On the pancyclicity of 1-tough graphs

Rao Li ${ }^{*}$
Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC 29801, USA

(Received: 14 August 2020. Received in revised form: 5 October 2020. Accepted: 13 November 2020. Published online: 23 November 2020.)
(c) 2020 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/)

Abstract

Let G be a graph of order $n \geq 6 r-2$, size e, and minimum degree $\delta \geq r$, where r is an integer greater than 1 . The main result obtained in this note is that if G is 1 -tough with the degree sequence $\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ and if $e \geq((n-r)(n-r-1)+r(2 r-1)) / 2$, then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that $d_{1}=d_{2}=\cdots=d_{k}=k, d_{k+1}=d_{k+2}=\cdots=d_{n-k+1}=$ $n-k-1$, and $d_{n-k+2}=d_{n-k+3}=\cdots=d_{n}=n-1$, where $k<n / 2$. This result implies that the following conjecture of Hoa, posed in 2002, is true under the conditions $n \geq 40$ and $\delta \geq 7$: every path-tough graph on n vertices and with at least $((n-6)(n-7)+34) / 2$ edges is Hamiltonian. Using the main result of this note, additional sufficient conditions for 1-tough graphs to be pancyclic are also obtained.

Keywords: pancyclic graph; 1-tough graph; Hamiltonian graph.
2020 Mathematics Subject Classification: 05C45.

1. Introduction

All graphs considered in this note are finite and undirected containing neither loops nor multiple edges. Terminology and notation not defined in this note follow those described in [1]. For a graph $G=(V, E)$, we take $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $|E|=e$. For a vertex $v_{i} \in V$, we use $d_{i}(G)$ to denote its degree in G. We use $\left(d_{1}(G), d_{2}(G), \cdots, d_{n}(G)\right)$ to denote the degree sequence of G where $\delta(G)=d_{1}(G) \leq d_{2}(G) \leq \cdots \leq d_{n}(G)=\Delta(G)$. Denote by $d_{G}\left(v_{i}, v_{j}\right)$ the distance between the two vertices $v_{i}, v_{j} \in V$. In a graph G, a cycle containing all the vertices of G is known as a Hamilton cycle of G. A graph possessing a Hamilton cycle is called a Hamiltonian graph. A graph G is called Hamiltonian bipartite if G is both Hamiltonian and bipartite. Notice that a Hamiltonian bipartite graph must be a balanced bipartite graph. A graph containing cycles of all possible lengths is known as a pancyclic graph.

The eigenvalues $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n-1}(G) \geq \lambda_{n}(G)$ of a graph G are the eigenvalues of its adjacency matrix $A(G)$. Let $D(G)$ be the diagonal matrix $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of G. The Laplacian eigenvalues $\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n-1}(G) \geq$ $\mu_{n}(G)=0$ of a graph G are the eigenvalues of the matrix

$$
L(G):=D(G)-A(G)
$$

The signless Laplacian eigenvalues $q_{1}(G) \geq q_{2}(G) \geq \cdots \geq q_{n-1}(G) \geq q_{n}(G) \geq 0$ of a graph G are the eigenvalues of the matrix

$$
Q(G):=D(G)+A(G)
$$

The Wiener index [12] of a connected graph G is denoted $W(G)$ and is defined as

$$
\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v) .
$$

The Harary index $[10,11]$ of a nontrivial connected graph G is denoted $H(G)$ and is defined as

$$
\sum_{\{u, v\} \subseteq V(G)} \frac{1}{d_{G}(u, v)}
$$

Chvátal [2] proposed the concept of the toughness of graphs. For a real number t, a graph G is said to be a t-tough graph if for every vertex cut S, it holds that

$$
t \cdot \omega(G-S) \leq|S|
$$

[^0]where $\omega(G-S)$ denotes the number of components in $G-S$. The toughness of a graph G is denoted by $\tau(G)$ and is defined as the maximum value of t for which G is t-tough (letting $\tau\left(K_{n}\right)=\infty$ for any positive integer n). Thus, if G is different from the complete graph then
$$
\tau(G)=\min \{|S| / \omega(G-S)\}
$$
where the minimum is taken over all vertex cuts S of G. It is a well-known fact that if G is Hamiltonian then G is also 1-tough. Dankelmann, Niessen, and Schiermeyer introduced the concept of path-tough graphs in [3]. The following definition of a path-tough graph is equivalent to its original definition given in [3]. A graph G is path-tough if $G-v$ has a Hamiltonian path for every vertex $v \in V(G)$. It is observed in [3] that if G is a path-tough graph then either G is 1-tough or $G=K_{2}$.

In this note, we give the following sufficient condition for 1-tough pancyclic graphs.
Theorem 1.1. For an integer $r \geq 2$, let G be a graph of order $n \geq 6 r-2$, size e, and minimum degree $\delta \geq r$. If G is 1 -tough and $e \geq((n-r)(n-r-1)+r(2 r-1)) / 2$, then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that its degree sequence satisfies $d_{1}=d_{2}=\cdots=d_{k}=k, d_{k+1}=d_{k+2}=\cdots=d_{n-k+1}=n-k-1$, and $d_{n-k+2}=d_{n-k+3}=\cdots=d_{n}=n-1$, $w h e r e k<n / 2$.

2. Lemmas

We need the following results to prove Theorem 1.1. The following lemma is Proposition 1.3 of [2].
Lemma 2.1. If G is not complete, then $\tau(G) \leq \kappa(G) / 2$, where $\kappa(G)$ is the vertex connectivity of G.
The next result follows from Theorems 2 and 7 of [7].
Lemma 2.2. Let G be a 1-tough graph with degree sequence $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. If $d_{i} \leq i<\frac{n}{2} \Longrightarrow d_{n-i+1} \geq n-i$, then G is pancyclic or Hamiltonian bipartite.

The next lemma is Theorem 5 of [7].
Lemma 2.3. Let G be a 1-tough graph with degree sequence $d_{1}=d_{2}=\cdots=d_{i}=i, d_{i+1}=d_{i+2}=\cdots=d_{n-i+1}=n-i-1$, and $d_{n-i+2}=d_{n-i+3}=\cdots=d_{n}=n-1$, where $i<n / 2$. Then G is Hamiltonian.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Note that if G is complete then G is pancyclic. In the remaining proof, we assume that G contains at least one pair of non-adjacent vertices. From Lemma 2.1, we have $\kappa \geq 2$. Thus, $\delta \geq \kappa \geq 2$. Suppose G is not pancyclic and not Hamiltonian bipartite. By Lemma 2.2, we have that there exists an integer k satisfying

$$
d_{k} \leq k<\frac{n}{2} \quad \text { and } \quad d_{n-k+1} \leq n-k-1
$$

Notice that

$$
2 \leq r \leq \delta=d_{1} \leq d_{k} \leq k<\frac{n}{2}
$$

Thus,

$$
\begin{aligned}
(n-r)(n-r-1)+r(2 r-1) & \leq 2 e \\
& =\sum_{i=1}^{n} d_{i} \\
& \leq k^{2}+(n-2 k+1)(n-k-1)+(k-1)(n-1)=n^{2}-n-2 k n+3 k^{2} \\
& =(n-r)(n-r-1)-(k-r)(2 n-3 k-3 r)+r(2 r-1) .
\end{aligned}
$$

Thus, we have the following possible cases.

Case 1. $k=r$.

In this case, $d_{1}=d_{2}=\cdots=d_{k}=k<\frac{n}{2}, d_{k+1}=d_{k+2}=\cdots=d_{n-k+1}=n-k-1$, and $d_{n-k+2}=d_{n-k+3}=\cdots=d_{n}=n-1$. Lemma 2.3 implies that G is Hamiltonian.

Case 2. $2 n-3 k-3 r=0$.

In this case, $d_{1}=d_{2}=\cdots=d_{k}=k<\frac{n}{2}, d_{k+1}=d_{k+2}=\cdots=d_{n-k+1}=n-k-1$, and $d_{n-k+2}=d_{n-k+3}=\cdots=d_{n}=n-1$. Lemma 2.3 again implies that G is Hamiltonian.

Case 3. $k \geq r+1$ and $2 n-3 k-3 r<0$.

In this case, we have $2 n \leq 3 k+3 r-1<(3 n) / 2+3 r-1$ and therefore $n<6 r-2$, a contradiction.

4. Applications of Theorem 1.1

In this section, we present some applications of Theorem 1.1. Recall the following conjecture posed by Hoa on Page 142 in [6].

Conjecture 4.1. Every path-tough graph on n vertices and with at least $((n-6)(n-7)+34) / 2$ edges is Hamiltonian.
Notice that $((n-6)(n-7)+34) / 2>((n-7)(n-7-1)+7(2 * 7-1)) / 2$ when $n \geq 40$. Letting $r=7$ in Theorem 1.1 and noticing that every path-tough graph G is 1-tough or $G=K_{2}$, we obtain the following result showing that Conjecture 4.1 is true when $n \geq 40$ and $\delta \geq 7$.

Theorem 4.1. If G is path-tough graph of order $n \geq 40$, size at least $((n-6)(n-7)+34) / 2$, and minimum degree at least 7, then G is Hamiltonian.

Next, we will present several sufficient conditions based upon different graphical invariants for 1-tough pancyclic graphs. Recall the following result which is Theorem 1 of [8].

Lemma 4.1. If G is a connected graph of order n with e edges then $\lambda_{1} \leq \sqrt{2 e-n+1}$ with equality if and only if $G=K_{n}$ or $G=K_{1, n-1}$.

From Theorem 1.1 and Lemma 4.1, the next corollary follows.
Corollary 4.1. Let G be a graph of order $n \geq 6 r-2$, size e, and minimum degree $\delta \geq r$, where r is an integer at least 2 . If G is 1-tough and $\lambda_{1} \geq \sqrt{(n-r)(n-r-1)+r(2 r-1)-n+1}$, then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that its degree sequence is $d_{1}=d_{2}=\cdots=d_{k}=k, d_{k+1}=d_{k+2}=\cdots=d_{n-k+1}=n-k-1$, and $d_{n-k+2}=d_{n-k+3}=$ $\cdots=d_{n}=n-1$, where $k<n / 2$.

Recall the following result which is Theorem 4.1 of [5].
Lemma 4.2. Let G be a non-complete graph. Then $\mu_{n-1} \leq \kappa$, where κ is the vertex connectivity of G.
Using Theorem 1.1, Lemma 4.2, and the fact $\kappa \leq \delta \leq(2 e) / n$, we have the next result.
Corollary 4.2. Let G be a graph of order $n \geq 6 r-2$, size e, and minimum degree $\delta \geq r$, where r is an integer at least 2 . If G is 1-tough and $\mu_{n-1} \geq((n-r)(n-r-1)+r(2 r-1)) / n$, then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that its degree sequence is $d_{1}=d_{2}=\cdots=d_{k}=k, d_{k+1}=d_{k+2}=\cdots=d_{n-k+1}=n-k-1$, and $d_{n-k+2}=d_{n-k+3}=\cdots=d_{n}=n-1$, where $k<n / 2$.

Recall the following result which is Lemma 2.4 of [4].
Lemma 4.3. If G is a connected graph of order n and size e, then $q_{1} \leq(2 e) /(n-1)+n-2$ with equality if and only if $G=K_{n}$ or $G=K_{1, n-1}$.

From Theorem 1.1 and Lemma 4.3, the next result follows.
Corollary 4.3. Let G be a graph of order $n \geq 6 r-2$, size e, and minimum degree $\delta \geq r$, where r is an integer at least 2 . If Gis 1-tough and

$$
q_{1} \geq \frac{(n-r)(n-r-1)+r(2 r-1)}{n-1}+n-2,
$$

then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that its degree sequence is $d_{1}=d_{2}=\cdots=d_{k}=k$, $d_{k+1}=d_{k+2}=\cdots=d_{n-k+1}=n-k-1$, and $d_{n-k+2}=d_{n-k+3}=\cdots=d_{n}=n-1$, where $k<n / 2$.

The next lemma follows from the proof of Theorem 2.2 of [13].
Lemma 4.4. For a connected graph G of order n with e edges, it holds that $W(G) \geq n(n-1)-e$.
Using Theorem 1.1 and Lemma 4.4, we have the next result.
Corollary 4.4. Let G be a graph of order $n \geq 6 r-2$, size e, and minimum degree $\delta \geq r$, where r is an integer at least 2. If G is 1 -tough and $W(G) \leq n(n-1)-((n-r)(n-r-1)+r(2 r-1)) / 2$, then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that its degree sequence is $d_{1}=d_{2}=\cdots=d_{k}=k, d_{k+1}=d_{k+2}=\cdots=d_{n-k+1}=n-k-1$, and $d_{n-k+2}=d_{n-k+3}=\cdots=d_{n}=n-1$, where $k<n / 2$.

The next result follows from the proof of Theorem 2.2 of [9].
Lemma 4.5. For a nontrivial connected graph G order n with e edges, $H(G) \leq(n(n-1)+2 e) / 4$.
Using Theorem 1.1 and Lemma 4.5, we have the following result.
Corollary 4.5. Let G be a graph of order $n \geq 6 r-2$, size e, and minimum degree $\delta \geq r$, where r is an integer at least 2. If G is 1-tough and $H(G) \geq(n(n-1)+(n-r)(n-r-1)+r(2 r-1)) / 4$, then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that its degree sequence is $d_{1}=d_{2}=\cdots=d_{k}=k, d_{k+1}=d_{k+2}=\cdots=d_{n-k+1}=n-k-1$, and $d_{n-k+2}=d_{n-k+3}=\cdots=d_{n}=n-1$, where $k<n / 2$.

Acknowledgment

The author would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.
[2] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215-228.
[3] P. Dankelmann, T. Niessen, I. Schiermeyer, On path-tough graphs, SIAM J. Discrete Math. 7 (1994) 571-584.
[4] L. Feng, G. Yu, On three conjectures involving the signless Laplacian spectral radius of graphs, Publ. Inst. Math. 85 (2009) 35-38.
[5] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.
[6] V. D. Hoa, Conditions for Existence of Hamiltonian Cycles in Path-Tough Graphs, Proceedings of the Sixth Vietnamese Mathematical Conference, Hue, Vietnam, Sep. 7 - Sep. 10, 2002.
[7] C. T. Hoàng, Hamiltonian degree conditions for tough graphs, Discrete Math. 142 (1995) 121-139.
[8] Y. Hong, A bound on the spectral radius of graphs, Linear Algebra Appl. 108 (1988) 135-139.
[9] H. Hua, M. Wang, On Harary index and traceable graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 297-300.
[10] O. Ivanciuc, T. S. Balaban, A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993) 309-318.
[11] D. Plavšić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) $235-250$.
[12] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[13] L. Yang, Wiener index and traceable graphs, Bull. Aust. Math. Soc. 88 (2013) 380-383.

[^0]: *E-mail address: raol@usca.edu

