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Abstract

In this note, finite automata tools are used to count the number of the coloring grids according to the number of clusters
colored white/black.

Keywords: coloring grids; finite automata; number of clusters.

2020 Mathematics Subject Classification: 05A05, 05A15, 68Q45.

1. Introduction

By a cell [a, b] we mean a unit square in the Cartesian plane Z2 with its sides parallel to the coordinate axes whose vertices
are at integer points (a, b), (a+ 1, b), (a, b+ 1), (a+ 1, b+ 1) ∈ Z2. Two cells are edge-connected if they share a common edge
exists. A squared lattice polyomino (or just polyomino) π, also known as an animals, is a finite edge-connected set of cells,
where for each distinct pair of cells X and Y there is a finite consecutive sequence of edge-adjacent cells in π connecting
X and Y . A cluster is a squared lattice polyomino such that all its cells have the same color (either black or white). By a
coloring (finite) grid we mean the set Gm,n = [0,m] × [0, n] of m × n cells in Z2, where each cell is colored either black or
white. For each π ∈ Gm,n, we denote the number of clusters colored black (white) by cb(π) (cw(π)). For instance, Figure 2
presents all possible coloring grids π in G2,2.

π :

cw(π) : 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 0
cb(π) : 0 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1

Figure 1: All possible coloring grids in G2,2.

In this paper, our interest is to count the number of coloring grids Gm,n according to the number of clusters. This
counting problem is motivated by the dynamics of site percolation on the Gm,n, which have been extensively considered
(see [1] and references therein). The core question in this area is bounding the expected number of clusters in Gm,n, which
is inspired by the following Putnam exam problem in 2005:

“An m × n checkerboard is colored randomly: each square is independently assigned red or black with probability 1/2.
We say that two squares x, y are in the same connected monochromatic region if there is a sequence of squares, all of the same
color, starting at x and ending at y, in which successive squares in the same sequence share a common side. Show that the
expected number of connected monochromatic regions is greater than mn/8.”

Richey [1] showed few ways to answer this problem and noticed that determining the exact expectation formula is much
more difficult. More precisely, he showed that the limit λ = limn,m→∞ e(m,n)/mn exists and it is finite, where e(m,n) is
the expected number of clusters in Gm,n. Moreover, he showed that 29

448 ≤ λ ≤
1
12 .

In this paper, we use finite automata to count the number of coloring grids in Gm,n according to the statistics cw and
cb, namely, the number of clusters colored white and the number of clusters colored black. In particular, we obtain exact
formulas in cases m = 1, 2, 3.
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2. Results

Let Fm(x, p, q) =
∑
n≥0 Fm,n(p, q)x

n be the generating function for the number of coloring grids in Gm,n according to the
statistics cw and cb, that is,

Fm(x, p, q) =
∑
n≥0

Fm,n(p, q)x
n =

∑
n≥0

 ∑
π∈Gm,n

pcw(π)qcb(π)

xn.

In order to find the generating function Fm(x, p, q), we use finite automata tools as described in [2].
We identify the coloring grid in Gm,n as a binary matrix Gm,n with n columns and m rows, where 0 represents the

white color and 1 represents the black color. In order to count the number of coloring grids in Gm,n, we need to define the
following.

Let Bm be the set of all binary vectors with m coordinates andMm = {ε} ∪ ∪n≥1Mm,n be the set of all binary matrices
with m rows and n columns, where ε denotes the empty matrix with m rows and zero columns. We define an equivalence
relation on Mm as follows. We say that two matrices v and v′ in Mm are equivalent and write v ∼ v′ if the following
condition holds for all u ∈Mm,

(cw(vu), cb(vu))− (cw(v
′u), cb(v

′u)) = constant, (1)

where vu denotes the concatenation of v and u (sometimes, we write the a vector in a line notation to save spaces). For
instance, if

u1 =

 0
1
0

 , u2 =

 1
0
1

 , u3 =

 0
0
0

 , u4 =

 1
1
1

 ,
then u1u2 ∼ u2 and u3u4 ∼ u4. On other hand, u3 6∼ u4, since (cw(u3u1), cb(u3u1)) = (1, 1), (cw(u4u1), cb(u4u1)) = (1, 1),
(cw(u3u2), cb(u3u2)) = (1, 2) and (cw(u4u2), cb(u4u2)) = (1, 1), so (cw(u3u), cb(u3u)) − (cw(u4u), cb(u4u)) is not a constant for
all u ∈M3.

The following lemma shows that the equivalence of any two matrices in Mm can be checked with a finite number of
steps. The proof is followed immediately from the definition of the clusters.

Lemma 2.1. Let v and v′ be two matrices inMm. Then v ∼ v′ if and only if (1) holds for all u ∈ Bm ∪ {ε}.

Let Cm be the set of all equivalence classes of ∼ including the empty matrix ε. We denote the equivalence class of a
matrix v ∈ Mm by 〈v〉. Clearly, 〈ε〉 = {ε}. Now, let us give a geometric representation for each equivalence classes. Give
an equivalence class 〈v〉 ∈ Cm such that v = v(1) · · · v(k) has exactly k ≥ 1 columns. Since we are interested in counting
clusters, we have to focus on what are the zeros (white cells) in v(k) that are in the same cluster, and what are the ones
(black cells) in v(k) that are in the same cluster. The graph representation of v is given by k dots on a horizontal line `where
each dot is colored either white or black, and two zeros (ones) are connected by an arc above the line ` if they belong to the
same cluster in v. For the equivalence class 〈ε〉, we denote its graphical representation by ε. For example, the graphical
representation of the equivalence classes in C3 are given by

〈ε〉 : ε 〈000〉 : b b b 〈100〉 : r b b 〈010〉 : b r b
〈110〉 : r r b 〈001〉 : b b r 〈101〉 : r b r 〈011〉 : b r r
〈111〉 : r r r 〈000

010
〉 : b r b 〈111

101
〉 : r b r

where we denote the concatenation of vectors v1, . . . , vs as a matrix with the lines vt1, . . . , vts and the binary word abc repre-
sents the column vector (a, b, c)t (see the last two equivalence classes).

Recall that a partition of the set [n] = {1, 2, . . . , n} is a collection {B1, . . . , Bk} of nonempty disjoint subsets of [n] whose
union equals [n]. Thus, by Lemma 2.1, the number of equivalence classes in Cm is at most number of set partitions of
A = {a1, a2, . . . , am} ⊆ [n] for the white dots times the number of set partitions of [n]\A for the black dots. Hence, the
cardinality of Cm is bounded by Bell2m, where Bellm is the mth Bell number which is given by∑

m≥0

Bellm
xm

m!
= ee

x−1.
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Proposition 2.1. Let m ≥ 0. Then the number of equivalence classes in Cm is finite.

We next introduce the key tool in our finding formulas for Fm(x, p, q).

Definition 2.1. We denote by A a finite automaton [2] such that

• The set of states of the automaton is Cm;

• The input alphabet is Bm;

• The transition function δ : Cm × Bm → Cm is given by the rule δ(〈v〉, u) = 〈vu〉;

• The initial state is 〈ε〉;

• All states are final states.

We identify the automaton Am with a (labeled) directed graph with vertices in Cm such that there is a labeled edge paqb−→
from 〈v〉 to 〈v′〉 if and only if

(cw(vu), cb(vu))− (cw(v
′u), cn(v

′u)) = (a, b), (2)

for all u ∈ Bm ∪ {ε}.
The transition matrix Tm of Am is the matrix with coefficients of the form

∑
(a,b) p

aqb defined by

[Tm]vv′ =
∑

δ(〈v〉,u)=v′ and (2)holds
paqb.

Thus, the generating function for the number of binary matrices in Mm with n columns according to the statistics cw and
cn is given by the generating function for weighted paths (the weight of the path is the sum of total weights of its edges) of
length n starting at 〈ε〉 in the automaton Am. Hence, by Proposition 2.1, we can state our main result.

Theorem 2.1. For all m ≥ 1, the generating function Fm(x, p, q) is a rational generating function and it is given by

Fm(x, p, q) = et1 · (1− xTm)−1 · 1,

where e1 = (1, 0, 0, . . .)t and 1 = (1, 1, 1, . . .)t.

Now, we are ready to find an explicit formula for Fm(x, p, q), where m = 1, 2, 3.

Case m = 1. Starting with the equivalence class 〈ε〉, we get two other classes 〈0〉 and 〈1〉. By Lemma 2.1, we see that

C1 = {〈ε〉, 〈0〉, 〈1〉}.

Figure 2 represents the automaton A1:

〈ε〉

〈1〉

〈0〉

HHHHj
q

��
��*
p

I
p

	

q

N

1

�

1

T1 =

 0 p q
0 1 q
0 p 1



Figure 2: Directed graph A1 and the matrix T1

Thus, Theorem 2.1 gives

F1(x, p, q) = (1, 0, 0) ·
∑
n≥0

Tn1 x
n · (1, 1, 1)T = (1, 0, 0)(1− xT1)−1(1, 1, 1)T

=
(1− (1− p)x)(1− (1− q)x)

(1− x)2 − pqx2

= ((1− x)2 + (p+ q)x(1− x) + pqx2)
∑
j≥0

pjqjxj

(1− x)2j+2
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=
∑
j≥0

pjqjxj

(1− x)2j
+ (p+ q)

∑
j≥0

pjqjxj+1

(1− x)2j+1
+
∑
j≥0

pj+1qj+1xj+2

(1− x)2j+2
.

Hence, by using the fact that 1
(1−x)d =

∑
n≥0

(
d−1+n
n

)
xn for all d ≥ 1, we have

F1,n(p, q) =

n∑
j=1

(pq)j
(
n+ j − 1

n− j

)
+ (p+ q)

n−1∑
j=0

(pq)j
(
n+ j − 1

n− 1− j

)
+

n−2∑
j=0

(pq)j+1

(
n+ j − 1

n− 2− j

)
.

In particular,
F1(x, q, q) =

1− x+ qx

1− x− qx
=
∑
j≥0

(1− x+ qx)xj(1 + q)j ,

which leads to the following result.

Theorem 2.2. The generating function for the number of coloring grids in G1,n, n ≥ 1, according to the number of clusters
is given by

F1,n(q, q) = 2q(1 + q)n−1.

Thus, the total number of clusters over all coloring grids in G1,n is given by (n+ 1)2n−1.

Case m = 2. In case m = 2, the equivalence classes are 〈ε〉, 〈00〉, 〈01〉, 〈10〉 and 〈11〉, where the binary word ab represents
the column vector (a, b)t. The automaton A2 is given by the matrix

T2 =


0 p pq pq q
0 1 q q q
0 1 1 pq 1
0 1 pq 1 1
0 p p p 1

 .
So, Theorem 2.1 for m = 2 gives that the generating function F2(x, p, q)− 1 is given by

(2pq + p+ q)x+ (pq(6− p− q)− 2(p+ q))x2 + (pq(5p+ 5q − 4pq) + (p+ q)(1− 2p− 2q))x3

1− (pq + 3)x+ (pq − 2p− 2q + 3)x2 + (p2q2 − 4pq + 2p+ 2q − 1)x3
.

Note that F2(x, 1, 1) =
1

1−4x , as expected. So, by finding the coefficient of xn in the generating function ∂
∂qF2(x, q, q) |q=1, we

can state the following result.

Theorem 2.3. The total number of clusters over all coloring grids in G2,n is given by 5n+7
8 4n.

Case m = 3. In case m = 3, the equivalence classes are 〈ε〉, 〈000〉, 〈100〉, 〈010〉, 〈110〉, 〈001〉, 〈101〉, 〈011〉, 〈111〉, 〈 000
010

〉 and

〈 111
101
〉. The automaton A3 is given by the matrix

T3 =



0 p pq p2q pq pq pq2 pq q 0 0
0 1 q 0 q q q2 q q q 0
0 1 1 pq 1 q q pq 1 0 0
0 1

p q 1 1 q pq2 1 1 0 0

0 1 1 p 1 pq pq p 1 0 0
0 1 q pq pq 1 q 1 1 0 0
0 1 1 p2q p 1 1 p 1

q 0 0

0 1 pq p p 1 pq 1 1 0 0
0 p p p2 p p 0 p 1 0 p
0 1 q 0 1 q pq2 1 1 1 0
0 1 1 p2q p 1 0 p 1 0 1


.

So, Theorem 2.1 form = 3 gives that the generating function F3(x, p, q) = e1(1−xT3)−1 ·1 (the formula is too long to present
it here). Hence, by finding the coefficient of xn in the generating function ∂

∂qF3(x, q, q) |q=1, we can state the following result.

Theorem 2.4. The total number of clusters over all coloring grids in G3,n is given by(
169n

224
+

1945

1568

)
8n +

2

49
.
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