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Abstract
Let G = (V,E) be a directed graph. A 2-twinless block in G is a maximal subset B ⊆ V of size at least 2 such that for every
pair of distinct vertices x, y ∈ B, and for every vertex w ∈ V \ {x, y}, the vertices x, y are in the same twinless strongly
connected component of G \ {w}. In this paper, algorithms for computing the 2-twinless blocks of a directed graph are
presented.
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1. Introduction

Let G = (V,E) be a directed graph. The graph G is twinless strongly connected if it contains a strongly connected spanning
subgraph (V,Et) such that Et does not contain any pair of antiparallel edges. A twinless strongly connected component of
G is a maximal subset Ct ⊆ V such that the induced subgraph on Ct is twinless strongly connected. A strong articulation
point of G is a vertex whose removal increases the number of strongly connected components of G. A strong bridge of G
is an edge whose deletion increases the number of strongly connected components of G. A strongly connected graph is
2-vertex-connected if it has at least 3 vertices and it has no strong articulation points. A 2-vertex-connected component
of G is a maximal vertex subset Cv ⊆ V such that the induced subgraph on Cv is 2-vertex-connected. A 2-directed block
in G is a maximal vertex subset Bd ⊆ V with |Bd| > 1 such that for any distinct vertices x, y ∈ Bd, the graph G contains
two vertex-disjoint paths from x to y and two vertex-disjoint paths from y to x. A 2-edge block in G is a maximal subset
Beb ⊆ V with |Beb| > 1 such that for any distinct vertices v, w ∈ Beb, there are two edge-disjoint paths from v to w and
two edge-disjoint paths from w to v in G. A 2-strong block in G is a maximal vertex subset Bs ⊆ V with |Bs| > 1 such
that for each pair of distinct vertices x, y ∈ Bs and for every vertex u ∈ V \ {x, y}, the vertices x and y are in the same
strongly connected component of the graph G \ {u}. A twinless articulation point of G is a vertex whose removal increases
the number of twinless strongly connected components of G. A 2-twinless block in G is a maximal vertex set B ⊆ V of size
at least 2 such that for each pair of distinct vertices x, y ∈ B, and for each vertex w ∈ V \ {x, y}, the vertices x, y are in the
same twinless strongly connected component of G \ {w}. Notice that 2-strong blocks are not necessarily 2-twinless blocks
(see Figure 1).

A twinless strongly connected graphG is said to be 2-vertex-twinless-connected if it has at least three vertices and it does
not contain any twinless articulation point [19]. A 2-vertex-twinless-connected component is a maximal subset U2vt ⊆ V

such that the induced subgraph on U2vt is 2-vertex-twinless-connected. While 2-vertex-twinless-connected components
have at least linear number of edges, the subgraphs induced by 2-twinless blocks do not necessarily contain edges.

Strongly connected components can be found in linear time [25]. In 2006, Raghavan [22] showed that the twinless
strongly connected component of a directed graph can be found in linear time. In 2010, Georgiadis [7] presented an al-
gorithm to check whether a strongly connected graph is 2-vertex-connected in linear time. Italiano et al. [15] gave linear
time algorithms for identifying all the strong articulation points and strong bridges of a directed graph. Their algorithms
are based on dominators [1–4,6,21]. In 2014, Jaberi [17] presented algorithms for computing the 2-vertex-connected com-
ponents of directed graphs in O(nm) time (published in [16]). Henzinger et al. [14] gave algorithms for calculating the
2-vertex-connected components in O(n2) time. Jaberi [18] presented algorithms for computing 2-blocks in directed graphs.
Georgiadis et al. [9,10] gave linear time algorithms for determining 2-edge blocks. Georgiadis et al. [11,12] also gave linear
time algorithms for calculating 2-directed blocks and 2-strong blocks. Georgiadis et al. [13] and Luigi et al. [20] performed
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Figure 1: A strongly connected graph G, which contains two 2-strong blocks C1 = {2, 7} , C2 = {12, 13, 17, 19}, and one
2-twinless block B = {2, 7}. Notice that the vertices 12 and 17 do not belong to the same twinless strongly connected
component of G \ {13}.

experimental studies of recent algorithms that calculate 2-blocks and 2-connected components in directed graphs. In 2019,
Jaberi [19] presented an algorithm for computing 2-vertex-twinless-connected components. Georgiadis and Kosinas [8]
gave a linear time algorithm for calculating twinless articulation points.

In the next section, we show that the 2-twinless blocks of a directed graph can be calculated in O(n3) time.

2. Algorithm for computing 2-twinless blocks

In this section we present an algorithm for computing the 2-twinless blocks of a twinless strongly connected graph. Since
twinless strongly connected components do not share vertices of the same 2-twinless block, we consider only twinless
strongly connected graphs. Let G = (V,E) be a twinless strongly connected graph. We define a relation 2t

! as follows. For
any distinct vertices x, y ∈ V , we write x

2t
! y if for all vertices w ∈ V \ {x, y}, the vertices x, y are in the same twinless

strongly connected component of G \ {w}. By definition, a 2-twinless block in G is a maximal subset B2t ⊆ V with |B2t| > 1

such that for every two vertices x, y ∈ B2t, we have x
2t
! y.

The next lemma shows that 2-twinless blocks share at most one vertex.

Lemma 2.1. Let G = (V,E) be a twinless strongly connected graph. Let B2t
1 , B2t

2 be distinct 2-twinless blocks in G. Then
|B2t

1 ∩B2t
2 | ≤ 1.

Proof. Suppose for the sake of contradiction that B2t
1 and B2t

2 have at least two vertices in common. Clearly, B2t
1 ∪ B2t

2 is
not a 2-twinless block in G. Let x and y be vertices belonging to B2t

1 and B2t
2 , respectively, such that x, y /∈ B2t

1 ∩ B2t
2 . Let

z be any vertex in V \ {x, y}. Since |B2t
1 ∩ B2t

2 | > 1, there is a vertex v in (B2t
1 ∩ B2t

2 ) \ {z}. Note that x, v are in the same
twinless strongly connected component of G \ {z} since x, v ∈ B2t

1 . Moreover, v and y lie in the same twinless strongly
connected component of G \ {z}. By Lemma 1 of [22], x and y are in the same twinless strongly connected component of
G \ {z}. Therefore, x, y belong to the same 2-twinless block.

The following lemma shows an interesting property of the relation 2t
!.

Lemma 2.2. Let G = (V,E) be a twinless strongly connected graph and let {v0, v1, . . . , vl} be set of vertices of G such that
vl

2t
! v0 and vi−1

2t
! vi for i ∈ {1, 2 . . . , l}. Then {v0, v1, . . . , vl} is a subset of a 2-twinless block in G.
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Proof. Assume for the purpose of contradiction that there are two vertices vr and vq in G such that vr and vq are in distinct
2-twinless blocks of G and r, q ∈ {0, 1, . . . , l}. Suppose without loss of generality that r < q. Then there is a vertex
z ∈ V \ {vr, vq} such that vr and vq are in distinct twinless strongly connected components of G \ {z}. We distinguish two
cases.

1. z ∈ {vr+1, vr+2, . . . , vq−1}. In this case, the vertices vi−1, vi belong to the same twinless strongly connected component
of G \ {z} for each i ∈ {1, 2, . . . , r} ∪ {q + 1, q+ 2, . . . , l}. Moreover, the vertices v0, vl are in the same twinless strongly
connected component of G \ {z} because v0

2t
! vl. Therefore, the vertices vr, vq are in the same twinless strongly

connected component of the graph G \ {z}, a contradiction.

2. z /∈ {vr+1, vr+2, . . . , vq−1}. Then, for each i ∈ {r + 1, r + 2, . . . , q}, the vertices vi−1, vi lie in the same twinless strongly
connected component of G \ {z}. Consequently, the vertices vr, vq belong to the same twinless strongly connected
component of the graph G \ {z}, a contradiction.

Let G = (V,E) be a twinless strongly connected graph. We construct the 2-twinless block graph G2t = (V 2t, E2t) of G as
follows. For every 2-twinlesss block Bi, we add a vertex vi to V 2t. Moreover, for each vertex v ∈ V , if v belongs to at least
two distinct 2-twinless blocks, we add a vertex v to V 2t. For any distinct 2-twinless blocks Bi, Bj with Bi ∩ Bj = {v}, we
put two undirected edges (vi, v), (v, vj) into E2t.

Lemma 2.3. The 2-twinless block graph of a twinless strongly connected graph is a forest.

Proof. This result follows from Lemma 2.2 and Lemma 2.1.

Lemma 2.4. Let G = (V,E) be a twinless strongly connected graph and let x, y be distinct vertices in G. Suppose that
v ∈ V \ {x, y} is not a twinless articulation point. Then x, y are in the same twinless strong connected component of G \ {v}.

Proof. Immediate from the definition.

Now, we give an algorithm for computing the 2-twinless blocks of a twinless strongly connected graph G = (V,E).

Algorithm 2.1.
Input: A twinless strongly connected graph G = (V,E).
Output: The 2-twinless blocks of G.
1 if G is 2-vertex-twinless connected then
2 Output V .
3 else
4 Let S be an n× n matrix.
5 Initialize S with 1s.
6 determine the twinless articulation points of G.
7 for each twinless articulation point z of G do
8 Identify the twinless strongly connected components of G \ {z}.
9 for each pair (v, w) ∈ (V \ {z})× (V \ {z}) do
10 if v, w in different twinless strongly connected components of G \ {z} then
11 S[v, w]← 0.
12 Eb ← ∅.
13 for each pair (v, u) ∈ V × V do
14 if S[v, u] = 1 and S[u, v] = 1 then
15 Eb ← Eb ∪ {(v, u)}.
16 calculate the blocks of size ≥ 2 of Gb = (V,Eb) and output them.

The correctness of Algorithm 2.1 follows from the following lemma.

Lemma 2.5. A vertex subset B ⊆ V is a 2-twinless block of G if and only if B is a block of the undirected graph Gb = (V,Eb)

which is constructed in lines 12–15 of Algorithm 2.1

Proof. It follows from Lemma 2.2 and Lemma 2.4.

Theorem 2.1. Algorithm 2.1 runs in O(n3) time.
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Proof. Georgiadis and Kosinas [8] showed that the twinless articulation points can be computed in linear time. The
initialization of matrix S takes O(n2) time. The number of iterations of the for-loop in lines 7–11 is at most n because the
number of twinless articulation points is at most n. Consequently, lines 7–11 require O(n3). Furthermore, the blocks of
an undirected graph can be found in linear time [24,25].

The following lemma shows an important property of Gb.

Lemma 2.6. The graph Gb which is constructed in lines 12–15 of Algorithm 2.1 is chordal.

Proof. It follows from Lemma 2.2.

By Lemma 2.6, one can calculate the maximal cliques of Gb instead of blocks. The maximal cliques of a chordal graph
can be calculated in linear time [5,23].

3. An improved version of Algorithm 2.1

In this section, we present an improved version of Algorithm 2.1.
The following lemma shows a connection between 2-twinless blocks and 2-strong blocks.

Lemma 3.1. Let G = (V,E) be a twinless strongly connected graph. Suppose that Bt is a 2-twinless block in G. Then Bt is
a subset of a 2-strong block in G.

Proof. Let v and w be distinct vertices in Bt, and let x ∈ V \ {v, w}. By definition, the vertices v, w belong to the same
twinless strongly connected component C of G\{x}. Since C is a subset of a strongly connected component of G, the vertices
v, w also lie in the same strongly connected component of G \ {x}. Consequently, v, w are in the same 2-strong block in
G.

The next algorithm describes an improved version of Algorithm 2.1 which is based on Lemma 3.1 and Lemma 2.2.

Algorithm 3.1.
Input: A twinless strongly connected graph G = (V,E).
Output: The 2-twinless blocks of G.
1 if G is 2-vertex-twinless connected then
2 Output V .
3 else
4 find the 2-strong blocks of G
5 Let S be an n× n matrix.
6 Initialize S with 0.
7 A← ∅.
8 for each 2-strong block B of G do
9 for each pair of vertices v, w ∈ B do
10 S[v, w]← 1
11 S[w, v]← 1
12 for each vertex v ∈ B do
13 if v /∈ A then
14 add v to A
15 determine the twinless articulation points of G.
16 for each twinless articulation point z of G do
17 Identify the twinless strongly connected components of G \ {z}.
18 for each pair (v, w) ∈ (A \ {z})× (A \ {z}) do
19 if v, w in different twinless strongly connected components of G \ {z} then
20 S[v, w]← 0.
21 Eb ← ∅.
22 for each pair (v, u) ∈ A×A do
23 if S[v, u] = 1 and S[u, v] = 1 then
24 Eb ← Eb ∪ {(v, u)}.
25 calculate the blocks of size ≥ 2 of Gb = (A,Eb) and output them.

Theorem 3.1. The running time of Algorithm 3.1 is O(t(s2 + m) + n2), where s = |A| and t is the number of twinless
articulation points of G.
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Proof. The 2-strong blocks of a directed graph can be computed in linear time [11]. Furthermore, the twinless articulation
points of a directed graph can be identified in linear time using the algorithm of Georgiadis and Kosinas [8]. Since the
number of iterations of the for-loop in lines 16–20 is at most t, lines 16–20 take O(t(s2 +m)) time.

Let G = (V,E) be a twinless strongly connected graph. If the refine operation defined in [11, 20] is used to refine the
2-strong blocks of G for all twinless articulation points, then the 2-twinless blocks of a directed graph G = (V,E) can be
computed in O(tm) time, where t is the number of twinless articulation points of G.

We leave as an open problem whether the 2-twinless blocks of a directed graph can be calculated in linear time.
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