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Abstract

Let G = (V, E) be a directed graph. A 2-twinless block in G is a maximal subset B C V of size at least 2 such that for every
pair of distinct vertices xz,y € B, and for every vertex w € V \ {z,y}, the vertices z,y are in the same twinless strongly
connected component of G \ {w}. In this paper, algorithms for computing the 2-twinless blocks of a directed graph are
presented.
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1. Introduction

Let G = (V, E) be a directed graph. The graph G is twinless strongly connected if it contains a strongly connected spanning
subgraph (V, E') such that E* does not contain any pair of antiparallel edges. A twinless strongly connected component of
G is a maximal subset C; C V such that the induced subgraph on C; is twinless strongly connected. A strong articulation
point of G is a vertex whose removal increases the number of strongly connected components of G. A strong bridge of G
is an edge whose deletion increases the number of strongly connected components of G. A strongly connected graph is
2-vertex-connected if it has at least 3 vertices and it has no strong articulation points. A 2-vertex-connected component
of G is a maximal vertex subset C* C V such that the induced subgraph on C" is 2-vertex-connected. A 2-directed block
in G is a maximal vertex subset B¢ C V with |B¢| > 1 such that for any distinct vertices x,y € B?, the graph G contains
two vertex-disjoint paths from z to y and two vertex-disjoint paths from y to z. A 2-edge block in G is a maximal subset
B¢’ C V with |B®®| > 1 such that for any distinct vertices v,w € B, there are two edge-disjoint paths from v to w and
two edge-disjoint paths from w to v in G. A 2-strong block in G is a maximal vertex subset B* C V with |B*| > 1 such
that for each pair of distinct vertices z,y € B® and for every vertex v € V \ {z,y}, the vertices z and y are in the same
strongly connected component of the graph G\ {u}. A twinless articulation point of G is a vertex whose removal increases
the number of twinless strongly connected components of G. A 2-twinless block in G is a maximal vertex set B C V of size
at least 2 such that for each pair of distinct vertices z,y € B, and for each vertex w € V' \ {x,y}, the vertices z, y are in the
same twinless strongly connected component of G \ {w}. Notice that 2-strong blocks are not necessarily 2-twinless blocks
(see Figure 1).

A twinless strongly connected graph G is said to be 2-vertex-twinless-connected if it has at least three vertices and it does
not contain any twinless articulation point [19]. A 2-vertex-twinless-connected component is a maximal subset U?"* C V
such that the induced subgraph on U?" is 2-vertex-twinless-connected. While 2-vertex-twinless-connected components
have at least linear number of edges, the subgraphs induced by 2-twinless blocks do not necessarily contain edges.

Strongly connected components can be found in linear time [25]. In 2006, Raghavan [22] showed that the twinless
strongly connected component of a directed graph can be found in linear time. In 2010, Georgiadis [7] presented an al-
gorithm to check whether a strongly connected graph is 2-vertex-connected in linear time. Italiano et al. [15] gave linear
time algorithms for identifying all the strong articulation points and strong bridges of a directed graph. Their algorithms
are based on dominators [1-4,6,21]. In 2014, Jaberi [17] presented algorithms for computing the 2-vertex-connected com-
ponents of directed graphs in O(nm) time (published in [16]). Henzinger et al. [14] gave algorithms for calculating the
2-vertex-connected components in O(n?) time. Jaberi [18] presented algorithms for computing 2-blocks in directed graphs.
Georgiadis et al. [9,10] gave linear time algorithms for determining 2-edge blocks. Georgiadis et al. [11,12] also gave linear
time algorithms for calculating 2-directed blocks and 2-strong blocks. Georgiadis et al. [13] and Luigi et al. [20] performed
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Figure 1: A strongly connected graph G, which contains two 2-strong blocks C; = {2,7},Cy = {12,13,17,19}, and one
2-twinless block B = {2,7}. Notice that the vertices 12 and 17 do not belong to the same twinless strongly connected
component of G \ {13}.

experimental studies of recent algorithms that calculate 2-blocks and 2-connected components in directed graphs. In 2019,
Jaberi [19] presented an algorithm for computing 2-vertex-twinless-connected components. Georgiadis and Kosinas [8]
gave a linear time algorithm for calculating twinless articulation points.

In the next section, we show that the 2-twinless blocks of a directed graph can be calculated in O(n?) time.

2. Algorithm for computing 2-twinless blocks

In this section we present an algorithm for computing the 2-twinless blocks of a twinless strongly connected graph. Since
twinless strongly connected components do not share vertices of the same 2-twinless block, we consider only twinless
strongly connected graphs. Let G = (V, E) be a twinless strongly connected graph. We define a relation 2 as follows. For
any distinct vertices xz,y € V, we write x 2 y if for all vertices w € V' \ {z, y}, the vertices x,y are in the same twinless
strongly connected component of G\ {w}. By definition, a 2-twinless block in G is a maximal subset B* C V with |B%| > 1
such that for every two vertices z,y € B?*, we have « RN 1.

The next lemma shows that 2-twinless blocks share at most one vertex.

Lemma 2.1. Let G = (V, E) be a twinless strongly connected graph. Let B3, B2! be distinct 2-twinless blocks in G. Then
|B2 N B2 < 1.

Proof. Suppose for the sake of contradiction that B?' and B3! have at least two vertices in common. Clearly, B U B3 is
not a 2-twinless block in G. Let 2 and y be vertices belonging to B?' and B3!, respectively, such that z,y ¢ B# N B3, Let
z be any vertex in V' \ {z,y}. Since |B?' N B3| > 1, there is a vertex v in (B# N B3!) \ {z}. Note that z,v are in the same
twinless strongly connected component of G \ {z} since x,v € B?'. Moreover, v and y lie in the same twinless strongly
connected component of G \ {z}. By Lemma 1 of [22], z and y are in the same twinless strongly connected component of
G\ {z}. Therefore, z,y belong to the same 2-twinless block. O

The following lemma shows an interesting property of the relation s

Lemma 2.2. Let G = (V, E) be a twinless strongly connected graph and let {vg,v1,...,v;} be set of vertices of G such that
v & vy and v;_1 & v fori € {1,2...,1}. Then {vg,v1,...,v} is a subset of a 2-twinless block in G.
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Proof. Assume for the purpose of contradiction that there are two vertices v, and v, in G such that v, and v, are in distinct
2-twinless blocks of G and r,q € {0,1,...,l}. Suppose without loss of generality that » < ¢. Then there is a vertex
z € V\ {v,,v4} such that v, and v, are in distinct twinless strongly connected components of G \ {z}. We distinguish two
cases.

1. z € {vy41,Vr42,...,v4—1}. In this case, the vertices v;_1, v; belong to the same twinless strongly connected component
of G\ {z}foreachi e {1,2,...,r}U{qg+1,¢+2,...,l}. Moreover, the vertices vy, v; are in the same twinless strongly
connected component of G \ {z} because vy & v,. Therefore, the vertices v,, vq are in the same twinless strongly
connected component of the graph G \ {z}, a contradiction.

2. 2 ¢ {Vy+1,Vr42,...,V4-1}. Then, foreachi € {r+ 1,7+ 2,...,q}, the vertices v;_1,v; lie in the same twinless strongly
connected component of G \ {z}. Consequently, the vertices v,, v, belong to the same twinless strongly connected
component of the graph G\ {z}, a contradiction.

O

Let G = (V, E) be a twinless strongly connected graph. We construct the 2-twinless block graph G** = (V?!, E?!) of G as
follows. For every 2-twinlesss block B;, we add a vertex v; to V2!, Moreover, for each vertex v € V, if v belongs to at least
two distinct 2-twinless blocks, we add a vertex v to V!, For any distinct 2-twinless blocks B;, B; with B; N B; = {v}, we
put two undirected edges (v;,v), (v,v;) into E%.

Lemma 2.3. The 2-twinless block graph of a twinless strongly connected graph is a forest.
Proof. This result follows from Lemma 2.2 and Lemma 2.1. O

Lemma 2.4. Let G = (V, E) be a twinless strongly connected graph and let x,y be distinct vertices in G. Suppose that
v € V\{xz,y} is not a twinless articulation point. Then x,y are in the same twinless strong connected component of G \ {v}.

Proof. Immediate from the definition. O
Now, we give an algorithm for computing the 2-twinless blocks of a twinless strongly connected graph G = (V, E).

Algorithm 2.1.

Input: A twinless strongly connected graph G = (V, E).
Output: The 2-twinless blocks of G.

if G is 2-vertex-twinless connected then

2 Output V.

3 else

4 Let S be an n x n matrix.

5 Initialize S with 1s.
6

7

8

[u—y

determine the twinless articulation points of G.
for each twinless articulation point z of G do
Identify the twinless strongly connected components of G \ {z}.

9 for each pair (v, w) € (V \ {z}) x (V\ {z}) do

10 if v, w in different twinless strongly connected components of G \ {z} then
11 Slv,w] « 0.

12 B« 0.

13 for each pair (v,u) € V x V do

14 if S[v,u] =1 and S[u,v] = 1 then

15 Eb « E*U{(v,u)}.

16 calculate the blocks of size > 2 of G* = (V, E®) and output them.

The correctness of Algorithm 2.1 follows from the following lemma.

Lemma 2.5. A vertex subset B C V is a 2-twinless block of G if and only if B is a block of the undirected graph G* = (V, E®)
which is constructed in lines 12-15 of Algorithm 2.1

Proof. It follows from Lemma 2.2 and Lemma 2.4. O

Theorem 2.1. Algorithm 2.1 runs in O(n?) time.
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Proof. Georgiadis and Kosinas [8] showed that the twinless articulation points can be computed in linear time. The
initialization of matrix S takes O(n?) time. The number of iterations of the for-loop in lines 7—11 is at most n because the
number of twinless articulation points is at most n. Consequently, lines 7-11 require O(n3). Furthermore, the blocks of
an undirected graph can be found in linear time [24,25]. O

The following lemma shows an important property of G°.
Lemma 2.6. The graph G° which is constructed in lines 12-15 of Algorithm 2.1 is chordal.
Proof. It follows from Lemma 2.2. O

By Lemma 2.6, one can calculate the maximal cliques of G? instead of blocks. The maximal cliques of a chordal graph
can be calculated in linear time [5,23].

3. An improved version of Algorithm 2.1

In this section, we present an improved version of Algorithm 2.1.
The following lemma shows a connection between 2-twinless blocks and 2-strong blocks.

Lemma 3.1. Let G = (V, F) be a twinless strongly connected graph. Suppose that B, is a 2-twinless block in G. Then B; is
a subset of a 2-strong block in G.

Proof. Let v and w be distinct vertices in By, and let © € V' \ {v,w}. By definition, the vertices v, w belong to the same
twinless strongly connected component C of G\ {z}. Since C is a subset of a strongly connected component of G, the vertices
v, w also lie in the same strongly connected component of G \ {z}. Consequently, v, w are in the same 2-strong block in
G. O

The next algorithm describes an improved version of Algorithm 2.1 which is based on Lemma 3.1 and Lemma 2.2.

Algorithm 3.1.

Input: A twinless strongly connected graph G = (V, E).
Output: The 2-twinless blocks of G.

if G is 2-vertex-twinless connected then

2 Output V.

3 else

4 find the 2-strong blocks of G
5 Let S be an n x n matrix.

6 Initialize S with 0.
7

8

9

[y

A« 0.
for each 2-strong block B of G do
for each pair of vertices v,w € B do

10 Slv,w] + 1

11 Slw,v] + 1

12 for each vertex v € B do
13 if v ¢ A then

14 addvto A

15 determine the twinless articulation points of G.
16 for each twinless articulation point z of G do

17 Identify the twinless strongly connected components of G \ {z}.

18 for each pair (v,w) € (A\ {z}) x (A\ {z}) do

19 if v, w in different twinless strongly connected components of G \ {z} then
20 Slv, w] + 0.

21 EY <« 0.

22 for each pair (v,u) € A x Ado

23 if S[v,u] =1 and S[u,v] = 1 then

24 EY « B U{(v,u)}.

25  calculate the blocks of size > 2 of G* = (A, E*) and output them.

Theorem 3.1. The running time of Algorithm 3.1 is O(t(s*> + m) + n?), where s = |A| and t is the number of twinless
articulation points of G.
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Proof. The 2-strong blocks of a directed graph can be computed in linear time [11]. Furthermore, the twinless articulation
points of a directed graph can be identified in linear time using the algorithm of Georgiadis and Kosinas [8]. Since the
number of iterations of the for-loop in lines 16-20 is at most ¢, lines 16—20 take O(t(s? + m)) time. O

Let G = (V, E) be a twinless strongly connected graph. If the refine operation defined in [11,20] is used to refine the
2-strong blocks of G for all twinless articulation points, then the 2-twinless blocks of a directed graph G = (V, E) can be
computed in O(tm) time, where t is the number of twinless articulation points of G.

We leave as an open problem whether the 2-twinless blocks of a directed graph can be calculated in linear time.
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