wWw.dmlett.com

Research Article

Counting clusters in a coloring grid

Ronit Mansour*
AL-Qasemi Academy, (R.A)-Academic College of Education, Baqa-El-Gharbia 3010000, Israel
(Received: 6 January 2021. Received in revised form: 26 January 2021. Accepted: 1 February 2021. Published online: 5 February 2021.)
(c) 2021 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/)

Abstract

In this note, finite automata tools are used to count the number of the coloring grids according to the number of clusters colored white/black.

Keywords: coloring grids; finite automata; number of clusters.
2020 Mathematics Subject Classification: 05A05, 05A15, 68Q45.

1. Introduction

By a cell $[a, b]$ we mean a unit square in the Cartesian plane \mathbb{Z}^{2} with its sides parallel to the coordinate axes whose vertices are at integer points $(a, b),(a+1, b),(a, b+1),(a+1, b+1) \in \mathbb{Z}^{2}$. Two cells are edge-connected if they share a common edge exists. A squared lattice polyomino (or just polyomino) π, also known as an animals, is a finite edge-connected set of cells, where for each distinct pair of cells X and Y there is a finite consecutive sequence of edge-adjacent cells in π connecting X and Y. A cluster is a squared lattice polyomino such that all its cells have the same color (either black or white). By a coloring (finite) grid we mean the set $G_{m, n}=[0, m] \times[0, n]$ of $m \times n$ cells in \mathbb{Z}^{2}, where each cell is colored either black or white. For each $\pi \in G_{m, n}$, we denote the number of clusters colored black (white) by $c_{b}(\pi)\left(c_{w}(\pi)\right)$. For instance, Figure 2 presents all possible coloring grids π in $G_{2,2}$.

Figure 1: All possible coloring grids in $G_{2,2}$.

In this paper, our interest is to count the number of coloring grids $G_{m, n}$ according to the number of clusters. This counting problem is motivated by the dynamics of site percolation on the $G_{m, n}$, which have been extensively considered (see [1] and references therein). The core question in this area is bounding the expected number of clusters in $G_{m, n}$, which is inspired by the following Putnam exam problem in 2005:
"An $m \times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability $1 / 2$. We say that two squares x, y are in the same connected monochromatic region if there is a sequence of squares, all of the same color, starting at x and ending at y, in which successive squares in the same sequence share a common side. Show that the expected number of connected monochromatic regions is greater than mn/8."

Richey [1] showed few ways to answer this problem and noticed that determining the exact expectation formula is much more difficult. More precisely, he showed that the limit $\lambda=\lim _{n, m \rightarrow \infty} e(m, n) / m n$ exists and it is finite, where $e(m, n)$ is the expected number of clusters in $G_{m, n}$. Moreover, he showed that $\frac{29}{448} \leq \lambda \leq \frac{1}{12}$.

In this paper, we use finite automata to count the number of coloring grids in $G_{m, n}$ according to the statistics c_{w} and c_{b}, namely, the number of clusters colored white and the number of clusters colored black. In particular, we obtain exact formulas in cases $m=1,2,3$.

[^0]
2. Results

Let $F_{m}(x, p, q)=\sum_{n \geq 0} F_{m, n}(p, q) x^{n}$ be the generating function for the number of coloring grids in $G_{m, n}$ according to the statistics c_{w} and c_{b}, that is,

$$
F_{m}(x, p, q)=\sum_{n \geq 0} F_{m, n}(p, q) x^{n}=\sum_{n \geq 0}\left(\sum_{\pi \in G_{m, n}} p^{c_{w}(\pi)} q^{c_{b}(\pi)}\right) x^{n}
$$

In order to find the generating function $F_{m}(x, p, q)$, we use finite automata tools as described in [2].
We identify the coloring grid in $G_{m, n}$ as a binary matrix $\mathbf{G}_{m, n}$ with n columns and m rows, where 0 represents the white color and 1 represents the black color. In order to count the number of coloring grids in $G_{m, n}$, we need to define the following.

Let \mathcal{B}_{m} be the set of all binary vectors with m coordinates and $\mathcal{M}_{m}=\{\epsilon\} \cup \cup_{n \geq 1} M_{m, n}$ be the set of all binary matrices with m rows and n columns, where ϵ denotes the empty matrix with m rows and zero columns. We define an equivalence relation on \mathcal{M}_{m} as follows. We say that two matrices v and v^{\prime} in \mathcal{M}_{m} are equivalent and write $v \sim v^{\prime}$ if the following condition holds for all $u \in \mathcal{M}_{m}$,

$$
\begin{equation*}
\left(c_{w}(v u), c_{b}(v u)\right)-\left(c_{w}\left(v^{\prime} u\right), c_{b}\left(v^{\prime} u\right)\right)=\text { constant } \tag{1}
\end{equation*}
$$

where $v u$ denotes the concatenation of v and u (sometimes, we write the a vector in a line notation to save spaces). For instance, if

$$
u_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad u_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad u_{4}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

then $u_{1} u_{2} \sim u_{2}$ and $u_{3} u_{4} \sim u_{4}$. On other hand, $u_{3} \nsim u_{4}$, since $\left(c_{w}\left(u_{3} u_{1}\right), c_{b}\left(u_{3} u_{1}\right)\right)=(1,1),\left(c_{w}\left(u_{4} u_{1}\right), c_{b}\left(u_{4} u_{1}\right)\right)=(1,1)$, $\left(c_{w}\left(u_{3} u_{2}\right), c_{b}\left(u_{3} u_{2}\right)\right)=(1,2)$ and $\left(c_{w}\left(u_{4} u_{2}\right), c_{b}\left(u_{4} u_{2}\right)\right)=(1,1)$, so $\left(c_{w}\left(u_{3} u\right), c_{b}\left(u_{3} u\right)\right)-\left(c_{w}\left(u_{4} u\right), c_{b}\left(u_{4} u\right)\right)$ is not a constant for all $u \in \mathcal{M}_{3}$.

The following lemma shows that the equivalence of any two matrices in \mathcal{M}_{m} can be checked with a finite number of steps. The proof is followed immediately from the definition of the clusters.
Lemma 2.1. Let v and v^{\prime} be two matrices in \mathcal{M}_{m}. Then $v \sim v^{\prime}$ if and only if (1) holds for all $u \in \mathcal{B}_{m} \cup\{\epsilon\}$.
Let \mathcal{C}_{m} be the set of all equivalence classes of \sim including the empty matrix ϵ. We denote the equivalence class of a matrix $v \in \mathcal{M}_{m}$ by $\langle v\rangle$. Clearly, $\langle\epsilon\rangle=\{\epsilon\}$. Now, let us give a geometric representation for each equivalence classes. Give an equivalence class $\langle v\rangle \in \mathcal{C}_{m}$ such that $v=v^{(1)} \cdots v^{(k)}$ has exactly $k \geq 1$ columns. Since we are interested in counting clusters, we have to focus on what are the zeros (white cells) in $v^{(k)}$ that are in the same cluster, and what are the ones (black cells) in $v^{(k)}$ that are in the same cluster. The graph representation of v is given by k dots on a horizontal line ℓ where each dot is colored either white or black, and two zeros (ones) are connected by an arc above the line ℓ if they belong to the same cluster in v. For the equivalence class $\langle\epsilon\rangle$, we denote its graphical representation by ϵ. For example, the graphical representation of the equivalence classes in \mathcal{C}_{3} are given by

$\langle\epsilon\rangle: \epsilon$		$\langle 000\rangle$:	$\bigcirc \bigcirc$	$\langle 100\rangle$:	-	$\langle 010\rangle$:	-
$\langle 110\rangle$:	. 0	$\langle 001\rangle$:	\bigcirc	$\langle 101\rangle$:	- 0	$\langle 011\rangle$:	-
$\langle 111\rangle$:	\curvearrowleft	$\left\langle\begin{array}{l} 000 \\ 010 \end{array}\right\rangle:$	\bigcirc	$\left\langle\begin{array}{l}111 \\ 101\end{array}\right\rangle:$	\bigcirc		

where we denote the concatenation of vectors v_{1}, \ldots, v_{s} as a matrix with the lines $v_{1}^{t}, \ldots, v_{s}^{t}$ and the binary word $a b c$ represents the column vector $(a, b, c)^{t}$ (see the last two equivalence classes).

Recall that a partition of the set $[n]=\{1,2, \ldots, n\}$ is a collection $\left\{B_{1}, \ldots, B_{k}\right\}$ of nonempty disjoint subsets of $[n]$ whose union equals [n]. Thus, by Lemma 2.1, the number of equivalence classes in \mathcal{C}_{m} is at most number of set partitions of $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subseteq[n]$ for the white dots times the number of set partitions of $[n] \backslash A$ for the black dots. Hence, the cardinality of \mathcal{C}_{m} is bounded by $\operatorname{Bell}_{m}^{2}$, where Bell $_{m}$ is the m th Bell number which is given by

$$
\sum_{m \geq 0} \text { Bell }_{m} \frac{x^{m}}{m!}=e^{e^{x}-1}
$$

Proposition 2.1. Let $m \geq 0$. Then the number of equivalence classes in \mathcal{C}_{m} is finite.
We next introduce the key tool in our finding formulas for $F_{m}(x, p, q)$.
Definition 2.1. We denote by $\mathcal{A} a$ finite automaton [2] such that

- The set of states of the automaton is \mathcal{C}_{m};
- The input alphabet is \mathcal{B}_{m};
- The transition function $\delta: \mathcal{C}_{m} \times \mathcal{B}_{m} \rightarrow \mathcal{C}_{m}$ is given by the rule $\delta(\langle v\rangle, u)=\langle v u\rangle ;$
- The initial state is $\langle\epsilon\rangle$;
- All states are final states.

We identify the automaton \mathcal{A}_{m} with a (labeled) directed graph with vertices in \mathcal{C}_{m} such that there is a labeled edge $\xrightarrow{p^{a} q^{b}}$ from $\langle v\rangle$ to $\left\langle v^{\prime}\right\rangle$ if and only if

$$
\begin{equation*}
\left(c_{w}(v u), c_{b}(v u)\right)-\left(c_{w}\left(v^{\prime} u\right), c_{n}\left(v^{\prime} u\right)\right)=(a, b) \tag{2}
\end{equation*}
$$

for all $u \in \mathcal{B}_{m} \cup\{\epsilon\}$.
The transition matrix T_{m} of \mathcal{A}_{m} is the matrix with coefficients of the form $\sum_{(a, b)} p^{a} q^{b}$ defined by

$$
\left[T_{m}\right]_{v v^{\prime}}=\sum_{\delta(\langle v\rangle, u)=v^{\prime} \text { and (2) holds }} p^{a} q^{b} .
$$

Thus, the generating function for the number of binary matrices in M_{m} with n columns according to the statistics c_{w} and c_{n} is given by the generating function for weighted paths (the weight of the path is the sum of total weights of its edges) of length n starting at $\langle\epsilon\rangle$ in the automaton \mathcal{A}_{m}. Hence, by Proposition 2.1, we can state our main result.

Theorem 2.1. For all $m \geq 1$, the generating function $F_{m}(x, p, q)$ is a rational generating function and it is given by

$$
F_{m}(x, p, q)=e_{1}^{t} \cdot\left(1-x T_{m}\right)^{-1} \cdot 1
$$

where $e_{1}=(1,0,0, \ldots)^{t}$ and $1=(1,1,1, \ldots)^{t}$.
Now, we are ready to find an explicit formula for $F_{m}(x, p, q)$, where $m=1,2,3$.
Case $\mathbf{m}=1$. Starting with the equivalence class $\langle\epsilon\rangle$, we get two other classes $\langle 0\rangle$ and $\langle 1\rangle$. By Lemma 2.1, we see that

$$
\mathcal{C}_{1}=\{\langle\epsilon\rangle,\langle 0\rangle,\langle 1\rangle\} .
$$

Figure 2 represents the automaton \mathcal{A}_{1} :

Figure 2: Directed graph A_{1} and the matrix T_{1}

Thus, Theorem 2.1 gives

$$
\begin{aligned}
F_{1}(x, p, q) & =(1,0,0) \cdot \sum_{n \geq 0} T_{1}^{n} x^{n} \cdot(1,1,1)^{T}=(1,0,0)\left(1-x T_{1}\right)^{-1}(1,1,1)^{T} \\
& =\frac{(1-(1-p) x)(1-(1-q) x)}{(1-x)^{2}-p q x^{2}} \\
& =\left((1-x)^{2}+(p+q) x(1-x)+p q x^{2}\right) \sum_{j \geq 0} \frac{p^{j} q^{j} x^{j}}{(1-x)^{2 j+2}}
\end{aligned}
$$

$$
=\sum_{j \geq 0} \frac{p^{j} q^{j} x^{j}}{(1-x)^{2 j}}+(p+q) \sum_{j \geq 0} \frac{p^{j} q^{j} x^{j+1}}{(1-x)^{2 j+1}}+\sum_{j \geq 0} \frac{p^{j+1} q^{j+1} x^{j+2}}{(1-x)^{2 j+2}} .
$$

Hence, by using the fact that $\frac{1}{(1-x)^{d}}=\sum_{n \geq 0}\binom{d-1+n}{n} x^{n}$ for all $d \geq 1$, we have

$$
F_{1, n}(p, q)=\sum_{j=1}^{n}(p q)^{j}\binom{n+j-1}{n-j}+(p+q) \sum_{j=0}^{n-1}(p q)^{j}\binom{n+j-1}{n-1-j}+\sum_{j=0}^{n-2}(p q)^{j+1}\binom{n+j-1}{n-2-j}
$$

In particular,

$$
F_{1}(x, q, q)=\frac{1-x+q x}{1-x-q x}=\sum_{j \geq 0}(1-x+q x) x^{j}(1+q)^{j}
$$

which leads to the following result.
Theorem 2.2. The generating function for the number of coloring grids in $G_{1, n}, n \geq 1$, according to the number of clusters is given by

$$
F_{1, n}(q, q)=2 q(1+q)^{n-1}
$$

Thus, the total number of clusters over all coloring grids in $G_{1, n}$ is given by $(n+1) 2^{n-1}$.
Case $\mathbf{m}=2$ 2. In case $m=2$, the equivalence classes are $\langle\epsilon\rangle,\langle 00\rangle,\langle 01\rangle,\langle 10\rangle$ and $\langle 11\rangle$, where the binary word $a b$ represents the column vector $(a, b)^{t}$. The automaton \mathcal{A}_{2} is given by the matrix

$$
T_{2}=\left[\begin{array}{lllll}
0 & p & p q & p q & q \\
0 & 1 & q & q & q \\
0 & 1 & 1 & p q & 1 \\
0 & 1 & p q & 1 & 1 \\
0 & p & p & p & 1
\end{array}\right]
$$

So, Theorem 2.1 for $m=2$ gives that the generating function $F_{2}(x, p, q)-1$ is given by

$$
\frac{(2 p q+p+q) x+(p q(6-p-q)-2(p+q)) x^{2}+(p q(5 p+5 q-4 p q)+(p+q)(1-2 p-2 q)) x^{3}}{1-(p q+3) x+(p q-2 p-2 q+3) x^{2}+\left(p^{2} q^{2}-4 p q+2 p+2 q-1\right) x^{3}}
$$

Note that $F_{2}(x, 1,1)=\frac{1}{1-4 x}$, as expected. So, by finding the coefficient of x^{n} in the generating function $\left.\frac{\partial}{\partial q} F_{2}(x, q, q)\right|_{q=1}$, we can state the following result.
Theorem 2.3. The total number of clusters over all coloring grids in $G_{2, n}$ is given by $\frac{5 n+7}{8} 4^{n}$.
Case $m=3$. In case $m=3$, the equivalence classes are $\langle\epsilon\rangle,\langle 000\rangle,\langle 100\rangle,\langle 010\rangle,\langle 110\rangle,\langle 001\rangle,\langle 101\rangle,\langle 011\rangle,\langle 111\rangle,\left\langle\begin{array}{c}000 \\ 010\end{array}\right\rangle$ and $\left\langle\begin{array}{l}111 \\ 101\end{array}\right\rangle$. The automaton \mathcal{A}_{3} is given by the matrix

$$
T_{3}=\left[\begin{array}{lllllllllll}
0 & p & p q & p^{2} q & p q & p q & p q^{2} & p q & q & 0 & 0 \\
0 & 1 & q & 0 & q & q & q^{2} & q & q & q & 0 \\
0 & 1 & 1 & p q & 1 & q & q & p q & 1 & 0 & 0 \\
0 & \frac{1}{p} & q & 1 & 1 & q & p q^{2} & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & p & 1 & p q & p q & p & 1 & 0 & 0 \\
0 & 1 & q & p q & p q & 1 & q & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & p^{2} q & p & 1 & 1 & p & \frac{1}{q} & 0 & 0 \\
0 & 1 & p q & p & p & 1 & p q & 1 & 1 & 0 & 0 \\
0 & p & p & p^{2} & p & p & 0 & p & 1 & 0 & p \\
0 & 1 & q & 0 & 1 & q & p q^{2} & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & p^{2} q & p & 1 & 0 & p & 1 & 0 & 1
\end{array}\right] .
$$

So, Theorem 2.1 for $m=3$ gives that the generating function $F_{3}(x, p, q)=e_{1}\left(1-x T_{3}\right)^{-1} \cdot 1$ (the formula is too long to present it here). Hence, by finding the coefficient of x^{n} in the generating function $\left.\frac{\partial}{\partial q} F_{3}(x, q, q)\right|_{q=1}$, we can state the following result.

Theorem 2.4. The total number of clusters over all coloring grids in $G_{3, n}$ is given by

$$
\left(\frac{169 n}{224}+\frac{1945}{1568}\right) 8^{n}+\frac{2}{49} .
$$

References

[^0]: *E-mail address: ronitmansour77@gmail.com

