Research Article Computing 2-twinless blocks

Raed Jaberi*

Department of Software and Information Systems, Tishreen University, Lattakia, Syria

(Received: 22 June 2020. Received in revised form:[†] 30 January 2021. Accepted: 16 February 2021. Published online: 20 February 2021.)

© 2021 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/)

Abstract

Let G = (V, E) be a directed graph. A 2-twinless block in G is a maximal subset $B \subseteq V$ of size at least 2 such that for every pair of distinct vertices $x, y \in B$, and for every vertex $w \in V \setminus \{x, y\}$, the vertices x, y are in the same twinless strongly connected component of $G \setminus \{w\}$. In this paper, algorithms for computing the 2-twinless blocks of a directed graph are presented.

Keywords: directed graphs; connectivity; graph algorithms; 2-blocks; twinless strongly connected graphs.

2020 Mathematics Subject Classification: 05C85, 05C20.

1. Introduction

Let G = (V, E) be a directed graph. The graph G is *twinless strongly connected* if it contains a strongly connected spanning subgraph (V, E^t) such that E^t does not contain any pair of antiparallel edges. A twinless strongly connected component of *G* is a maximal subset $C_t \subseteq V$ such that the induced subgraph on C_t is twinless strongly connected. A strong articulation *point* of G is a vertex whose removal increases the number of strongly connected components of G. A strong bridge of G is an edge whose deletion increases the number of strongly connected components of G. A strongly connected graph is 2-vertex-connected if it has at least 3 vertices and it has no strong articulation points. A 2-vertex-connected component of G is a maximal vertex subset $C^v \subseteq V$ such that the induced subgraph on C^v is 2-vertex-connected. A 2-directed block in G is a maximal vertex subset $B^d \subseteq V$ with $|B^d| > 1$ such that for any distinct vertices $x, y \in B^d$, the graph G contains two vertex-disjoint paths from x to y and two vertex-disjoint paths from y to x. A 2-edge block in G is a maximal subset $B^{eb} \subseteq V$ with $|B^{eb}| > 1$ such that for any distinct vertices $v, w \in B^{eb}$, there are two edge-disjoint paths from v to w and two edge-disjoint paths from w to v in G. A 2-strong block in G is a maximal vertex subset $B^s \subseteq V$ with $|B^s| > 1$ such that for each pair of distinct vertices $x, y \in B^s$ and for every vertex $u \in V \setminus \{x, y\}$, the vertices x and y are in the same strongly connected component of the graph $G \setminus \{u\}$. A twinless articulation point of G is a vertex whose removal increases the number of twinless strongly connected components of *G*. A 2-twinless block in *G* is a maximal vertex set $B \subseteq V$ of size at least 2 such that for each pair of distinct vertices $x, y \in B$, and for each vertex $w \in V \setminus \{x, y\}$, the vertices x, y are in the same twinless strongly connected component of $G \setminus \{w\}$. Notice that 2-strong blocks are not necessarily 2-twinless blocks (see Figure 1).

A twinless strongly connected graph G is said to be 2-vertex-twinless-connected if it has at least three vertices and it does not contain any twinless articulation point [19]. A 2-vertex-twinless-connected component is a maximal subset $U^{2vt} \subseteq V$ such that the induced subgraph on U^{2vt} is 2-vertex-twinless-connected. While 2-vertex-twinless-connected components have at least linear number of edges, the subgraphs induced by 2-twinless blocks do not necessarily contain edges.

Strongly connected components can be found in linear time [25]. In 2006, Raghavan [22] showed that the twinless strongly connected component of a directed graph can be found in linear time. In 2010, Georgiadis [7] presented an algorithm to check whether a strongly connected graph is 2-vertex-connected in linear time. Italiano et al. [15] gave linear time algorithms for identifying all the strong articulation points and strong bridges of a directed graph. Their algorithms are based on dominators [1–4, 6, 21]. In 2014, Jaberi [17] presented algorithms for computing the 2-vertex-connected components of directed graphs in O(nm) time (published in [16]). Henzinger et al. [14] gave algorithms for calculating the 2-vertex-connected graphs. Georgiadis et al. [9,10] gave linear time algorithms for determining 2-edge blocks. Georgiadis et al. [11,12] also gave linear time algorithms for calculating 2-directed blocks and 2-strong blocks. Georgiadis et al. [13] and Luigi et al. [20] performed

^{*}E-mail address: jaberi.raed@gmail.com

 $^{^\}dagger First$ decision made: 28 July 2020.

Figure 1: A strongly connected graph G, which contains two 2-strong blocks $C_1 = \{2, 7\}, C_2 = \{12, 13, 17, 19\}$, and one 2-twinless block $B = \{2, 7\}$. Notice that the vertices 12 and 17 do not belong to the same twinless strongly connected component of $G \setminus \{13\}$.

experimental studies of recent algorithms that calculate 2-blocks and 2-connected components in directed graphs. In 2019, Jaberi [19] presented an algorithm for computing 2-vertex-twinless-connected components. Georgiadis and Kosinas [8] gave a linear time algorithm for calculating twinless articulation points.

In the next section, we show that the 2-twinless blocks of a directed graph can be calculated in $O(n^3)$ time.

2. Algorithm for computing 2-twinless blocks

In this section we present an algorithm for computing the 2-twinless blocks of a twinless strongly connected graph. Since twinless strongly connected components do not share vertices of the same 2-twinless block, we consider only twinless strongly connected graphs. Let G = (V, E) be a twinless strongly connected graph. We define a relation $\stackrel{2t}{\longleftrightarrow}$ as follows. For any distinct vertices $x, y \in V$, we write $x \stackrel{2t}{\longleftrightarrow} y$ if for all vertices $w \in V \setminus \{x, y\}$, the vertices x, y are in the same twinless strongly connected component of $G \setminus \{w\}$. By definition, a 2-twinless block in G is a maximal subset $B^{2t} \subseteq V$ with $|B^{2t}| > 1$ such that for every two vertices $x, y \in B^{2t}$, we have $x \stackrel{2t}{\longleftrightarrow} y$.

The next lemma shows that 2-twinless blocks share at most one vertex.

Lemma 2.1. Let G = (V, E) be a twinless strongly connected graph. Let B_1^{2t}, B_2^{2t} be distinct 2-twinless blocks in G. Then $|B_1^{2t} \cap B_2^{2t}| \leq 1$.

Proof. Suppose for the sake of contradiction that B_1^{2t} and B_2^{2t} have at least two vertices in common. Clearly, $B_1^{2t} \cup B_2^{2t}$ is not a 2-twinless block in G. Let x and y be vertices belonging to B_1^{2t} and B_2^{2t} , respectively, such that $x, y \notin B_1^{2t} \cap B_2^{2t}$. Let z be any vertex in $V \setminus \{x, y\}$. Since $|B_1^{2t} \cap B_2^{2t}| > 1$, there is a vertex v in $(B_1^{2t} \cap B_2^{2t}) \setminus \{z\}$. Note that x, v are in the same twinless strongly connected component of $G \setminus \{z\}$ since $x, v \in B_1^{2t}$. Moreover, v and y lie in the same twinless strongly connected component of $G \setminus \{z\}$. By Lemma 1 of [22], x and y are in the same twinless strongly connected component of $G \setminus \{z\}$. Therefore, x, y belong to the same 2-twinless block.

The following lemma shows an interesting property of the relation $\stackrel{2t}{\longleftrightarrow}$.

Lemma 2.2. Let G = (V, E) be a twinless strongly connected graph and let $\{v_0, v_1, \ldots, v_l\}$ be set of vertices of G such that $v_l \stackrel{2t}{\longleftrightarrow} v_0$ and $v_{i-1} \stackrel{2t}{\longleftrightarrow} v_i$ for $i \in \{1, 2..., l\}$. Then $\{v_0, v_1, \ldots, v_l\}$ is a subset of a 2-twinless block in G.

Proof. Assume for the purpose of contradiction that there are two vertices v_r and v_q in G such that v_r and v_q are in distinct 2-twinless blocks of G and $r, q \in \{0, 1, \dots, l\}$. Suppose without loss of generality that r < q. Then there is a vertex $z \in V \setminus \{v_r, v_q\}$ such that v_r and v_q are in distinct twinless strongly connected components of $G \setminus \{z\}$. We distinguish two cases.

- 1. $z \in \{v_{r+1}, v_{r+2}, \dots, v_{q-1}\}$. In this case, the vertices v_{i-1}, v_i belong to the same twinless strongly connected component of $G \setminus \{z\}$ for each $i \in \{1, 2, \dots, r\} \cup \{q+1, q+2, \dots, l\}$. Moreover, the vertices v_0, v_l are in the same twinless strongly connected component of $G \setminus \{z\}$ because $v_0 \stackrel{2t}{\longleftrightarrow} v_l$. Therefore, the vertices v_r, v_q are in the same twinless strongly connected component of the graph $G \setminus \{z\}$, a contradiction.
- 2. $z \notin \{v_{r+1}, v_{r+2}, \dots, v_{q-1}\}$. Then, for each $i \in \{r+1, r+2, \dots, q\}$, the vertices v_{i-1}, v_i lie in the same twinless strongly connected component of $G \setminus \{z\}$. Consequently, the vertices v_r, v_q belong to the same twinless strongly connected component of the graph $G \setminus \{z\}$, a contradiction.

 \square

Let G = (V, E) be a twinless strongly connected graph. We construct the 2-twinless block graph $G^{2t} = (V^{2t}, E^{2t})$ of G as follows. For every 2-twinlesss block B_i , we add a vertex v_i to V^{2t} . Moreover, for each vertex $v \in V$, if v belongs to at least two distinct 2-twinless blocks, we add a vertex v to V^{2t} . For any distinct 2-twinless blocks B_i, B_j with $B_i \cap B_j = \{v\}$, we put two undirected edges $(v_i, v), (v, v_i)$ into E^{2t} .

Lemma 2.3. The 2-twinless block graph of a twinless strongly connected graph is a forest.

Proof. This result follows from Lemma 2.2 and Lemma 2.1.

Lemma 2.4. Let G = (V, E) be a twinless strongly connected graph and let x, y be distinct vertices in G. Suppose that $v \in V \setminus \{x, y\}$ is not a twinless articulation point. Then x, y are in the same twinless strong connected component of $G \setminus \{v\}$.

Proof. Immediate from the definition.

Now, we give an algorithm for computing the 2-twinless blocks of a twinless strongly connected graph G = (V, E).

Algorithm 2.1.

Input: A twinless strongly connected graph G = (V, E). **Output:** The 2-twinless blocks of G. if G is 2-vertex-twinless connected then 1 2 Output V.

3 else

4 Let *S* be an $n \times n$ matrix.

- 5 Initialize S with 1s.
- 6 determine the twinless articulation points of G.
- 7 for each twinless articulation point z of G do
- Identify the twinless strongly connected components of $G \setminus \{z\}$. 8

for each pair $(v, w) \in (V \setminus \{z\}) \times (V \setminus \{z\})$ do 9

10 if v, w in different twinless strongly connected components of $G \setminus \{z\}$ then

11
$$S[v,w] \leftarrow 0.$$

```
E^b \leftarrow \emptyset.
12
```

for each pair $(v, u) \in V \times V$ do 13

if S[v, u] = 1 and S[u, v] = 1 **then** 14

```
E^{b} \leftarrow E^{b} \cup \{(v, u)\}.
15
```

calculate the blocks of size ≥ 2 of $G^b = (V, E^b)$ and output them. 16

The correctness of Algorithm 2.1 follows from the following lemma.

Lemma 2.5. A vertex subset $B \subseteq V$ is a 2-twinless block of G if and only if B is a block of the undirected graph $G^b = (V, E^b)$ which is constructed in lines 12–15 of Algorithm 2.1

Proof. It follows from Lemma 2.2 and Lemma 2.4.

Theorem 2.1. Algorithm 2.1 runs in $O(n^3)$ time.

Proof. Georgiadis and Kosinas [8] showed that the twinless articulation points can be computed in linear time. The initialization of matrix S takes $O(n^2)$ time. The number of iterations of the for-loop in lines 7–11 is at most n because the number of twinless articulation points is at most n. Consequently, lines 7–11 require $O(n^3)$. Furthermore, the blocks of an undirected graph can be found in linear time [24, 25].

The following lemma shows an important property of G^b .

Lemma 2.6. The graph G^b which is constructed in lines 12–15 of Algorithm 2.1 is chordal.

Proof. It follows from Lemma 2.2.

By Lemma 2.6, one can calculate the maximal cliques of G^b instead of blocks. The maximal cliques of a chordal graph can be calculated in linear time [5,23].

3. An improved version of Algorithm 2.1

In this section, we present an improved version of Algorithm 2.1.

The following lemma shows a connection between 2-twinless blocks and 2-strong blocks.

Lemma 3.1. Let G = (V, E) be a twinless strongly connected graph. Suppose that B_t is a 2-twinless block in G. Then B_t is a subset of a 2-strong block in G.

Proof. Let v and w be distinct vertices in B_t , and let $x \in V \setminus \{v, w\}$. By definition, the vertices v, w belong to the same twinless strongly connected component C of $G \setminus \{x\}$. Since C is a subset of a strongly connected component of G, the vertices v, w also lie in the same strongly connected component of $G \setminus \{x\}$. Consequently, v, w are in the same 2-strong block in G.

The next algorithm describes an improved version of Algorithm 2.1 which is based on Lemma 3.1 and Lemma 2.2.

Algorithm 3.1.

Input: A twinless strongly connected graph G = (V, E). **Output:** The 2-twinless blocks of *G*. if G is 2-vertex-twinless connected then 1 Output V. 2 3 else find the 2-strong blocks of G4 Let *S* be an $n \times n$ matrix. $\mathbf{5}$ 6 Initialize S with 0. 7 $A \leftarrow \emptyset$. for each 2-strong block B of G do 8 9 for each pair of vertices $v, w \in B$ do 10 $S[v,w] \leftarrow 1$ $S[w, v] \leftarrow 1$ 11 for each vertex $v \in B$ do 1213if $v \notin A$ then add v to A14 determine the twinless articulation points of G. 1516**for** each twinless articulation point z of G **do** 17Identify the twinless strongly connected components of $G \setminus \{z\}$. 18 for each pair $(v, w) \in (A \setminus \{z\}) \times (A \setminus \{z\})$ do 19 if v, w in different twinless strongly connected components of $G \setminus \{z\}$ then 20 $S[v,w] \leftarrow 0.$ $E^b \leftarrow \emptyset.$ 2122for each pair $(v, u) \in A \times A$ do **if** S[v, u] = 1 and S[u, v] = 1 **then** 23 $E^b \leftarrow E^b \cup \{(v, u)\}.$ 24calculate the blocks of size ≥ 2 of $G^b = (A, E^b)$ and output them. 25

Theorem 3.1. The running time of Algorithm 3.1 is $O(t(s^2 + m) + n^2)$, where s = |A| and t is the number of twinless articulation points of G.

Let G = (V, E) be a twinless strongly connected graph. If the refine operation defined in [11, 20] is used to refine the 2-strong blocks of *G* for all twinless articulation points, then the 2-twinless blocks of a directed graph G = (V, E) can be computed in O(tm) time, where *t* is the number of twinless articulation points of *G*.

We leave as an open problem whether the 2-twinless blocks of a directed graph can be calculated in linear time.

Acknowledgement

The author would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

- [1] S. Alstrup, D. Harel, P.W. Lauridsen, M. Thorup, Dominators in linear time, SIAM J. Comput. 28 (1999) 2117-2132.
- [2] A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, J. R. Westbrook, Linear-time algorithms for dominators and other pathevaluation problems, SIAM J. Comput. 38 (2008) 1533–1573.
- [3] D. Firmani, G. F. Italiano, L. Laura, A. Orlandi, F. Santaroni, Computing strong articulation points and strong bridges in large scale graphs, In: R. Klasing (Ed.), *Experimental Algorithms*, SEA 2012, Lecture Notes in Computer Science, Vol. 7276, Springer, Berlin, 2012, pp. 195–207.
- [4] D. Firmani, L. Georgiadis, G. F. Italiano, L. Laura, F. Santaroni, Strong articulation points and strong bridges in large scale graphs, Algorithmica 74 (2016) 1123–1147.
- [5] F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph, SIAM J. Comput. 1 (1972) 180–187.
- [6] L. Georgiadis, R. E. Tarjan, R.F. Werneck, Finding dominators in practice, J. Graph Algorithms Appl. 10 (2006) 69-94.
- [7] L. Georgiadis, Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t paths in digraphs, In: S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, P. G. Spirakis (Eds.), Automata, Languages and Programming, ICALP 2010, Lecture Notes in Computer Science, Vol. 6198, Springer, Berlin, 2021, pp. 738–749.
- [8] L. Georgiadis, E. Kosinas, Linear-time algorithms for computing twinless strong articulation points and related problems, Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC 2020), pp. 38:1–38:16.
- [9] L. Georgiadis, G. F. Italiano, L. Laura, N. Parotsidis, 2-Edge connectivity in directed graphs, Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms, 2015, pp. 1988–2005.
- [10] L. Georgiadis, G. F. Italiano, L. Laura, N. Parotsidis, 2-Edge connectivity in directed graphs, ACM Trans. Algorithms 13 (2016) Art# 9.
- [11] L. Georgiadis, G. F. Italiano, L. Laura, N. Parotsidis, 2-Vertex connectivity in directed graphs, In: M. Halldórsson, K. Iwama, N. Kobayashi, B. Speckmann (Eds.), Automata, Languages, and Programming, ICALP 2015, Lecture Notes in Computer Science, Vol. 9134, Springer, Berlin, 2015, pp. 605–616.
- [12] L. Georgiadis, G. F. Italiano, L. Laura, N. Parotsidis, 2-vertex connectivity in directed graphs. Inf. Comput. 261 (2018) 248-264.
- [13] L. Georgiadis, G. F. Italiano, A. Karanasiou, N. Parotsidis, N. Paudel, Computing 2-connected components and maximal 2-connected subgraphs in directed graphs: An experimental study, Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX), 2018, pp. 169–183.
- [14] M. Henzinger, S. Krinninger, V. Loitzenbauer, Finding 2-edge and 2-vertex strongly connected components in quadratic time, In: Halldórsson, K. Iwama, N. Kobayashi, B. Speckmann (Eds.), Automata, Languages, and Programming, ICALP 2015, Lecture Notes in Computer Science, Vol. 9134, Springer, Berlin, 2015, pp. 713–724.
- [15] G. F. Italiano, L. Laura, F. Santaroni, Finding strong bridges and strong articulation points in linear time, Theoret. Comput. Sci. 447 (2012) 74-84.
- [16] R. Jaberi, On computing the 2-vertex-connected components of directed graphs, Discrete Appl. Math. 204 (2016) 164–172.
- [17] R. Jaberi, On computing the 2-vertex-connected components of directed graphs, (2014), arXiv:1401.6000 [cs.DS].
- [18] R. Jaberi, Computing the 2-blocks of directed graphs, RAIRO-Theor. Inf. Appl. 49 (2015) 93-119.
- [19] R. Jaberi, Twinless articulation points and some related problems, (2019), arXiv:1912.11799 [cs.DS].
- [20] W. D. Luigi, L. Georgiadis, G. F. Italiano, L. Laura, N. Parotsidis, 2-Connectivity in directed graphs: An experimental study, Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX), 2015, pp. 173–187.
- [21] T. Lengauer, R. E. Tarjan, A fast algorithm for finding dominators in a flowgraph, ACM Trans. Program. Lang. Syst. 1 (1979) 121-141.
- [22] S. Raghavan, Twinless strongly connected components, In: F. B. Alt, M. C. Fu, B. L. Golden (Eds.), Perspectives in Operations Research, Operations Research/Computer Science Interfaces Series, Vol. 36, Springer, Boston, 2006, pp. 285–304.
- [23] D. J. Rose, R. E. Tarjan, Algorithmic aspects of vertex elimination, Proceedings of the Seventh Annual ACM Symposium on Theory of Computing (STOC 75), Association for Computing Machinery, New York, 1975, pp. 245–254.
- [24] J. Schmidt, A simple test on 2-vertex- and 2-edge-connectivity, Inform. Process. Lett. 113 (2013) 241-244.
- [25] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146–160.