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Abstract
A graph G = (V (G), E(G)) is γ-excellent if V (G) is the union of all γ-sets of G, where γ stands for the domination number
of G and a γ-set is a dominating set of cardinality γ. Let I be a set of all mutually nonisomorphic graphs and let ∅ 6= H ( I.
In this paper, the study of the H-γ-excellent graphs is initiated. A graph G is H-γ-excellent if the following conditions hold:
(i) for every H ∈ H and for each x ∈ V (G) there exists an induced subgraph Hx of G such that H and Hx are isomorphic,
x ∈ V (Hx) and V (Hx) is a subset of some γ-set of G, and (ii) the vertex set of every induced subgraph H of G, which is
isomorphic to some element of H, is a subset of some γ-set of G. We consider some well-known graphs, including cycles,
trees and some cartesian products of two graphs, and for every considered graph we describe its largest set H ( I for which
the graph is H-γ-excellent. Results on γ-excellent regular graphs and on a generalized lexicographic product of graphs are
presented. Several open problems and questions are also posed.
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1. Introduction

All graphs in this paper will be finite, simple, and undirected. We use [8] as a reference for terminology and notation
which are not explicitly defined here. In a graph G = (V (G), E(G)), for a subset S ⊆ V (G) the subgraph induced by S is
the graph 〈S〉 with vertex set S and two vertices in 〈S〉 are adjacent if and only if they are adjacent in G. The complement
G of G is the graph whose vertex set is V (G) and two vertices are adjacent in G if and only if they are nonadjacent in G.
The union of two disjoint graphs G and H is denoted by G ∪H. For any vertex x of a graph G, NG(x) denotes the set of all
neighbors of x in G, NG[x] = NG(x)∪{x} and the degree of x is degG(x) = |NG(x)|. The minimum and maximum degrees of
a graph G are denoted by δ(G) and ∆(G), respectively. For a subset S ⊆ V (G), let NG[S] = ∪v∈SNG[v]. Let X ⊆ V (G) and
x ∈ X. The X-private neighborhood of x, denoted by pnG[x,X] or simply by pn[x,X] (if the graph is clear from the context),
is the set {y ∈ V (G) | N [y] ∩X = {x}}. A leaf is a vertex of degree one and a support vertex is a vertex adjacent to a leaf.
A vertex which separates two other vertices of the same component is a cut-vertex, and an edge separating its ends is a
bridge. The distance distG(x, y) in G of two vertices x, y is the length of a shortest x − y path in G; if no such path exists,
we set distG(x, y) := ∞. An isomorphism of two graphs G and H is a bijection f : V (G) → V (H) between the vertex sets
of G and H such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H. If an
isomorphism exists between two graphs, then the graphs are called isomorphic and denoted as G ' H. We write Kn for
the complete graph of order n and Pn for the path on n vertices. Let Cm denote the cycle of length m. A complete r-partite
graph Kn1,n2,...,nr

is a graph whose vertex set can be partitioned into r parts, say V1, V2, ..., Vr, such that (a) no two vertices
within the same part are adjacent, (b) there is an edge between every two vertices of different parts of the partition, and
(c) |Vi| = ni, i = 1, 2, ..., r. The 1-corona, denoted cor(U), of a graph U is the graph obtained from U by adding a degree-one
neighbor to every vertex of U . We use the notation [k] for {1, 2, .., k}.

An independent set is a set of vertices in a graph, no two of which are adjacent. The independence number of G, denoted
β0(G), is the maximum size of an independent set inG. A subsetD ⊆ V (G) is called a dominating set (or a total dominating
set) inG, if for each x ∈ V (G)−D (or for each x ∈ V (G), respectively) there exists a vertex y ∈ D adjacent to x. A dominating
set R of a graph G is a restrained dominating set (or an outer-connected dominating set) in G, if every vertex in V (G)−R is
adjacent to a vertex in V (G)−R (or V (G)−R induces a connected graph, respectively). The minimum number of vertices
of a dominating set in a graph G is the domination number γ(G) of G. Analogously the total domination number γt(G),
the restrained domination number γr(G) and the outer-connected domination number γoc(G) are defined. The minimum
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cardinality of a set S which is simultaneously total dominating and restrained dominating inG is called the total restrained
domination number γtr(G) of G. The minimum cardinality of a set S which is simultaneously total dominating and outer-
connected dominating inG is called the total outer-connected domination number γoct (G) ofG. The independent domination
number of G, denoted by i(G), is the minimum size of an independent dominating set.

For a graphG, let π be a graphical property that can be possessed, or satisfied by the subsets of V . For example, being a
maximal complete subgraph, a maximal independent set, acyclic, a closed/open neighborhood, a minimal dominating set,
etc. Suppose that fπ and Fπ are the associated graph invariants: the minimum and maximum cardinalities of a set with
property π. Let µ ∈ {fπ, Fπ}. For a graph G, denote by Mµ(G) the family of all subsets of V (G) each of which has property π
and cardinality µ(G). Each element of Mµ(G) is called a µ-set of G. Fricke et al. [6] define a graph G to be µ-excellent if each
its vertex belongs to some µ-set. Perhaps historically the first results on µ-excellent graphs were published by Berge [1]
who introduced the class of B-graphs consisting of all graphs in which every vertex is in a maximum independent set.
Of course all B-graphs form the class of β0-excellent graphs. The study of excellent graphs with respect to the some
domination related parameters was initiated by Fricke et al. [6] and continued e.g. in [3,9,10,14,18,20,23].

In this paper we focus on the following subclass of the class of µ-excellent graphs.

Definition 1.1. Let I be a set of all mutually nonisomorphic graphs and ∅ 6= H ( I. We say that a graph G isH-µ-excellent
if the following hold:

(i) For each H ∈ H and for each x ∈ V (G) there exists an induced subgraph Hx of G such that H and Hx are isomorphic,
x ∈ V (Hx) and V (Hx) is a subset of some µ-set of G.

(ii) For each induced subgraph H of G, which is isomorphic to some element of H, there is a µ-set of G having V (H) as a
subset.

By the above definition it immediately follows that eachH-µ-excellent graph is µ-excellent. If a graphG isH-µ-excellent
and H contains only one element, e.g. H = {H}, we sometimes omit the brackets and say that a graph G is H-µ-excellent.
Define the µ-excellent family of induced subgraphs of a µ-excellent graph G, denoted by G 〈µ〉, as the family of all graphs
H ∈ I for which G is H-µ-excellent. The next two observations are obvious.

Observation 1.1. If G is a µ-excellent graph, then {K1} ⊆ G 〈µ〉 and µ(G) ≥ max{|V (H)| | H ∈ G 〈µ〉}.

Observation 1.2. Let a graph G be both µ-excellent and ν-excellent. If the set of all µ-sets and the set of all ν-sets of G
coincide, then G 〈µ〉 = G 〈ν〉.

As first examples ofH-µ-excellent graphs let us consider the case µ = β0. Clearly, any β0-excellent graphG is {K1,Kβ0(G)}-
β0-excellent. A graph is r-extendable if every independent set of size r is contained in a maximum independent set (Dean
and Zito [4]). Clearly, a graph is {K1,K2, ..,Kr}-β0-excellent if and only if it is s-extendable for all s = 1, 2, .., r. Plum-
mer [15] define a graph G to be well covered whenever G is k-extendable for every integer k. In other words, a graph G is
well covered if and only if G 〈β0〉 = {K1,K2, ..,Kβ0(G)}.

In this paper we concentrate mainly on excellent graphs with respect to the domination number γ. We give basic
terminologies and notations in the rest of this section. In Section 2 we describe the γ-excellent family of induced subgraphs
for some well known graphs. In Section 3 we show that, under appropriate restrictions, the generalized lexicographic
product of graphs has the same excellent family of induced subgraphs with respect to six domination-related parameters.
Section 4 contains results on γ-excellent regular graphs and trees. We conclude in Section 5 with some open problems.

2. Examples

Here we find the γ-excellent family of induced subgraphs of some well known graphs.

Example 2.1. Let G be a connected graph with γ(G) = 2. In [11] it is proved that (in our terminology) G is K2-γ-excellent
if and only if G is a complete r-partite graph Kn1,n2,...,nr

, ni ≥ 2, i = 1, 2, ..., r ≥ 2. Clearly K2,2,...,2 〈γ〉 = {K1,K2,K2} and
Kn1,n2,...,nr 〈γ〉 = {K1,K2} when ns ≥ 3 for some s ∈ [r].

Example 2.2. Let ν ∈ {γ, i}. Then all the following hold:

(i) (folklore) ν(Pn) = dn/3e and ν(Cr) = dr/3e. Cr is ν-excelent for all r ≥ 3. Pn is ν-excellent if and only if n = 2 or n ≡ 1

(mod 3).

(ii) Pn 〈ν〉 = {K1} when n ∈ {1, 2} ∪ {7, 10, . . . } and P4 〈ν〉 = {K1,K2}

13



V. Samodivkin / Discrete Math. Lett. 5 (2021) 12–19 14

(iii) C5 〈ν〉 = {K1,K2} and C3r 〈ν〉 = C5+3r 〈ν〉 = {K1}, r ≥ 1.

(iv) C7 〈γ〉 = {K1,K2,K2,K3}, and C3r+1 〈γ〉 = {K1,K2,K2} for r 6= 2.

(v) C7 〈i〉 = {K1,K2,K3} and C3r+1 〈i〉 = {K1,K2} for r 6= 2.

The proof is straightforward and hence we omit it.
Denote by (CEA) the class of all graphs G such that γ(G+ e) 6= γ(G) for all e ∈ E(G).

Example 2.3. Let a noncomplete graph G be in (CEA). It is well known fact that any two nonadjacent vertices of G belong
to some γ-set of G (Sumner and Blitch [21]). In other words, G is {K1,K2}-γ-excellent graph.

Proposition 2.1. Let G be a graph with β0(G) = γ(G) = s. Then G is {K1,K2, ...,Ks}-γ-excellent and G 〈i〉 = G 〈β0〉 =

{K1, ...,Ks} (for the second conclusion, see [15]).

Proof. Every independent set ofG is a subset of a maximal independent set. Since each maximal independent set is always
a dominating set and β0(G) = γ(G) = s, the result immediately follows.

The Cartesian product of two graphs G and H is the graph G�H whose vertex set is the Cartesian product of the sets
V (G) and V (H). Two vertices (u1, v1) and (u2, v2) are adjacent in G�H precisely when either u1 = u2 and v1v2 ∈ E(H) or
v1 = v2 and u1u2 ∈ E(G). It is clear from this definition that G�H ' H�G and if G or H is not connected then G�H is not
connected.

Example 2.4. Let G = Km�Kn, n ≥ m ≥ 2. Then G 〈i〉 = G 〈β0〉 = {K1, ...,Km}. If n > m, then G 〈γ〉 = {K1, ...,Km}. If
n = m, then G 〈γ〉 = {K1, ...,Km} ∪ {K1,K2, ...,Km} ∪ {Kp ∪Kq | (p ≥ 2) ∧ (q ≥ 1) ∧ (p+ q ≤ m)}.

Proof. Let G = Km�Kn, n ≥ m ≥ 2. We consider G as an m × n array of vertices {xi,j | (1 ≤ i ≤ m) ∧ (1 ≤ j ≤ n)},
where the closed neighborhood of xi,j is the union of the sets Ai = {xi,1, xi,2, ..., xi,n} and Bj = {x1,j , x2,j , ..., xm,j}. Then
〈Ai〉 ' Kn and 〈Bj〉 ' Km. It is well-known that [7] (a) γ(G) = i(G) = β0(G) = m, (b) A1, A2, ..., Am are γ-sets of G, and if
m = n, B1, B2, ..., Bn are also γ-sets of G. Hence, by Proposition 2.1, G is {K1,K2, ...,Km}-γ-excellent and G 〈i〉 = G 〈β0〉 =

{K1, ...,Km}. Suppose thatG isH-γ-excellent. Then there is a γ-setD ofG such that 〈D〉 has an induced subgraphH1 ' H.
Assume that H has at least one edge.

Case 1: m < n. Clearly |Ai ∩D| = 1 for all i = 1, 2, ..,m. Because of symmetry, we assume without loss of generality that
D ∩ Bj is empty for all j > m. Define now the set Dt = {xr,s | xs,r ∈ D}. Since H is not edgeless, |D ∩ Bj | > 1 for some
j ≤ m. But then |Dt ∩ Aj | > 1, which means that Dt is not a γ-set of G. Since 〈D〉 ' 〈Dt〉, G is not H-γ-excellent. Thus,
G 〈γ〉 = {K1, ...,Ks}.

Case 2: m = n. Obviously in this case exactly one of |Ai ∩D| = 1 for all i = 1, 2, ..,m and |Bj ∩D| = 1 for all j = 1, 2, ...,m

holds. Say the first is valid. Let R1 be a l-order component of 〈H〉 for some l ≥ 2. For the sake of symmetry, we can
assume that all elements of R1 are in B1 and D ⊂ ∪ps=1Bs, where D ∩Bs is not empty for all s ∈ [p]. Clearly p ≤ m− l + 1.
Suppose that 〈D〉 has another nontrivial component. Then the difference m − p is not less than l. Define the set D1 =

(D − V (R1)) ∪ {x1,p+1, x1,p+2, ..., x1,p+l}. Clearly D1 is not a γ-set of G and 〈D1〉 ' 〈D〉. Thus R1 is the only nontrivial
component of 〈D〉. Hence H is either a complete graph or a union of complete and edgeless graph. Finally, it is easy to see
that for each such a graph H, G is H-γ-excellent.

We need the following negative result.

Theorem 2.1. There is no P3-γ-excellent graph G with γ(G) = 3.

Proof. Assume that G is a P3-γ-excellent graph, γ(G) = 3 and x1, x2, x3 is an induced path in G. Since X = {x1, x2, x3} is a
γ-set of G, there is yi ∈ pn[xi, X], i = 1, 2, 3. Then {x1, x2, y2} is a γ-set of G, which implies y2y3 ∈ E(G). But now no vertex
of the induced path y2, y3, x3 is adjacent to x1, a contradiction.

Example 2.5. K3�Kn 〈γ〉 = {K1,K2,K2,K1 ∪K2,K3,K3} when n ≥ 3, and Kp�Kn 〈γ〉 = {K1,K2,K2,K1 ∪K2,K3} when
n ≥ p ≥ 4.

Proof. First note that K3�K3 ' K3�K3 and by Example 2.4 it immediately follows that K3�K3 〈γ〉 = {K1,K2,K2,K1 ∪
K2,K3,K3}. So, let n ≥ 4 and m be an integer such that n ≥ m ≥ 3. It is well known that [7] γ(Km�Kn) = 3 ≤ m =

i(Km�Kn). Let us consider the graph Gm,n = Km�Kn as a m× n array of vertices {ai,j | (1 ≤ i ≤ m) ∧ (1 ≤ j ≤ n)}, with
an adjacency N(ai,j) = V (Gm,n)− (Yi ∪ Zj), where Yi = ∪nk=1{ai,k} and Zj = ∪mr=1{ar,j}. Remark now that:

14



V. Samodivkin / Discrete Math. Lett. 5 (2021) 12–19 15

(a) 〈{ai,j , ak,l, ar,s}〉 ' K3 if and only if both 3-tuples (i, k, r) and (j, l, s) consist of paired distinct integers. The vertices
of each triangle of Gm,n form a γ-set. Every two adjacent vertices ai,j and ak,l belong to a triangle.

(b) All induced subgraphs isomorphic to K1 ∪K2 are 〈{ai,j , ak,l, ai,l}〉 and 〈{ai,j , ak,l, ak,j}〉, where i 6= k and j 6= l. The
vertices of each such a subgraph form a γ-set. Every two vertices belong to an induced subgraph isomorphic to
K1 ∪K2.

(c) Each 3-cardinality subset of Zj is independent and it is not dominating.

Theorem 2.1 together with (a)-(c) immediately lead to the required.

To continue we need the following theorem and definitions.

Theorem 2.2. [5] γ(G�H) ≥ min{|V (G)|, |V (H)|} for any two arbitrary graphs G and H.

A G-layer of the Cartesian product G�H is the set {(u, y) | u ∈ V (G)},where y ∈ V (H). Analogously an H-layer is the
set {(x, v) | v ∈ V (H)}, where x ∈ V (G). A subgraph of G�H induced by a G-layer or an H-layer is isomorphic to G or H,
respectively.

Theorem 2.3. Let H be a connected noncomplete n-order graph and p ≥ n ≥ 3. If each induced subgraph of Kp�H which
is isomorphic to H has as a vertex set some H-layer, then γ(Kp�H) = n and Kp�H is a H-γ-excellent graph.

Proof. Each H-layer of Kp�H is a dominating set of Kp�H. Hence γ(Kp�H) ≤ |V (H)| = n. Since p ≥ n, by Theorem
2.2 we have that each H-layer is a γ-set of Kp�H. It remains to note that clearly each vertex of Kp�H belongs to some
H-layer.

The next example serves as an illustration of the above theorem.

Example 2.6. If p ≥ n ≥ 5, then the graph Kp�Cn is Cn-γ-excellent.

Proof. Let H be an induced subgraph of Kp�Cn which is isomorphic to Cr. It is easy to see that if the vertex set of H is
not a Cn-layer, then either r ∈ {3, 4} or r ≥ n+ 2. The required immediately follows by Theorem 2.3.

3. Generalized lexicographic product

Let G be a graph with vertex set V (G) = {1,2, ..,n} and let Φ = (F1, F2, ..., Fn) be an ordered n-tuple of paired disjoint
graphs. Denote by G[Φ] the graph with vertex set ∪ni=1V (Fi) and edge set defined as follows: (a) F1, F2, ..., Fn are induced
subgraphs of G[Φ], and (b) if x ∈ V (Fi), y ∈ V (Fj), i, j ∈ [n] and i 6= j, then xy ∈ E(G[Φ]) if and only if ij ∈ E(G). A graph
G[Φ] is called the generalized lexicographic product of G and Φ. If Fi ' F for every i = 1, 2, ..., n, then G[Φ] becomes the
standard lexicographic product G[F ]. Each subset U = {u1, u2, ..., un} ⊆ V (G[Φ]) such that ui ∈ V (Fi), for every i ∈ [n], is
called a G-layer. From the definition of G[Φ] it immediately follow:

(A) (folklore)G[Φ] ' G if and only ifG[Φ] = G[K1]. G[F ] ' F if and only ifG ' K1. IfG has at least two vertices, thenG[Φ]

is connected if and only if G is connected. If G is edgeless, then G[Φ] = ∪ni=1Fi. For any G-layer U = {u1, u2, ..., un}
the bijection f : V (G)→ U defined by f(i) = ui ∈ V (Fi) is an isomorphism between G and 〈U〉. For any x ∈ V (Fi) and
y ∈ V (Fj), i 6= j, is fulfilled distG[Φ](x, y) = distG(i, j).

The equality distG[Φ](x, y) = distG(i, j) will be used in the sequel without specific references.

Theorem 3.1. Given a graph G[Φ], where G is connected of order n ≥ 2 and |V (Fk)| ≥ 3 for all k ∈ [n]. Then G[Φ] 〈γ〉 =

G[Φ] 〈γr〉 = G[Φ] 〈γoc〉 and G[Φ] 〈γt〉 = G[Φ] 〈γtr〉 = G[Φ] 〈γoct 〉. If γ(Fk) ≥ 3 for all k ∈ [n], then G[Φ] 〈γ〉 = G[Φ] 〈γr〉 =

G[Φ] 〈γoc〉 = G[Φ] 〈γt〉 = G[Φ] 〈γtr〉 = G[Φ] 〈γoct 〉.

Proof. Let µ ∈ {γ, γt} and D a µ-set of G[Φ]. Assume there is i ∈ [n] such that V (Fi) ∩ D = {v1, v2, ..., vr}, where r ≥ 2.
Then clearly for each j ∈ N(i), V (Fj) ∩D is empty and for any uj ∈ V (Fj) the set (D − {v2, ..., vr}) ∪ {uj} is a dominating
set of G[Φ] or a total dominating set of G[Φ] depending on whether µ = γ or µ = γt, respectively. Hence r = 2. Since G
is connected of order n ≥ 2 and |V (Fi)| ≥ 3 for all i ∈ [n], the graph 〈V (G[Φ])−D〉 is connected. Therefore the first two
equality chains are correct.

Finally, let D1 be a γ-set of G[Φ] and γ(Fk) ≥ 3 for all k ∈ [n]. Then clearly for every i ∈ [n] the sets D and V (Fi) must
have no more than one element in common. But this immediately implies that D1 is a total dominating set of G[Φ]. Thus,
the last equality chain holds.
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Theorem 3.2. Given a graph G[Φ], where G is connected of order n ≥ 2 and Fk is complete with |V (Fk)| ≥ 2 for all k ∈ [n].
Then G[Φ] is Ks-γ-excellent if and only if G is Ks-γ-excellent.

Proof. Recall that any G-layer of G[Φ] induces a graph isomorphic to G. We need the following claim.

Claim 1. (i) Each γ-set D of G[Φ] is contained in a G-layer of G[Φ]; moreover, D is a γ-set of each subgraph of G[Φ] that is
induced by a G-layer containing D. (ii) If D∗ is a γ-set of some subgraph of G[Φ] that is induced by a G-layer, then D∗ is a
γ-set of G[Φ].

Proof of Claim 1. If D is a γ-set of G[Φ], then since all Fi’s are complete |D ∩ V (Fi)| ≤ 1 for all i ∈ [n]. But then D is a
dominating set of any subgraph ofG[Φ] that is induced by aG-layer containingD. In particular this leads to γ(G[Φ]) ≤ γ(G).

If D∗ is a γ-set of some subgraph of G[Φ] that is induced by a G-layer, then again by the fact that all Fi’s are complete,
it follows that D∗ is a dominating set of G[Φ]. This clearly leads to γ(G[Φ]) ≥ γ(G).

Thus γ(G[Φ]) = γ(G) implying the required.

⇐ Choose u ∈ V (G[Φ]) arbitrarily. Then there is a G-layer U containing u. Since G is Ks-γ-excellent, there is a γ-set
D∗ of 〈U〉 that contains s paired nonadjacent vertices one of which is u. By Claim 1, D∗ is a γ-set of G[Φ].

If R is a s-vertex independent set in G[Φ], then since all Fi’s are complete graphs, R is a subset of some G-layer. The
rest is as above.
⇒ Let L = {l1, l2, ..., ln} be a G-layer of G[Φ], where li ∈ V (Fi), i ∈ [n]. Choose lr ∈ L arbitrarily. Since G[Φ] is Ks-γ-

excellent, there is an s-vertex independent set Is of G[Φ] and a γ-set D of G[Φ] such that u ∈ Is ⊆ D. By Claim 1, D is a
γ-set of some subgraph induced by a G-layer of G[Φ]. Since all Fi’s are complete, without loss of generality, we can assume
that D ⊆ L.

Let R be a s-vertex independent set of L. Then there is a γ-set D1 of G[Φ] which has R as a subset. By Claim 1 D1 is a
γ-set of a graph induced by some G-layer and as above we can assume that D1 ⊆ L.

4. Regular graphs and trees

To present the next results on regular graphs, we need the following theorem.

Theorem 4.1. Let G be a n-order graph with minimum degree δ. Then γ(G) ≤ nδ/(3δ − 1) when δ ∈ {3, 4, 5} (see [16], [19]
and [22], respectively).

For any 5-regular graph G with γ(G) = 3, the bound stated in Theorem 4.1 can be improved by 3.

Proposition 4.1. Let G be a 5-regular graph with γ(G) = 3. Then n ≥ 12.

Proof. By Theorem 4.1 we have n ≥ 9. Since there is no 5-regular graphs of odd order, n ≥ 10 is even. Note that there are
exactly sixty 5-regular graphs of order 10 [12, 13]. Their adjacency lists can be found in [13]. A simple verification shows
that each of these graphs has the domination number equals to 2.

Figure 1: The two 4-regular K3-γ-excellent graphs of order 9. The graph on the right is K3�K3.

Theorem 4.2. Let G be a s-regular Kr-γ-excellent n-order connected graph with γ(G) = r, where n > s ≥ r ≥ 3. Then the
following assertions hold.

(i) n ≤ r(s− r + 2).

(ii) If r = 3, then s ≥ 4 with equality if and only if n = 9 and G is one of the graphs depicted in Fig.1.

(iii) If r = 3 and s = 5, then n = 12.
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Proof. (i) Let H ' Kr be a subgraph of G. Each vertex of H is adjacent to s − r + 1 vertices outside V (H). Hence
n ≤ r + r(s− r + 1) = r(s− r + 2).

(ii) Since r = 3, we have γ(G) = 3 and n ≤ 3s − 3. By Theorem 4.1 we obtain 8 ≤ n when s = 3 and 9 ≤ n when s ≥ 4.
Thus s ≥ 4 and if the equality holds, then n = 9. There are exactly 16 4-regular graphs of order 9 [13]. An immediate
verification shows that among them only the graphs depicted in Fig.1 are K3-γ-excellent.

(iii) By (i), n ≤ 12 and by Proposition 4.1 , n ≥ 12.

Note that the connected 5-regular K3-γ-excellent graph depicted in Fig. 2 has order 12.

Figure 2: A 5-regular K3-γ-excellent connected graph on 12 vertices.

Now we concentrate on graphs having cut-vertices.
Let G1, G2, ..., Gk be pairwise disjoint connected graphs of order at least 2 and vi ∈ V (Gi), i = 1, 2, ..., k. Then the coales-

cence (G1·G2·...·Gk)(v1, v2, ..., vk : v) ofG1, G2, ..., Gk via v1, v2, ..., vk, is the graph obtained from the union ofG1, G2, ..., Gk by
identifying v1, v2, ..., vk in a vertex labeled v. If for graphsG1, G2, ..., Gk is fulfilled V (Gi)∩V (Gj) = {x} when i, j = 1, 2, ..., k

and i 6= j, then the coalescence (G1·G2·...·Gk)(x) of G1, G2, ..., Gk via x is the union of G1, G2, ..., Gk.
Define V −(G) = {x ∈ V (G) | γ(G − x) < γ(G)} and V =(G) = {x ∈ V (G) | γ(G − x) = γ(G)}. It is well known that

V −(G) = {x ∈ V (G) | γ(G− x) + 1 = γ(G)}. To continue we need the following result:

Lemma 4.1. [2] Let G = (F ·H)(x). Then x ∈ V −(G) if and only if x ∈ V −(F ) ∩ V −(H). Furthermore, if x ∈ V −(G), then
γ(G) = γ(F ) + γ(H)− 1.

Theorem 4.3. Let G = (G1·G2·...·Gk)(x), x ∈ V −(G) and Gi is H-γ-exellent, i = 1, 2, ..., k, where H is connected and has no
cut-vertex. Then G is also H-γ-excellent.

Proof. Using induction on k we easily obtain from Lemma 4.1 that {x} = V −(G1) ∩ V −(G2) ∩ ... ∩ V −(Gk) and γ(G) =

γ(G1) + γ(G2) + ...+ γ(Gk)− k+ 1. Consider any induced subgraph R of G, which is isomorphic to H. Since H is connected
and without cut-vertices, R is an induced subgraph of some Gi, say without loss of generality, i = 1. Then there is a
γ-set D1 of G1 for which R is an induced subgraph of 〈D1〉. Let Di be a γ-set of Gi − x, i = 2, 3, ..., k. Since x ∈ V −(Gi),
|Di| = γ(Gi)− 1. Then D = ∪ki=1Di is a γ-set of G and R is an induced subgraph of 〈D〉.

Define a vertex labeling of a tree T as a function S : V (T )→ {0, 1}. A labeled tree T is denoted by a pair (T, S). Let 0T
and 1T be the sets of vertices assigned the values 0 and 1, respectively. In a labeled 1-corona tree T of order at least four
all its leaves are in 0T and all its support vertices form 1T .

Let T be the family of labeled trees (T, S) that can be obtained from a sequence of labeled trees τ : (T 1, S1), . . . , (T j , Sj),
(j ≥ 1), such that (T 1, S1) is a labeled 1-corona tree of order at least four and (T, S) = (T j , Sj), and, if j ≥ 2, (T i+1, Si+1)

can be obtained recursively from (T i, Si) by the following operation (a visual example of this operation is given in Figure
3):

Operation O. The labeled tree (T i+1, Si+1) is obtained from vertex disjoint (T i, Si) and a labeled 1-corona tree Gi in
such a way that T i+1 = (T i · Gi)(u, v : u), where (a) u ∈ 0T i , v ∈ 0Gi and u ∈ 0T i+1 , and (b) 0T i+1 = 0T i ∪ 0Gi − {v} and
1T i+1 = 1T i ∪ 1Gi

.
Now we are in a position to present a (reformulated) constructive characterization of γ-excellent trees.

Theorem 4.4. [17] For any tree T of order at least four the following are equivalent:

(i) T is γ-excellent.

(ii) There is labeling S : V (T )→ {0, 1} such that (T, S) is in T .

Moreover, if (T, S) is in T , then 0T = V −(T ), 0T is a γ-set of T and 1T = V =(T ). In particular, all leaves of T are in V −(T ).
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Figure 3: An example of Operation O.

Another constructive characterization of the γ-excellent trees can be found in [3]. To prove our last result we need the
following lemma.

Lemma 4.2. Let G be a connected graph and x ∈ V −(G).

(i) If xy is a bridge in G, then no γ-set of G contains both x and y.

(ii) If xy and xz are bridges in G, then no γ-set of G contains both y and z.

Proof. (i) Clearly, we can consider G as a coalescence (F ·H)(x), where without loss of generality, y ∈ V (F ) and x is a leaf
of F . Suppose D is a γ-set of G and x, y ∈ D. Then D ∩ V (H) and D ∩ V (F ) are dominating sets of H and F , respectively.
Moreover, since x is a leaf in F ,D∩V (F ) is not a γ-set of F . Hence |D| = |D∩V (H)|+ |D∩V (F )|−1 ≥ γ(H)+(γ(F )+1)−1,
a contradiction with Lemma 4.1.

(ii) Let as in (i), G = (F ·H)(x), y ∈ V (F ) and x is a leaf of F . Hence z ∈ V (H). Let D be a γ-set of G and y, z ∈ D. By
(i), x 6∈ D and then D ∩ V (H) and D ∩ V (F ) are dominating sets of H and F , respectively. This implies |D| = |D ∩ V (H)|+
|D ∩ V (F )| ≥ γ(H) + γ(F ), a contradiction with Lemma 4.1.

Theorem 4.5. Let T be a γ-excellent tree of order at least four.

(a) If T has a cut-vertex belonging to V −(T ), then T 〈γ〉 = {K1}.

(b) If no cut-vertex of T is in V −(T ), then T is a 1-corona tree and T 〈γ〉 = {K1, ...,Kr}, where 2r = |V (T )|.

Proof. Suppose H ∈ T 〈γ〉 and H is not edgeless. Let D be a γ-set of T and R ' H be an induced subgraph of 〈D〉. Choose
arbitrarily an edge xy of R. Clearly both x and y are not leaves and by Lemma 4.2, neither x nor y is a cut-vertex belonging
to V −(T ). Hence x, y ∈ V =(T ), because of Theorem 4.4. Now we choose xy so that x is a leaf in R. By Theorem 4.4, a
vertex y has a neighbor z ∈ V −(T ). Lemma 4.2 now implies N [z] ∩ D = {y}. But then the graph Rx = 〈V (R− x) ∪ {z}〉
is isomorphic to R. Since z ∈ V −(T ) and yz ∈ E(T ), Lemma 4.2 shows that no γ-set of T contains both y and z.Thus, we
arrive to a contradiction.

Therefore, T 〈γ〉 contains only edgeless graphs. By Theorem 4.4 V −(T ) is a γ-set of T . Assume first that there is a cut-
vertex x ∈ V −(T ). Then for any two neighbors y and z of x the set V1 = (V −(T )−{x})∪{y, z} is independent of cardinality
γ(T ) + 1. Suppose T is Kr-γ-excellent for some r ≥ 2. Choose any cardinality r subset V1 of (V −(T ) − {x}) ∪ {y, z} that
contains both y and z. Now by Lemma 4.2, we conclude that no γ-set of T has V1 as a subset. Thus, T 〈γ〉 = {K1}.

Finally, let V −(T ) contains only leaves. By Theorem 4.4, T is a 1-corona tree. Clearly γ(T ) = i(T ) = β0(T ) = r and then
the required now follows by Proposition 2.1.

5. Open problems and questions

We conclude the paper by listing some interesting problems and directions for further research.

• For which ordered pairs (r, s) there are s-regular Kr-excellent graphs of order r(s − r + 2) (see Theorem 4.2)? Find
all 12-order 5-regular K3-γ-excellent graphs.

• Characterize/describe all graphs F such that there is no F -µ-excellent graph G with µ(G) = |V (F )| (see Observation
1.1). Recall that there is no P3-γ-excellent graph G with γ(G) = 3 (Theorem 2.1).

• Let b be a positive integer. Denote by A (µ, b) the class of all µ-excellent connected graphs G for which µ(G) = b

and |G 〈µ〉 | is maximum. It might be interesting for the reader to investigate these classes at least when b is small.
Note that we already know that A (γ, 1) consists of all complete graphs, and all connected graphs obtained from K2n,
n ≥ 2, by removing a perfect matching form A (γ, 2) (Example 2.1). In addition, by Example 2.4 we have γ(K3�K3) = 3,
K3�K3 〈γ〉 = {K1,K2,K2,K1 ∪K2,K3,K3} and by Theorem 2.1 we know that there is no P3-γ-excellent graph G with
γ(G) = 3. Thus, K3�K3 belongs to A (γ, 3) and |K3�K3 〈γ〉 | = 6. Find A (γ, 3).
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• Find T 〈µ〉 for each µ-excellent tree T , where µ ∈ {i, γt, γR} and γR stand for the Roman domination number (see [9],
[10] and [18], respectively).

• Find graphs H such that each induced subgraph of Kp�H which is isomorphic to H has as a vertex set some H-layer
(see Theorem 2.3).

• Characterize/describe all connected K2-γ-excellent graphs G with γ(G) = 2.
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