Research Article

Excellent graphs with respect to domination: subgraphs induced by minimum dominating sets

Vladimir Samodivkin*

Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, Sofia 1164, Bulgaria

(Received: 12 October 2020. Received in revised form: 4 January 2021. Accepted: 18 January 2021. Published online: 23 January 2021.)

© 2021 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/)

Abstract

A graph $G = (V(G), E(G))$ is γ-excellent if $V(G)$ is the union of all γ-sets of G, where γ stands for the domination number of G and a γ-set is a dominating set of cardinality γ. Let \mathcal{I} be a set of all mutually nonisomorphic graphs and let $\emptyset \neq \mathcal{H} \subseteq \mathcal{I}$. In this paper, the study of the \mathcal{H}-γ-excellent graphs is initiated. A graph G is \mathcal{H}-γ-excellent if the following conditions hold: (i) for every $H \in \mathcal{H}$ and for each $x \in V(G)$ there exists an induced subgraph H_x of G such that H and H_x are isomorphic, $x \in V(H_x)$ and $V(H_x)$ is a subset of some γ-set of G, and (ii) the vertex set of every induced subgraph H of G, which is isomorphic to some element of \mathcal{H}, is a subset of some γ-set of G. We consider some well-known graphs, including cycles, trees and some cartesian products of two graphs, and for every considered graph we describe its largest set \mathcal{H}-γ-excellent. Results on γ-excellent regular graphs and on a generalized lexicographic product of graphs are presented. Several open problems and questions are also posed.

Keywords: domination number; excellent graph; graph product.

2020 Mathematics Subject Classification: 05C69.

1. Introduction

All graphs in this paper will be finite, simple, and undirected. We use [8] as a reference for terminology and notation which are not explicitly defined here. In a graph $G = (V(G), E(G))$, for a subset $S \subseteq V(G)$ the subgraph induced by S is the graph (S) with vertex set S and two vertices in (S) are adjacent if and only if they are adjacent in G. The complement \overline{G} of G is the graph whose vertex set is $V(G)$ and two vertices are adjacent in \overline{G} if and only if they are nonadjacent in G. The union of two disjoint graphs G and H is denoted by $G \cup H$. For any vertex x of a graph G, $N_G(x)$ denotes the set of all neighbors of x in G, $N_G[x] = N_G(x) \cup \{x\}$ and the degree of x is $\text{deg}_G(x) = |N_G(x)|$. The minimum and maximum degrees of a graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a subset $S \subseteq V(G)$, let $N_G[S] = \cup_{v \in S} N_G[v]$. Let $X \subseteq V(G)$ and $x \in X$. The X-private neighborhood of x, denoted by $N_{G\{x\}}[x, X]$ or simply by $N_{\{x\}}[x, X]$ (if the graph is clear from the context), is the set $\{y \in V(G) \mid N[y] \cap X = \{x\}\}$. A leaf is a vertex of degree one and a support vertex is a vertex adjacent to a leaf. A vertex which separates two other vertices of the same component is a cut-vertex, and an edge separating its ends is a bridge. The distance $\text{dist}_G(x, y)$ in G of two vertices x, y is the length of a shortest $x \rightarrow y$ path in G; if no such path exists, we set $\text{dist}_G(x, y) := \infty$. An isomorphism of two graphs G and H is a bijection $f : V(G) \rightarrow V(H)$ between the vertex sets of G and H such that any two vertices u and v of G are adjacent in G if and only if $f(u)$ and $f(v)$ are adjacent in H. If an isomorphism exists between two graphs, then the graphs are called isomorphic and denoted as $G \cong H$. We write K_n for the complete graph of order n and P_n for the path on n vertices. Let C_n denote the cycle of length n. A complete r-partite graph K_{n_1,n_2,\ldots,n_r} is a graph whose vertex set can be partitioned into r parts, say V_1, V_2, \ldots, V_r, such that (a) no two vertices within the same part are adjacent, (b) there is an edge between every two vertices of different parts of the partition, and (c) $|V_i| = n_i$, $i = 1, 2, \ldots, r$. The 1-corona, denoted $\text{cor}(U)$, of a graph U is the graph obtained from U by adding a degree-one neighbor to every vertex of U. We use the notation $|k|$ for $\{1, 2, \ldots, k\}$.

An independent set is a set of vertices in a graph, no two of which are adjacent. The independence number of a graph, denoted $\beta_0(G)$, is the maximum size of an independent set in G. A subset $D \subseteq V(G)$ is called a dominating set (or a total dominating set) in G, if for each $x \in V(G) - D$ (or for each $x \in V(G)$, respectively) there exists a vertex $y \in D$ adjacent to x. A dominating set R of a graph G is a restrained dominating set (or an outer-connected dominating set) in G, if every vertex in $V(G) - R$ is adjacent to a vertex in $V(G) - R$ (or $V(G) - R$ induces a connected graph, respectively). The minimum number of vertices of a dominating set in a graph G is the domination number $\gamma(G)$ of G. Analogously the total domination number $\gamma_t(G)$, the restrained domination number $\gamma_r(G)$ and the outer-connected domination number $\gamma^{oc}(G)$ are defined. The minimum

*E-mail address: vl.samodivkin@gmail.com
cardinality of a set \(S \) which is simultaneously total dominating and restrained dominating in \(G \) is called the total restrained domination number \(\gamma_{tr}(G) \) of \(G \). The minimum cardinality of a set \(S \) which is simultaneously total dominating and outer-connected dominating in \(G \) is called the total outer-connected domination number \(\gamma^{oc}_{tr}(G) \) of \(G \). The independent domination number of \(G \), denoted by \(i(G) \), is the minimum size of an independent dominating set.

For a graph \(G \), let \(\pi \) be a graphical property that can be possessed, or satisfied by the subsets of \(V \). For example, being a maximal complete subgraph, a maximal independent set, acyclic, a closed/open neighborhood, a minimal dominating set, etc. Suppose that \(f_\pi \) and \(F_\pi \) are the associated graph invariants: the minimum and maximum cardinalities of a set with property \(\pi \). Let \(\mu \in \{ f_\pi, F_\pi \} \). For a graph \(G \), denote by \(\mathcal{H}(G) \) the family of all subsets of \(V(G) \) each of which has property \(\pi \) and cardinality \(\mu(G) \). Each element of \(\mathcal{H}(G) \) is called a \(\mu \)-set of \(G \). Fricke et al. [6] define a graph \(G \) to be \(\mu \)-excellent if each its vertex belongs to some \(\mu \)-set. Perhaps historically the first results on \(\mu \)-excellent graphs were published by Berge [1] who introduced the class of \(B \)-graphs consisting of all graphs in which every vertex is in a maximum independent set. Of course all \(B \)-graphs form the class of \(\beta_0 \)-excellent graphs. The study of excellent graphs with respect to the some domination related parameters was initiated by Fricke et al. [6] and continued e.g. in [3,9,10,14,18,20,23].

In this paper we focus on the following subclass of the class of \(\mu \)-excellent graphs.

Definition 1.1. Let \(\mathcal{I} \) be a set of all mutually nonisomorphic graphs and \(\emptyset \neq \mathcal{H} \subseteq \mathcal{I} \). We say that a graph \(G \) is \(\mathcal{H} \)-\(\mu \)-excellent if the following hold:

(i) For each \(H \in \mathcal{H} \) and for each \(x \in V(G) \) there exists an induced subgraph \(H_x \) of \(G \) such that \(H \) and \(H_x \) are isomorphic, \(x \in V(H_x) \) and \(V(H_x) \) is a subset of some \(\mu \)-set of \(G \).

(ii) For each induced subgraph \(H \) of \(G \), which is isomorphic to some element of \(\mathcal{H} \), there is a \(\mu \)-set of \(G \) having \(V(H) \) as a subset.

By the above definition it immediately follows that each \(\mathcal{H} \)-\(\mu \)-excellent graph is \(\mu \)-excellent. If a graph \(G \) is \(\mathcal{H} \)-\(\mu \)-excellent and \(\mathcal{H} \) contains only one element, e.g. \(\mathcal{H} = \{ H \} \), we sometimes omit the brackets and say that a graph \(G \) is \(H \)-\(\mu \)-excellent.

Define the \(\mu \)-excellent family of induced subgraphs of a \(\mu \)-excellent graph \(G \), denoted by \(\mathcal{G} (\mu) \), as the family of all graphs \(H \in \mathcal{I} \) for which \(G \) is \(H \)-\(\mu \)-excellent. The next two observations are obvious.

Observation 1.1. If \(G \) is a \(\mu \)-excellent graph, then \(\{ K_1 \} \subseteq \mathcal{G} (\mu) \) and \(\mu(G) \geq \max \{|V(H)| \mid H \in \mathcal{G} (\mu)\} \).

Observation 1.2. Let a graph \(G \) be both \(\mu \)-excellent and \(\nu \)-excellent. If the set of all \(\mu \)-sets and the set of all \(\nu \)-sets of \(G \) coincide, then \(G (\mu) = G (\nu) \).

As first examples of \(\mathcal{H} \)-\(\mu \)-excellent graphs let us consider the case \(\mu = \beta_0 \). Clearly, any \(\beta_0 \)-excellent graph \(G \) is \(\{ K_1, K_{\beta_0(G)} \} \)-\(\beta_0 \)-excellent. A graph is \(r \)-extendable if every independent set of size \(r \) is contained in a maximum independent set (Dean and Zito [4]). Clearly, a graph is \(\{ K_1, K_2, \ldots, K_r \} \)-\(\beta_0 \)-excellent if and only if it is \(s \)-extendable for all \(s = 1, 2, \ldots, r \). Plummer [15] define a graph \(G \) to be well covered whenever \(G \) is \(k \)-extendable for every integer \(k \). In other words, a graph \(G \) is well covered if and only if \(G (\beta_0) = \{ K_1, K_2, \ldots, K_{\beta_0(G)} \} \).

In this paper we concentrate mainly on excellent graphs with respect to the domination number \(\gamma \). We give basic terminologies and notations in the rest of this section. In Section 2 we describe the \(\gamma \)-excellent family of induced subgraphs for some well known graphs. In Section 3 we show that, under appropriate restrictions, the generalized lexicographic product of graphs has the same excellent family of induced subgraphs with respect to six domination-related parameters. Section 4 contains results on \(\gamma \)-excellent regular graphs and trees. We conclude in Section 5 with some open problems.

2. Examples

Here we find the \(\gamma \)-excellent family of induced subgraphs of some well known graphs.

Example 2.1. Let \(G \) be a connected graph with \(\gamma(G) = 2 \). In [11] it is proved that (in our terminology) \(G \) is \(K_2, \gamma \)-excellent if and only if \(G \) is a complete \(r \)-partite graph \(K_{n_1,n_2,\ldots,n_r} \), \(n_i \geq 2 \), \(i = 1, 2, \ldots, r \geq 2 \). Clearly \(K_{2,2,\ldots,2} (\gamma) = \{ K_1, K_2, K_2 \} \) and \(K_{n_1,n_2,\ldots,n_r} (\gamma) = \{ K_1, K_2 \} \) when \(n_s \geq 3 \) for some \(s \in [r] \).

Example 2.2. Let \(\nu \in \{ \gamma, i \} \). Then all the following hold:

(i) (folklore) \(\nu(P_n) = [n/3] \) and \(\nu(C_r) = [r/3] \). \(C_r \) is \(\nu \)-excellent for all \(r \geq 3 \). \(P_n \) is \(\nu \)-excellent if and only if \(n = 2 \) or \(n \equiv 1 \) (mod 3).

(ii) \(P_n (\nu) = \{ K_1 \} \) when \(n \in \{ 1, 2 \} \cup \{ 7, 10, \ldots \} \) and \(P_4 (\nu) = \{ K_1, K_2 \} \).
Suppose that R assume that all elements of N. Let x connected.

Theorem 2.1.

(iii) $C_5(v) = \{K_1, K_2\}$ and $C_{3r}(v) = C_{3r+3r}(v) = \{K_1\}$, $r \geq 1$.

(iv) $C_7(\gamma) = \{K_1, K_2, K_3, K_4\}$, and $C_{3r+1}(\gamma) = \{K_1, K_2, K_3\}$ for $r \neq 2$.

(v) $C_7(i) = \{K_1, K_2, K_3\}$ and $C_{3r+1}(i) = \{K_1, K_2\}$ for $r \neq 2$.

The proof is straightforward and hence we omit it.

Denote by (CEA) the class of all graphs G such that $\gamma(G + e) \neq \gamma(G)$ for all $e \in E(G)$.

Example 2.3. Let a noncomplete graph G be in (CEA). It is well known fact that any two nonadjacent vertices of G belong to some γ-set of G (Sumner and Blitch [21]). In other words, G is $\{K_1, K_2\}$-γ-excellent graph.

Proposition 2.1. Let G be a graph with $\beta_0(G) = \gamma(G) = s$. Then G is (K_1, K_2, \ldots, K_s)-γ-excellent and $G(i) = G(\beta_0) = (K_1, \ldots, K_s)$ (for the second conclusion, see [15]).

Proof. Every independent set of G is a subset of a maximal independent set. Since each maximal independent set is always a dominating set and $\beta_0(G) = \gamma(G) = s$, the result immediately follows.

The Cartesian product of two graphs G and H is the graph $G \square H$ whose vertex set is the Cartesian product of the sets $V(G)$ and $V(H)$. Two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G \square H$ precisely when either $u_1 = u_2$ and $v_1 v_2 \in E(H)$ or $v_1 = v_2$ and $u_1 u_2 \in E(G)$.

Example 2.4. Let $G = K_m \square K_n$, $n \geq m \geq 2$. Then $G(i) = G(\beta_0) = (K_1, \ldots, K_m)$. If $n > m$, then $G(\gamma) = (K_1, \ldots, K_m)$. If $n = m$, then $G(\gamma) = \{K_1, \ldots, K_m\}$.

Proof. Let $G = K_m \square K_n$, $n \geq m \geq 2$. We consider G as an $m \times n$ array of vertices $x_{i,j}$, $1 \leq i \leq m$, $1 \leq j \leq n$, where the closed neighborhood of $x_{i,j}$ is the union of the sets $A_i = \{x_{i,1}, x_{i,2}, \ldots, x_{i,n}\}$ and $B_j = \{x_{1,j}, x_{2,j}, \ldots, x_{m,j}\}$. Then $\langle A_i \rangle$ is K_m and $\langle B_j \rangle$ is K_n.

Case 1: $m < n$. Clearly $|A_i \cap D| = 1$ for all $i = 1, 2, \ldots, m$. Because of symmetry, we assume without loss of generality that $D \cap B_j$ is empty for all $j > m$. Define now the set $D' = \{x_{r,s} | x_{r,s} \in D\}$. Since H is not edgeless, $|D \cap B_j| > 1$ for some $j \leq m$. But then $|D' \cap A_j| > 1$, which means that D' is not a γ-set of G. Since $\langle D' \rangle \simeq \langle D \rangle$, G is not γ-excellent. Thus, $\langle D \rangle$. Assume that H has at least one edge.

Case 2: $m = n$. Obviously in this case exactly one of $|A_i \cap D| = 1$ for all $i = 1, 2, \ldots, m$. Because of symmetry, we assume without loss of generality that $D \cap B_j$ is empty for all $j > m$. Define now the set $D' = \{x_{r,s} \in D\}$. Since H is not edgeless, $|D \cap B_j| > 1$ for some $j \leq m$. Then $|D' \cap A_j| > 1$, which means that D' is not a γ-set of G. Since $\langle D' \rangle \simeq \langle D \rangle$, G is not γ-excellent. Thus, $\langle D \rangle$.

We need the following negative result.

Theorem 2.1. There is no P_3-γ-excellent graph G with $\gamma(G) = 3$.

Proof. Assume that G is a P_3-γ-excellent graph, $\gamma(G) = 3$ and x_1, x_2, x_3 is an induced path in G. Since $X = \{x_1, x_2, x_3\}$ is a γ-set of G, there is $y_i \in pm[x_1, X], i = 1, 2, 3$. Then $\{x_1, x_2, y_2\}$ is a γ-set of G, which implies $y_2 y_3 \in E(G)$. But now no vertex of the induced path y_2, y_3, x_3 is adjacent to x_1, a contradiction.

We need the following negative result.

Example 2.5. $K_3 \square K_n(\gamma) = \{K_1, K_2, K_3, K_1 \cap K_2, K_2 \cap K_3, K_3 \cap K_1\}$ when $n \geq 3$, and $K_3 \square K_n(\gamma) = \{K_1, K_2, K_3, K_1 \cap K_2, K_3 \cap K_1, K_2 \cap K_3\}$ when $n \geq 3$.

Proof. First note that $K_3 \square K_3 \simeq K_3 \square K_3$ and by Example 2.4 it immediately follows that $K_3 \square K_3(\gamma) = \{K_1, K_2, K_3, K_1 \cap K_2, K_3 \cap K_1, K_2 \cap K_3\}$. So, let $n \geq 4$ and m be an integer such that $n \geq m \geq 3$. It is well known that $\gamma(K_m \square K_n) = 3 \leq m = i(K_m \square K_n)$. Let us consider the graph $G_{m,n} = K_m \square K_n$ as a $m \times n$ array of vertices $a_{i,j} \in \{1 \leq i \leq m \land 1 \leq j \leq n\}$, with an adjacency $N(a_{i,j}) = V(G_{m,n}) = (Y_1 \cup Z_2)$, where $Y_1 = \cup_{k=1}^m \{a_{i,k}\}$ and $Z_2 = \cup_{j=1}^n \{a_{r,j}\}$. Remark now that:
Proof.

Let \(a_{i,j}, a_{k,l}, a_{r,s} \) be \(K_3 \) if and only if both 3-tuples \((i, k, r)\) and \((j, l, s)\) consist of paired distinct integers. The vertices of each triangle of \(G_{m,n} \) form a \(\gamma \)-set. Every two adjacent vertices \(a_{i,j} \) and \(a_{k,l} \) belong to a triangle.

(b) All induced subgraphs isomorphic to \(K_1 \cup K_2 \) are \(\{ a_{i,j}, a_{k,l}, a_{r,s} \} \) and \(\{ a_{i,j}, a_{k,l}, a_{r,s} \} \), where \(i \neq k \) and \(j \neq l \). The vertices of each such a subgraph form a \(\gamma \)-set. Every two vertices belong to an induced subgraph isomorphic to \(K_1 \cup K_2 \).

(c) Each 3-cardinality subset of \(Z_3 \) is independent and it is not dominating.

Theorem 2.1 together with (a)-(c) immediately lead to the required.

To continue we need the following theorem and definitions.

Theorem 2.2. \[5\] \(\gamma(G \square H) \geq \min\{|V(G)|, |V(H)|\} \) for any two arbitrary graphs \(G \) and \(H \).

An \(H \)-layer of the Cartesian product \(G \square H \) is the set \(\{ (u, v) \mid u \in V(G), v \in V(H) \} \). Analogously an \(H \)-layer is the set \(\{ (x, v) \mid x \in V(H) \} \). A subgraph of \(G \square H \) induced by a \(G \)-layer or an \(H \)-layer is isomorphic to \(G \) or \(H \), respectively.

Theorem 2.3. Let \(H \) be a connected noncomplete \(n \)-order graph and \(p \geq n \geq 3 \). If each induced subgraph of \(K_p \square H \) which is isomorphic to \(H \) has as a vertex set some \(H \)-layer, then \(\gamma(K_p \square H) = n \) and \(K_p \square H \) is a \(\gamma \)-excellent graph.

Proof. Each \(H \)-layer of \(K_p \square H \) is a dominating set of \(K_p \square H \). Hence \(\gamma(K_p \square H) \leq |V(H)| = n \). Since \(p \geq n \), by Theorem 2.2 we have that each \(H \)-layer is a \(\gamma \)-set of \(K_p \square H \). It remains to note that clearly each vertex of \(K_p \square H \) belongs to some \(H \)-layer.

The next example serves as an illustration of the above theorem.

Example 2.6. If \(p \geq n \geq 5 \), then the graph \(K_p \square C_n \) is \(C_n \)-\(\gamma \)-excellent.

Proof. Let \(H \) be an induced subgraph of \(K_p \square C_n \) which is isomorphic to \(C_r \). It is easy to see that if the vertex set of \(H \) is not a \(C_n \)-layer, then either \(r \in \{3, 4\} \) or \(r \geq n+2 \). The required immediately follows by Theorem 2.3.

3. Generalized lexicographic product

Let \(G \) be a graph with vertex set \(V(G) = \{1, 2, ..., n\} \) and let \(\Phi = (F_1, F_2, ..., F_n) \) be an ordered \(n \)-tuple of paired disjoint graphs. Denote by \(G[\Phi] \) the graph with vertex set \(\bigcup_{i=1}^{n} V(F_i) \) and edge set defined as follows: (a) \(F_1, F_2, ..., F_n \) are induced subgraphs of \(G[\Phi] \), and (b) if \(x \in V(F_i), y \in V(F_j), i, j \in [n] \) and \(i \neq j \), then \(xy \in E(G[\Phi]) \) if and only if \(1 \in E(G) \). A graph \(G[\Phi] \) is called the generalized lexicographic product of \(G \) and \(\Phi \). If \(F_i \simeq F \) for every \(i = 1, 2, ..., n \), then \(G[\Phi] \) becomes the standard lexicographic product \(G[F] \). Each subset \(U = \{ u_1, u_2, ..., u_r \} \subseteq V(G[\Phi]) \) such that \(u_i \in V(F_i) \), for every \(i \in [n] \), is called a \(\gamma \)-layer. From the definition of \(G[\Phi] \) it immediately follow:

(A) \((\text{folklore}) \) \(G[\Phi] \simeq G \) if and only if \(G[\Phi] = G[K_1], G[\Phi] \simeq F \) if and only if \(G \simeq K_1 \). If \(G \) has at least two vertices, then \(G[\Phi] \) is connected if and only if \(G \) is connected. If \(G \) is edgeless, then \(G[\Phi] = \bigcup_{i=1}^{n} F_i \). For any \(G \)-layer \(U = \{ u_1, u_2, ..., u_n \} \) the bijection \(f : V(G) \rightarrow U \) defined by \(f(i) = u_i \in V(F_i) \) is an isomorphism between \(G \) and \((U) \). For any \(x \in V(F_i) \) and \(y \in V(F_j), i \neq j \), is fulfilled \(dist_{G[\Phi]}(x, y) = dist_{G}(i, j) \).

The equality \(dist_{G[\Phi]}(x, y) = dist_{G}(i, j) \) will be used in the sequel without specific references.

Theorem 3.1. Given a graph \(G[\Phi] \), where \(G \) is connected of order \(n \geq 2 \) and \(|V(F_i)| \geq 3 \) for all \(i \in [n] \). Then \(G[\Phi] \) is isomorphic to \(G[\gamma] \) if \(\gamma \) is a dominating set of \(G \) with \(\gamma \) dominants of \(G[\Phi] \). If \(\gamma \) dominates \(G[\Phi] \), then \(\gamma \) is a \(\gamma \)-dominating set of \(G \).

Proof. Let \(\mu \subseteq \{\gamma_i \} \) and \(\mu \) be a \(\mu \)-set of \(G[\Phi] \). Assume there is \(i \in [n] \) such that \(V(F_i) \cap D = \{v_1, v_2, v_r\} \), where \(r \geq 2 \).

Then clearly for each \(j \in N(C) \), \(V(F_j) \cap D \) is empty and for any \(u_j \in V(F_j) \) the set \(D = \{v_1, v_2, ..., v_r\} \cup \{u_j\} \) is a dominating set of \(G[\Phi] \) or a total dominating set of \(G[\Phi] \) depending on whether \(\mu = \gamma \) or \(\mu = \gamma_i \), respectively. Hence \(r = 2 \). Since \(G \) is connected of order \(n \geq 2 \) and \(|V(F_i)| \geq 3 \) for all \(i \in [n] \), the graph \(\langle V(G[\Phi]) - D \rangle \) is connected. Therefore the first two equality chains are correct.

Finally, let \(D_1 \) be a \(\gamma \)-set of \(G[\Phi] \) and \(\gamma(F_k) \geq 3 \) for all \(k \in [n] \). Then clearly for every \(i \in [n] \) the sets \(D_1 \) and \(V(F_i) \) must have no more than one element in common. But this immediately implies that \(D_1 \) is a total dominating set of \(G[\Phi] \). Thus, the last equality chain holds.
Theorem 3.2. Given a graph $G[\Phi]$, where G is connected of order $n \geq 2$ and F_k is complete with $|V(F_k)| \geq 2$ for all $k \in [n]$. Then $G[\Phi]$ is K_s-γ-excellent if and only if G is K_s-γ-excellent.

Proof. Recall that any G-layer of $G[\Phi]$ induces a graph isomorphic to G. We need the following claim.

Claim 1. (i) Each γ-set D of $G[\Phi]$ is contained in a G-layer of $G[\Phi]$; moreover, D is a γ-set of each subgraph of $G[\Phi]$ that is induced by a G-layer containing D. (ii) If D^* is a γ-set of some subgraph of $G[\Phi]$ that is induced by a G-layer, then D^* is a γ-set of $G[\Phi]$.

Proof of Claim 1. If D is a γ-set of $G[\Phi]$, then since all F_i’s are complete, D is a dominating set of any subgraph of $G[\Phi]$ that is induced by a G-layer containing D. In particular this leads to $\gamma(G[\Phi]) \leq \gamma(G)$.

If D^* is a γ-set of some subgraph of $G[\Phi]$ that is induced by a G-layer, then again by the fact that all F_i’s are complete, it follows that D^* is a dominating set of $G[\Phi]$. This clearly leads to $\gamma(G[\Phi]) \geq \gamma(G)$.

Thus $\gamma(G[\Phi]) = \gamma(G)$ implying the required. \square

Let $L = \{l_1, l_2, ..., l_n\}$ be a G-layer of $G[\Phi]$, where $l_i \in V(F_i)$, $i \in [n]$. Choose $l_i \in L$ arbitrarily. Since $G[\Phi]$ is K_s-γ-excellent, there is an s-vertex independent set I_s of $G[\Phi]$ and a γ-set D of $G[\Phi]$ such that $u \in I_s \subseteq D$. By Claim 1, D is a γ-set of some subgraph induced by a G-layer of $G[\Phi]$. Since all F_i’s are complete, without loss of generality, we can assume that $D \subseteq L$.

Let R be a s-vertex independent set of L. Then there is a γ-set D_1 of $G[\Phi]$ which has R as a subset. By Claim 1 D_1 is a γ-set of a graph induced by some G-layer and as above we can assume that $D_1 \subseteq L$. \square

4. **Regular graphs and trees**

To present the next results on regular graphs, we need the following theorem.

Theorem 4.1. Let G be a n-order graph with minimum degree δ. Then $\gamma(G) \leq n\delta/(3\delta - 1)$ when $\delta \in \{3, 4, 5\}$ (see [16], [19] and [22], respectively).

For any 5-regular graph G with $\gamma(G) = 3$, the bound stated in Theorem 4.1 can be improved by 3.

Proposition 4.1. Let G be a 5-regular graph with $\gamma(G) = 3$. Then $n \geq 12$.

Proof. By Theorem 4.1 we have $n \geq 9$. Since there is no 5-regular graphs of odd order, $n \geq 10$ is even. Note that there are exactly sixty 5-regular graphs of order 10 [12, 13]. Their adjacency lists can be found in [13]. A simple verification shows that each of these graphs has the domination number equals to 2. \square

![Figure 1: The two 4-regular K_5-γ-excellent graphs of order 9. The graph on the right is $K_3 \square K_3$.](image)

Theorem 4.2. Let G be a s-regular K_r-γ-excellent n-order connected graph with $\gamma(G) = r$, where $n > s \geq r \geq 3$. Then the following assertions hold.

(i) $n \leq r(s - r + 2)$.

(ii) If $r = 3$, then $s \geq 4$ with equality if and only if $n = 9$ and G is one of the graphs depicted in Fig. 1.

(iii) If $r = 3$ and $s = 5$, then $n = 12$. \square
Proof. (i) Let $H \cong K_r$ be a subgraph of G. Each vertex of H is adjacent to $s - r + 1$ vertices outside $V(H)$. Hence $n \leq r + r(s - r + 1) = r(s - r + 2)$.

(ii) Since $r = 3$, we have $\gamma(G) = 3$ and $n \leq 3s - 3$. By Theorem 4.1 we obtain $s \leq n$ when $s = 3$ and $9 \leq n$ when $s \geq 4$. Thus $s \geq 4$ and if the equality holds, then $n = 9$. There are exactly 16 4-regular graphs of order 9 [13]. An immediate verification shows that among them only the graphs depicted in Fig.1 are K_3,γ-excellent.

(iii) By (i), $n \leq 12$ and by Proposition 4.1, $n \geq 12$.

Note that the connected 5-regular K_3,γ-excellent graph depicted in Fig. 2 has order 12.

![Figure 2: A 5-regular K_3,γ-excellent connected graph on 12 vertices.](image)

Now we concentrate on graphs having cut-vertices.

Let $G_1, G_2, ..., G_k$ be pairwise disjoint connected graphs of order at least 2 and $v_i \in V(G_i)$, $i = 1, 2, ..., k$. Then the coalescence $(G_1, G_2, ..., G_k)(v_1, v_2, ..., v_k : v)$ of $G_1, G_2, ..., G_k$ via $v_1, v_2, ..., v_k$, is the graph obtained from the union of $G_1, G_2, ..., G_k$ by identifying $v_1, v_2, ..., v_k$ in a vertex labeled v. If for graphs $G_1, G_2, ..., G_k$ is fulfilled $V(G_i) \cap V(G_j) = \{x\}$ when $i, j = 1, 2, ..., k$ and $i \neq j$, then the coalescence $(G_1, G_2, ..., G_k)(x)$ of $G_1, G_2, ..., G_k$ via x is the union of $G_1, G_2, ..., G_k$.

Define $V^-(G) = \{x \in V(G) \mid \gamma(G - x) < \gamma(G)\}$ and $V^+(G) = \{x \in V(G) \mid \gamma(G - x) = \gamma(G)\}$. It is well known that $V^-(G) = \{x \in V(G) \mid \gamma(G - x) + 1 = \gamma(G)\}$. To continue we need the following result:

Lemma 4.1. [2] Let $G = (F \cdot H)(x)$. Then $x \in V^-(G)$ if and only if $x \in V^-(F) \cap V^-(H)$. Furthermore, if $x \in V^-(G)$, then $\gamma(G) = \gamma(F) + \gamma(H) - 1$.

Theorem 4.3. Let $G = (G_1, G_2, ..., G_k)(x)$, $x \in V^-(G)$ and G_i is H-γ-excellent, $i = 1, 2, ..., k$, where H is connected and has no cut-vertex. Then G is also H-γ-excellent.

Proof. Using induction on k we easily obtain from Lemma 4.1 that $\{x\} = V^-(G_1) \cap V^-(G_2) \cap ... \cap V^-(G_k)$ and $\gamma(G) = \gamma(G_1) + \gamma(G_2) + ... + \gamma(G_k) - k + 1$. Consider any induced subgraph R of G, which is isomorphic to H. Since H is connected and without cut-vertices, R is an induced subgraph of some G_i, say without loss of generality, $i = 1$. Then there is a γ-set D_i of G_i for which R is an induced subgraph of (D_i). Let D_i be a γ-set of $G_i - x$, $i = 1, 2, ..., k$. Since $x \in V^-(G_1)$, $|D_i| = \gamma(G_i) - 1$. Then $D = \cup_{i=1}^k D_i$ is a γ-set of G and R is an induced subgraph of (D).

Define a vertex labeling of a tree T as a function $S : V(T) \to \{0, 1\}$. A labeled tree T is denoted by a pair (T, S). Let 0_T and 1_T be the sets of vertices assigned the values 0 and 1, respectively. In a labeled 1-corona tree T of order at least four all its leaves are in 0_T and all its support vertices form 1_T.

Let \mathcal{F} be the family of labeled trees (T, S) that can be obtained from a sequence of labeled trees $\tau : (T^1, S^1), (T^2, S^2), (T^3, S^3), ...$, ($j \geq 1$), such that (T^1, S^1) is a labeled 1-corona tree of order at least four and $(T, S) = (T^j, S^j)$, and, if $j \geq 2$, (T^{j+1}, S^{j+1}) can be obtained recursively from (T^j, S^j) by the following operation (a visual example of this operation is given in Figure 3):

Operation O. The labeled tree (T^{j+1}, S^{j+1}) is obtained from vertex disjoint (T^j, S^j) and a labeled 1-corona tree G_i in such a way that $T^{j+1} = (T^j \cdot G_i)(u, v : u)$, where (a) $u \in 0_{T^j}$, $v \in 0_{G_i}$ and $u \in 0_{T^{j+1}}$, and (b) $0_{T^{j+1}} = 0_{T^j} \cup 0_{G_i} - \{v\}$ and $1_{T^{j+1}} = 1_{T^j} \cup 1_{G_i}$.

Now we are in a position to present a (reformulated) constructive characterization of γ-excellent trees.

Theorem 4.4. [17] For any tree T of order at least four the following are equivalent:

(i) T is γ-excellent.

(ii) There is labeling $S : V(T) \to \{0, 1\}$ such that (T, S) is in \mathcal{F}.

Moreover, if (T, S) is in \mathcal{F}, then $0_T = V^-(T)$, 0_T is a γ-set of T and $1_T = V^+(T)$. In particular, all leaves of T are in $V^-(T)$.
Another constructive characterization of the γ-excellent trees can be found in [3]. To prove our last result we need the following lemma.

Lemma 4.2. Let G be a connected graph and $x \in V^-(G)$.

(i) If xy is a bridge in G, then no γ-set of G contains both x and y.

(ii) If xy and xz are bridges in G, then no γ-set of G contains both y and z.

Proof. (i) Clearly, we can consider G as a coalescence $(F \cdot H)(x)$, where without loss of generality, $y \in V(F)$ and x is a leaf of F. Suppose D is a γ-set of G and $x, y \notin D$. Then $D \cap V(H)$ and $D \cap V(F)$ are dominating sets of H and F, respectively. Moreover, since x is a leaf in F, $D \cap V(F)$ is not a γ-set of F. Hence $|D| = |D \cap V(H)| + |D \cap V(F)| \leq \gamma(H) + \gamma(F) - 1$, a contradiction with Lemma 4.1.

(ii) Let as in (i), $G = (F \cdot H)(x), y \in V(F)$ and x is a leaf of F. Hence $z \in V(H)$. Let D be a γ-set of G and $y, z \in D$. By (i), $x \notin D$ and then $D \cap V(H)$ and $D \cap V(F)$ are dominating sets of H and F, respectively. This implies $|D| = |D \cap V(H)| + |D \cap V(F)| \leq \gamma(H) + \gamma(F)$, a contradiction with Lemma 4.1.

Theorem 4.5. Let T be a γ-excellent tree of order at least four.

(a) If T has a cut-vertex belonging to $V^-(T)$, then $\gamma(T) = \{K_1\}$.

(b) If no cut-vertex of T is in $V^-(T)$, then T is a 1-corona tree and $\gamma(T) = \{K_1, \ldots, K_r\}$, where $2r = |V(T)|$.

Proof. Suppose $H \subseteq T(\gamma)$ and H is not edgeless. Let D be a γ-set of T and $R \cong H$ be an induced subgraph of $\langle D \rangle$. Choose arbitrarily an edge xy of R. Clearly both x and y are not leaves and by Lemma 4.2, neither x nor y is a cut-vertex belonging to $V^-(T)$. Hence $x, y \in V^*(T)$, because of Theorem 4.4. Now we choose xy so that x is a leaf in R. By Theorem 4.4, a vertex y has a neighbor $z \in V^-(T)$. Lemma 4.2 now implies $N[z] \cap D = \{y\}$. But then the graph $R_x = \langle V(R - x) \cup \{z\} \rangle$ is isomorphic to R. Since $z \in V^-(T)$ and $y, z \in E(T)$, Lemma 4.2 shows that no γ-set of T contains both y and z. Thus, we arrive to a contradiction.

Therefore, $T(\gamma)$ contains only edgeless graphs. By Theorem 4.4 $V^-(T)$ is a γ-set of T. Assume first that there is a cut-vertex $x \in V^-(T)$. Then for any two neighbors y and z of x the set $V_1 = (V^-(T) - \{x\}) \cup \{y, z\}$ is independent of cardinality $\gamma(T) + 1$. Suppose T is K_r, γ-excellent for some $r \geq 2$. Choose any cardinality r subset V_1 of $(V^-(T) - \{x\}) \cup \{y, z\}$ that contains both y and z. Now by Lemma 4.2, we conclude that no γ-set of T has V_1 as a subset. Thus, $T(\gamma) = \{K_1\}$.

Finally, let $V^-(T)$ contains only leaves. By Theorem 4.4, T is a 1-corona tree. Clearly $\gamma(T) = i(T) = \beta_0(T) = r$ and then the required now follows by Proposition 2.1.

5. Open problems and questions

We conclude the paper by listing some interesting problems and directions for further research.

- For which ordered pairs (r, s) there are s-regular K_r, γ-excellent graphs of order $r(s - r + 2)$ (see Theorem 4.2)? Find all 12-order 5-regular K_3, γ-excellent graphs.

- Characterize/describe all graphs F such that there is no F, μ-excellent graph G with $\mu(G) = |V(F)|$ (see Observation 1.1). Recall that there is no P_3, γ-excellent graph G with $\gamma(G) = 3$ (Theorem 2.1).

- Let b be a positive integer. Denote by $\mathcal{A}(\mu, b)$ the class of all μ-excellent connected graphs G for which $\mu(G) = b$ and $|G(\mu)|$ is maximum. It might be interesting for the reader to investigate these classes at least when b is small. Note that we already know that $\mathcal{A}(\gamma, 1)$ consists of all complete graphs, and all connected graphs obtained from K_{2n}, $n \geq 2$, by removing a perfect matching form $\mathcal{A}(\gamma, 2)$ (Example 2.1). In addition, by Example 2.4 we have $\gamma(K_3 \square K_3) = 3$, $K_3 \square K_3(\gamma) = \{K_1, K_2, K_3, K_4 \cup K_2, K_5, K_3\}$ and by Theorem 2.1 we know that there is no P_3, γ-excellent graph G with $\gamma(G) = 3$. Thus, $K_3 \square K_3$ belongs to $\mathcal{A}(\gamma, 3)$ and $|K_3 \square K_3(\gamma)| = 6$. Find $\mathcal{A}(\gamma, 3)$.
• Find $T(\mu)$ for each μ-excellent tree T, where $\mu \in \{i, \gamma, \gamma R\}$ and γR stand for the Roman domination number (see [9], [10] and [18], respectively).

• Find graphs H such that each induced subgraph of $K_p \Box H$ which is isomorphic to H has as a vertex set some H-layer (see Theorem 2.3).

• Characterize/describe all connected K_2^γ-excellent graphs G with $\gamma(G) = 2$.

Acknowledgment
The author express his sincere thanks to the anonymous referees for their meticulous and thorough reading of the paper that greatly improved its exposition.

References