algebraic structures, this
article will consider only finite commutative rings with 1 6= 0. For examples of images of zero divisor graphs, including
many of the graphs considered in this article, the reader is referred to [11].

This article serves as a sequel to the paper by Pirzada, Aijaz, and Redmond [10] that explored the metric and upper
dimensions of zero divisor graphs of commutative rings. In that article, several classes of rings were shown to have the
same metric and upper dimensions, but only one example of a ring was given where the metric and upper dimensions differ.
The present paper puts completely to rest the question of which finite rings’ zero divisor graphs have differing metric and
upper dimensions (see Theorem 5.1).

Section 2 of this article will give the necessary background and results on zero divisor graphs, including definitions of
metric dimension, upper dimension, resolving set, and distance similar vertices. Section 3 investigates the graphs of rings
which are products of Z2. Section 4 provides further examples of rings which have differing metric and upper dimension.
Through the use of distance similar vertices, it will be shown in Section 5 that the examples given in Sections 3 and 4 are
indeed the only cases where metric and upper dimensions differ.

2. Preliminaries

Definition 2.1. Let G be a finite connected graph, and let W = {w1, w2, . . . , wk} be an ordered set of vertices of G. For any
v ∈ V (G), define the representation r(v |W ) for v with respect to W as the k-tuple

r(v |W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)),

where d(x, y) is the distance between vertices x and y in G. The ordered set W is a resolving set if all vertices of V (G) have
distinct representations with respect to W and is minimal if no proper subset of W is also a resolving set of G.

Keep in mind that the vertices of W clearly have distinct representations as wi is the only vertex of G where r(wi |W )

has 0 in the coordinate i.
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Definition 2.2. Let G be a finite connected graph. The cardinality of a minimal resolving set consisting of the smallest
number of vertices of G is the metric dimension of G, denoted by dim(G). The cardinality of a minimal resolving set with
the largest number of vertices of G is the upper dimension of G, denoted by dim+(G).

Metric dimension of a graph was introduced independently by Slater [12] and by Harary and Melter [5]. Upper dimen-
sion of a graph was introduced by Chartrand, Poisson, and Zhang [4]. Clearly, for any connected graph G with n vertices,
dim(G) ≤ dim+(G) ≤ n− 1. For many finite connected graphs, such as complete graphs for example, the upper and metric
dimensions are equal. However, it is possible to find finite connected graphs such that the metric and upper dimensions
differ. In fact, for every positive integer N , there is a finite connected graph G with dim+(G) ≥ dim(G) + N (see Theorem
2.10 of [4]).

Definition 2.3. Vertices x and y in a graph G are called distance similar if d(x, a) = d(y, a) for all a ∈ V (G)− {x, y}.

Previous articles studying resolving sets and metric dimension in zero divisor graphs, such as [6–9], make use of the
following important connection between sets of distance similar vertices and minimal resolving sets. (Note, in [7, 8], the
metric dimension of a graph was called the locating number of the graph.)

Proposition 2.1 (Theorem 2.1, [7]). Let G be a connected graph. Suppose V (G) is partitioned into k distinct distance
similar classes V1, V2, . . . , Vk (that is, x, y ∈ Vi if and only if d(x, a) = d(y, a) for all a ∈ V (G)− {x, y}).

1. Any resolving set W for G contains all but at most one vertex from each Vi.

2. Each Vi induces a complete subgraph or a graph with no edges.

3. dim(G) ≥ |V (G)| − k.

4. There exists a minimal resolving set W for G such that if |Vi| > 1, at most |Vi| − 1 vertices of Vi are elements of W .

5. If m is the number of distance similar classes that consist of a single vertex, then |V (G)|−k ≤ dim(G) ≤ |V (G)|−k+m.

From this point forward, the focus will be on zero divisor graphs of finite commutative rings with identity. Throughout,
we denote the ring of integers modulo n by Zn and the set of non-zero zero divisors of R as Z(R)∗. The following is one of the
most important results about zero divisor graphs and is needed in many results herein. It will be used freely throughout.

Proposition 2.2 (Theorem 2.3, [1]). Let R be a commutative ring. Then Γ(R) is connected and diam(Γ(R)) ≤ 3.

For many rings, Proposition 2.1 completely determines the make-up of a resolving set – that is, if V1, V2, . . . , Vk is a
partition of Γ(R) into distance similar classes and if yi ∈ Vi for i = 1, . . . , k, then W = V1 ∪ V2 ∪ . . . ∪ Vk − {y1, y2, . . . , yk} is
a minimal resolving set. Other rings, like Z4 × Z4 must include a vertex that is not distance similar to any other vertex in
a resolving set (as in the minimal resolving set {(1, 0), (1, 2), (0, 1)}).

Definition 2.4. We call a vertex v in a connected graph G uniquely distance similar if v is not distance similar to any other
vertex in G. We say a resolving set W for graph G is completely determined by distance similarity if W contains no uniquely
distance similar elements.

Lemma 2.1 (Theorem 2.3, [9]). If G is finite connected graph that has a resolving set W that is completely determined by
distance similarity, then dim(G) = dim+(G) = |W |.

3. Rings that are products of Z2

In [10], it was shown that for R ∼= Z2×Z2×Z2×Z2, dim(Γ(R)) 6= dim+(Γ(R)) which was the first such example found. For
R, both

W = {(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1)}

and
V = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

are minimal resolving sets, so
dim(Γ(R)) ≤ 3 = |W | < |V | = 4 ≤ dim+(Γ(R)).

This section culminates with the result that for n ≥ 4, the metric dimension and upper dimension differ for
∏n

i=1 Z2. It
turns out that these rings are one of only two classes of rings for which metric and upper dimensions differ. The next
section will discuss the other class.

35



S. Redmond and S. Szabo / Discrete Math. Lett. 5 (2021) 34–40 36

Remark 3.1. When considering rings isomorphic to
∏n

i=1 Z2, it is worth noting that no two distinct vertices are distance
similar when n ≥ 3.

Throughout this section, for k, n ∈ N where 1 ≤ k ≤ n, let Wk be the set of elements of
∏n

i=1 Z2 with k non-zero
coordinates, and let w(a) be the number of non-zero coordinates of a ∈

∏n
i=1 Z2.

Lemma 3.1. Let k, n ∈ N such that 1 ≤ k ≤ n− 1 and R =
∏n

i=1 Z2. Then Wk is a resolving set for Γ(R).

Proof. Let ~0 = (0, . . . , 0), ~1 = (1, . . . , 1) and for x ∈ R, let x̄ = ~1− x. Also, for x, y ∈ R, define x ∪ y = x + y + xy (this is the
“componentwise or”). Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ V (Γ(R))−Wk with a 6= b.

First, assume w(a) ≤ min{w(b), n−k}. Since a must have at least one 0 where b has a 1 and a has at least k zeros, there
exists v ∈Wk s.t. av = ~0 and bv 6= ~0. So, d(a, v) = 1 6= d(b, v). The same argument applies when w(b) ≤ min{w(a), n− k} by
interchanging a and b.

Now, assume w(b) ≥ w(a) > n− k. Since a must have at least one 0 where b has a 1 and b has at most k− 1 zeros, there
exists v ∈ Wk s.t. a ∪ v 6= ~1 and b ∪ v = ~1. So, d(a, v) = 2 6= 3 = d(b, v). In all cases then, r(a|W ) 6= r(b|W ). Hence, Wk is a
resolving set.

Proposition 3.1. Let n ≥ 5, R =
∏n

i=1 Z2, 1 < k < n − 1 such that k 6= n
2 and w ∈ Wk. Then W1, Wn−1 and Wk − {w} are

minimal resolving sets.

Proof. Let ~0 = (0, . . . , 0), ~1 = (1, . . . , 1) and for x ∈ R, let x̄ = ~1− x. Also, for x, y ∈ R, define x ∪ y = x + y + xy (this is the
“componentwise or”).

By Lemma 3.1, W1 and Wn−1 are resolving sets.
Letw1 ∈W1. Without loss of generality (WLOG) assumew1 = (1, 0, . . . , 0). Let x = (0, 1, 1, 0, . . . , 0) and y = (1, 1, 1, 0, . . . , 0).

Clearly for any v ∈W1 − {w1}, d(x, v) = d(y, v). Hence, W1 is minimal.
Let wn−1 ∈ Wn−1. WLOG assume wn−1 = (0, 1, . . . , 1). Let x = (0, 1, 1, 0, . . . , 0) and y = (1, 1, 1, 0, . . . , 0). Since n > 4,

y /∈Wn−1. Clearly for any v ∈Wn−1 − {wn−1}, d(x, v) = d(y, v). Hence, Wn−1 is minimal.
Let W = Wk − {w}. Now, we show that W is minimal. Let z ∈ W and W ′ = Wk − {w, z}. Since k 6= n

2 , w̄ /∈ W ′ and
z̄ /∈W ′. Then d(w̄, v) = 2 = d(z̄, v) for all v ∈W ′. Hence, W ′ is not a resolving set.

Let a, b ∈ V (Γ(R)) −W with a 6= b. Assume a = w̄. Since k 6= n
2 , a = w̄ /∈ W . Then d(a, v) = 2 for all v ∈ W . Since

b 6= a = w̄, there exists v ∈W s.t. bv = 0 or b ∪ v = ~1 meaning d(b, v) ∈ {1, 3} and d(b, v) 6= d(a, v).
For the remainder of the proof assume a 6= w̄ and b 6= w̄. We proceed in two cases. First, assume w(a) ≤ min{w(b), n−k}.

Since a 6= w̄, there exists v ∈ W s.t. av = ~0 and bv 6= ~0. So, d(a, v) = 1 6= d(b, v). The same argument applies when
w(b) ≤ min{w(a), n− k} by interchanging a and b.

Now, assumew(a) > n−k andw(b) > n−k. Then there exists v ∈W s.t. a∪v 6= ~1 and b∪v = ~1. So, d(a, v) = 2 6= 3 = d(b, v).
In all cases then, r(a|W ) 6= r(b|W ). Hence, W is a minimal resolving set.

Theorem 3.1. Let n ≥ 2 and R =
∏n

i=1 Z2. Then dim(R) 6= dim+(R) if and only if n ≥ 4.

Proof. As seen in [10], the metric and upper dimensions of are equal when n ∈ {2, 3} (these cases can easily be checked
by hand). When n = 4, the metric and upper dimensions of are not equal. This was given at the beginning of this section.
Finally, assume n ≥ 5. Proposition 3.1 shows that there is a minimal resolving set of size n and also another minimal
resolving set of size

(
n
2

)
− 1. So,

dim(R) ≤ n <

(
n

2

)
− 1 ≤ dim+(R).

4. Other examples where metric and upper dimensions differ

In the last section, it was shown that for products of at least 4 copies of Z2, the metric and upper dimensions of the zero
divisor graph differ. Here the only other rings with this property are provided. These exceptions are

S ×
n∏

i=1

Z2

where n ≥ 3 and S ∈ {Z4,Z2[X]/(X2)}.
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Example 4.1. It can be easily verified that

dim(Γ(Z4 × Z2)) = dim+(Γ(Z4 × Z2)) = 2 and dim(Γ(Z4 × Z2 × Z2)) = dim+(Γ(Z4 × Z2 × Z2)) = 4.

However, in Z4 ×
∏3

i=1 Z2,

{(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1),

(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (2, 0, 0, 0)}

and

{(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0),

(1, 1, 0, 1), (1, 1, 1, 0), (2, 0, 0, 1), (2, 0, 1, 0), (2, 1, 0, 0)}

are minimal resolving sets which shows

dim(Γ(Z4 × Z2 × Z2 × Z2)) 6= dim+(Γ(Z4 × Z2 × Z2 × Z2))

Replacing Z4 with Z2[X]/(X2), similar results hold.

Theorem 4.1. Let

R = S ×
k∏

i=1

Z2

where k ≥ 3 and S ∈ {Z4,Z2[X]/(X2)}. Then the resolving sets of Γ(R) are not completely determined by distance similarity,
dim(Γ(R)) = 2k and dim+(Γ(R)) ≥ 2k + k − 1.

Proof. The proof is written for S = Z4, but the same arguments apply for S = Z2[X]/(X2) if “3” is replaced with “1 + X”
and “2” is replaced with “X”.

Let R = Z4 ×
∏k

i=1 Z2. Then the only vertices distance similar to some other vertex of Γ(R) come in pairs of the from
(1, r1, . . . , rk) and (3, r1, . . . , rk). For any vertex v of this from, note d(v, (2, 0, . . . , 0)) = d(v, (1, 0, . . . , 0)) = d(v, (3, 0, . . . , 0)) =

2. Thus, letting W be any collection of vertices consisting of only one of each pair of distance similar vertices, W could
not be a minimal resolving set as (2, 0, . . . , 0) 6∈ W and at most one of (1, 0, . . . , 0) and (3, 0, . . . , 0) would be in W . Hence, a
minimal resolving set must contain some uniquely distance similar vertex.

Define T = {v = (v1, . . . , vk+1)|v1 = 1, vi = 0 for at least one i ≥ 2}. Then T consists of one element of each pair of
distance similar vertices and |T | = 2k − 1. Let T ∗ = T ∪ {(2, 0, . . . , 0)}. In light of the above paragraph, if T ∗ is a resolving
set, then it is the smallest possible minimal resolving set. Let x = (x1, . . . , xk+1), y = (y1, . . . , yk+1) ∈ V (Γ(R)) − T ∗. If,
WLOG, xj = 1 and yj = 0 for some j ≥ 2, then, letting w be the element of T ∗ with 0 in coordinate j and 1 in all other
coordinates, d(x,w) = 1 or 3 but d(y, w) = 2. If, WLOG, x1 = 0 and y1 6= 0, then (1, 0, . . . , 0) ∈ T ∗ and d(x, (1, 0, . . . , 0)) = 1

but d(y, (1, 0, . . . , 0)) > 1. If, WLOG, x1 = 2 and y1 = 3, then d(x, (2, 0, . . . , 0)) = 1 and d(y, (2, 0, . . . , 0)) > 1. Hence, T ∗ is a
minimal resolving set and dim(Γ(R)) = |T ∗| = 2k (this is also true for k ∈ {1, 2}).

Remember k ≥ 3. Define T as above. Define Q = {v = (v1, . . . , vk+1)|v1 = 2, vi = 1 for only one i ≥ 2} and let U = T ∪Q.
We will show U is a minimal resolving set. Let x = (x1, . . . , xk+1), y = (y1, . . . , yk+1) ∈ V (Γ(R)) − U . The cases where,
WLOG, xj = 1 and yj = 0 for j ≥ 2 or, WLOG, x1 = 0 and y1 6= 0 hold as in the above paragraph. So, suppose, WLOG,
x1 = 2, y1 = 3, and xj = yj for each j ≥ 2. Some coordinate of y must be zero, so say WLOG, y2 = x2 = 0. Then
(2, 1, 0, . . . , 0) ∈ U with d(x, (2, 1, 0, . . . , 0)) = 1 but d(y, (2, 1, 0, . . . , 0)) > 1. Thus U is a resolving set.

Next, we show U is minimal. Note that by Proposition 2.1, if any subset M of U is a resolving set T ⊆ M . Suppose M

does not contain some element of Q. WLOG, consider the case where M = U −{(2, 1, 0, . . . , 0)}. For x∗ = (2, 0, 1, . . . , 1) and
y∗ = (3, 0, 1, . . . , 1), note x∗, y∗ ∈ V (Γ(R)) − U . For any element q ∈ Q − {(2, 1, 0, . . . , 0)}, d(x∗, q) = d(y∗, q) = 2. For any
t = (t1, . . . , tk+1) ∈ T , d(x∗, t) = d(y∗, t) = 2 if t2 = 0 or d(x∗, t) = d(y∗, t) = 3 if t2 = 1. Hence, r(x∗|M) = r(y∗|M). Thus, U is
a minimal resolving set. Therefore dim+(Γ(R)) ≥ |U | = (2k − 1) + k.

Corollary 4.1. Let

R = S ×
k∏

i=1

Z2

where k ≥ 3 and S ∈ {Z4,Z2[X]/(X2)}. Then dim(Γ(R)) 6= dim+(Γ(R)).
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5. When metric and upper dimension of Γ(R) are equal

In the previous sections, examples were given of rings whose metric and upper dimension differ. In this final section, it
will be shown that those examples are the only rings with that property giving a complete characterization of such rings.

Theorem 5.1. Let R be a finite commutative ring that is not a field. Then dim(Γ(R)) 6= dim+(Γ(R)) if and only if

R ∼= S ×
m∏
i=1

Z2

where m ≥ 3 and S ∈ {Z2,Z4,Z2[X]/(X2)}.

The proof of Theorem 5.1 will be given at the end of the section. We first must characterize the finite rings where the
resolving sets are completely determined by distance similar vertices.

Lemma 5.1. Let R be a finite commutative local ring with identity that is not a field.

(i) Γ(R) does not have at least two distinct vertices that are distance similar if and only if R is isomorphic to Z4 or
Z2[X]/(X2),

(ii) If Γ(R) has a vertex x that is uniquely distance similar, then 2x = 0 and x is the only vertex such that xz = 0 for all
z ∈ V (Γ(R)).

Proof. (i) Let x ∈ V (Γ(R)) = Z(R)∗. Since R is local, there is some a ∈ Z(R)∗ such that az = 0 for all z ∈ Z(R). If x+ a 6= 0,
then x + a 6= x and x + a 6= a, and x and x + a are distance similar vertices (since zx = 0 if and only if z(x + a) = 0). If
x + a = 0, then x = −a. Therefore, x and a are distance similar if x 6= a. The only cases where Z(R)∗ = {a} are Z4 or
Z2[X]/(X2).

(ii) If x is uniquely distance similar, then 2x = 0, for otherwise x and −x would be distance similar. If there was any
vertex a 6= x such that az = 0 for all z ∈ Z(R), the x and x + a would be distance similar. Since R is local implies there is
some t ∈ Z(R)∗ with tZ(R) = {0}, it must be the case that xZ(R) = {0}.

Note, that if R is isomorphic to Z4 or Z2[X]/(X2), then dim(Γ(R)) = dim+(Γ(R)) as there is only one vertex in Γ(R).
Thus, we will treat these two rings as special cases in the following results.

Proposition 5.1. Let R be a finite commutative local ring with identity that is not a field and not isomorphic to Z4 or
Z2[X]/(X2). Then Γ(R) has a resolving set completely determined by distance similarity.

Proof. If Γ(R) has no uniquely distance similar vertices, then the result is clearly true by Proposition 2.1. So, suppose
x is uniquely distance similar in Γ(R). Then, by Lemma 5.1, x is the only vertex such that xz = 0 for all z ∈ V (Γ(R)).
Let V1, V2, . . . , Vk be a partition of Γ(R) into distance similar classes. Let yi ∈ Vi for i = 1, . . . , k and W = V1 ∪ V2 ∪
. . . ∪ Vk − {y1, y2, . . . , yk}. All that remains to verify W is a minimal resolving set is to verify r(x|W ) 6= r(a|W ) for all
a ∈ V (Γ(R))− (W ∪{x}). However, if a ∈ V (Γ(R))− (W ∪{x}), there is some t ∈ V (Γ(R)) with ta 6= 0. Note that t is distance
similar to t + x, so either t ∈W or t + x ∈W with d(a, t + x) = d(a, t) 6= 1. However, d(x,w) = 1 for all w ∈W .

Now, we will use the fact that any finite commutative ring with identity can be written as a direct product of local rings.

Theorem 5.2. Let n ≥ 1 and R =
∏n

1 Ri where each Ri is a finite commutative local ring with identity and if n = 1, R1 is
not a field and not isomorphic to Z4 or Z2[X]/(X2). Then R has a resolving set completely determined by distance similarity
if and only if R is not isomorphic to any ring of the form

S ×
k∏

i=1

Z2

where k ≥ 1 and S ∈ {Z2,Z4,Z2[X]/(X2)}.

Proof. If n = 1, by Proposition 5.1, the result holds. Assume n ≥ 2. If Γ(R) has no uniquely distance similar vertices, then
the result is clearly true by Proposition 2.1. So, suppose x = (x1, . . . , xn) is uniquely distance similar in Γ(R). If xi is distance
similar to ri in some Γ(Ri), then r = (x1, . . . , xi−1, ri, xi+1, . . . , xn) is distance similar to x in Γ(R) (as x(a1, . . . , an) = (0, . . . , 0)

if and only if r(a1, . . . , an) = (0, . . . , 0) for any (a1, . . . , an) ∈ Z(R)). Thus, this leaves only three possibilities for each xi:
Case A: xi = 0.
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Case B: xi ∈ Z(Ri)
∗. Since Ri is local, there is some ai ∈ Z(Ri) such that aiZ(Ri) = {0}. However, this would mean, as

in Lemma 5.1, x is distance similar to (x1, . . . , xi−1, xi + ai, xi+1, . . . , xn) unless xi = ai and xi is the only element of Z(Ri)
∗

such that xiZ(R) = {0}.
Case C: xi ∈ Ri − Z(Ri). If Ri 6' Z2, then |Ri − Z(Ri)| ≥ 2. If ti ∈ Ri − Z(Ri) with ti 6= xi, then x is distance similar to

(x1, . . . , xi−1, ti, xi+1, . . . , xn). Hence, if xi ∈ Ri − Z(Ri), then Ri ' Z2 and xi = 1.
Let V1, V2, . . . , Vk be a partition of Γ(R) into distance similar classes. Let vi ∈ Vi for i = 1, . . . , k and W = V1 ∪ V2 ∪ . . . ∪

Vk − {v1, v2, . . . , vk}. Let y = (y1, . . . , yn) ∈ V (Γ(R))− (W ∪ {x}).
Case 1: There is some coordinate i with xi = 0 and yi 6= 0. If Ri 6' Z2, then choose distinct elements ti, t

∗
i ∈ Ri − Z(Ri)

and define t = (0, . . . , 0, ti, 0, . . . , 0) and t∗ = (0, . . . , 0, t∗i , 0, . . . , 0). Then either t ∈ W or t∗ ∈ W with d(x, t) = d(x, t∗) = 1

and d(y, t) = d(y, t∗) > 1.
So, suppose Ri ' Z2 with xi = 0 and yi = 1. Then define t = (1, . . . , 1, 0, 1, . . . , 1) with ti = 0. Note d(x, t) = 2 but

d(y, t) ∈ {1, 3}. Also, unless each Rj ' Z2, either t ∈ W or some distance similar vertex t∗ ∈ W (as replacing 1 with any
element of Rj − Z(Rj) in coordinate j produces an element distance similar to t if Rj 6' Z2).

Case 2: There is some coordinate i with yi = 0 and xi 6= 0. By an argument analogous to the last case, we can find
t ∈W with d(y, t) 6= d(x, t) unless each Rj ' Z2.

Case 3: There is some coordinate i with xi ∈ Z(Ri)
∗. Then, as in the above proposition, xiZ(Ri) = {0}. As seen in Case

2, we can assume yi 6= 0. Suppose Ri 6' Z4 and Ri 6' Z2[X]/(X2). If yi 6∈ Z(R)∗, then, by Lemma 5.1, we can choose distinct
elements ti and t∗i of Z(Ri)

∗ that are distance similar in Γ(Ri). Define t = (0, . . . , 0, ti, 0, . . . , 0) and t∗ = (0, . . . , 0, t∗i , 0, . . . , 0).
Then either t ∈ W or t∗ ∈ W with d(x, t) = d(x, t∗) = 1 and d(y, t) = d(y, t∗) > 1. If instead yi ∈ Z(R)∗ − {xi}, then there is
some qi ∈ Z(Ri) with yiqi 6= 0. Let q = (0, . . . , 0, qi, 0, . . . , 0) and q∗ = (0, . . . , 0, qi + xi, 0, . . . , 0). Then q and q∗ are distance
similar in Γ(R) and therefore either q ∈ W or q∗ ∈ W . Also, d(x, q) = d(x, q∗) = 1 but d(y, q) = d(y, q∗) > 1. Hence,
r(x|W ) 6= r(y|W ) unless xi = yi.

Now, let us assume r(x|W ) = r(y|W ) and R 6'
∏n

i Z2. Since x is a zero divisor, some coordinate of xi must be 0 or a zero
divisor of Ri.

If xi = 0, then yi = 0 by Case 1.
If xi = 1, then Ri ' Z2 and, by Case 2, yi = 1 = xi.
If xi ∈ Z(Ri)

∗, then, as in Case 3, either xi = yi or Ri ' Z4 or Z2[X]/(X2).
Since x 6= y, it must be the case that Ri ' Z4 or Z2[X]/(X2) with xi ∈ Z(Ri)

∗ and yi ∈ Ri − Z(Ri) for some i.
Suppose for any k 6= i, Rk is not isomorphic to Z2, Z4 or Z2[X]/(X2). Note that this would imply xk 6= 1. If xk = 0,

choose distinct tk, t∗k ∈ Rk − Z(Rk). Define t to be the element of R with tk in coordinate k, xi in coordinate i, and 0 in all
other coordinates. Similarly, define t∗ to be the element of R with t∗k in coordinate k, xi in coordinate i, and 0 in all other
coordinates. Then either t ∈ W or t∗ ∈ W with d(x, t) = d(x, t∗) = 1 and d(y, t) − d(y, t∗) > 1. If xk ∈ Z(Rk)∗, then, by the
above proposition, we can choose distinct ak, bk ∈ Z(Rk)∗ such that ak and bk are distance similar in Γ(Rk). Define a to
be the element of R with ak in coordinate k, xi in coordinate i, and 0 in all other coordinates. Similarly, define b to be the
element of R with bk in coordinate k, xi in coordinate i, and 0 in all other coordinates. Then either a ∈ W or b ∈ W with
d(a, x) = d(b, x) = 1 but d(a, y) = d(b, y) > 1.

Hence, having reached a contradiction to r(x|W ) = r(y|W ) in all possible cases, it must be the case that W is a minimal
resolving set except possibly in the cases where each Ri is isomorphic to Z2 or Z4 or Z2[X]/(X2).

Finally, suppose each Ri is isomorphic to Z2, Z4 or Z2[X]/(X2) where|Rj | > 2 and |Rk| > 2 for some j 6= k. That is,
WLOG, say R1 ' Z4 or Z2[X]/(X2), and R2 ' Z4 or Z2[X]/(X2). Define W , x, and y as above. Suppose r(x|W ) = r(y|W ).
As seen above, if there is some coordinate i where xi 6= yi, then Ri 6= Z2. Thus, x and y differ only in coordinates j where
Rj ' Z4 or Z2[X]/(X2). Also as seen above, it cannot be the case that xj = 0 or yj = 0 in these coordinates.

So, since x 6= y, WLOG say x1 6= y1. Then, as above, it must be the case x1 ∈ Z(R1)∗ and y1 ∈ R1 − Z(R1). Let
s1, s2 ∈ R2 − Z(R2) with s1 6= s2, and let t = (x1, s1, 1, . . . , 1) and t∗ = (x1, s2, 1, . . . , 1). Then t and t∗ are distance similar,
implying t ∈ W or t∗ ∈ W . Note d(x, t) = d(x, t∗) = 2, but d(y, t) = d(y, t∗) = 3. This contradicts that r(x|W ) = r(y|W ),
implying W is a minimal resolving set.

Proof of Theorem 5.1. If R is not of the form given then, by Theorem 5.2 and Lemma 2.1, dim(Γ(R)) = dim+(Γ(R)). Now,
assume

R ∼= S ×
k∏

i=1

Z2

where k ≥ 1 and S ∈ {Z2,Z4,Z2[X]/(X2)}. Example 4.1 shows that when 1 ≤ k ≤ 2 and S ∈ {Z4,Z2[X]/(X2)}, dim(Γ(R)) =

dim+(Γ(R)). Theorem 3.1 shows that when 1 ≤ k ≤ 2 and S = Z2, dim(Γ(R)) = dim+(Γ(R)). Finally, if k ≥ 3, Proposition
3.1 and Corollary 4.1 show that dim(Γ(R)) 6= dim+(Γ(R)).
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