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Abstract

LetG be a graph of order n ≥ 6r−2, size e, and minimum degree δ ≥ r, where r is an integer greater than 1. The main result
obtained in this note is that ifG is 1-tough with the degree sequence (d1, d2, · · · , dn) and if e ≥ ((n−r)(n−r−1)+r(2r−1))/2,
then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that d1 = d2 = · · · = dk = k, dk+1 = dk+2 = · · · = dn−k+1 =
n − k − 1, and dn−k+2 = dn−k+3 = · · · = dn = n − 1, where k < n/2. This result implies that the following conjecture of
Hoa, posed in 2002, is true under the conditions n ≥ 40 and δ ≥ 7: every path-tough graph on n vertices and with at least
((n− 6)(n− 7)+ 34)/2 edges is Hamiltonian. Using the main result of this note, additional sufficient conditions for 1-tough
graphs to be pancyclic are also obtained.
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1. Introduction

All graphs considered in this note are finite and undirected containing neither loops nor multiple edges. Terminology
and notation not defined in this note follow those described in [1]. For a graph G = (V,E), we take V = {v1, v2, · · · , vn}
and |E| = e. For a vertex vi ∈ V , we use di(G) to denote its degree in G. We use (d1(G), d2(G), · · · , dn(G)) to denote the
degree sequence of G where δ(G) = d1(G) ≤ d2(G) ≤ · · · ≤ dn(G) = ∆(G). Denote by dG(vi, vj) the distance between
the two vertices vi, vj ∈ V . In a graph G, a cycle containing all the vertices of G is known as a Hamilton cycle of G.
A graph possessing a Hamilton cycle is called a Hamiltonian graph. A graph G is called Hamiltonian bipartite if G is
both Hamiltonian and bipartite. Notice that a Hamiltonian bipartite graph must be a balanced bipartite graph. A graph
containing cycles of all possible lengths is known as a pancyclic graph.

The eigenvalues λ1(G) ≥ λ2(G) ≥ · · · ≥ λn−1(G) ≥ λn(G) of a graph G are the eigenvalues of its adjacency matrix A(G).
Let D(G) be the diagonal matrix diag(d1, d2, ..., dn) of G. The Laplacian eigenvalues µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥
µn(G) = 0 of a graph G are the eigenvalues of the matrix

L(G) := D(G)−A(G).

The signless Laplacian eigenvalues q1(G) ≥ q2(G) ≥ · · · ≥ qn−1(G) ≥ qn(G) ≥ 0 of a graph G are the eigenvalues of the
matrix

Q(G) := D(G) +A(G).

The Wiener index [12] of a connected graph G is denoted W (G) and is defined as∑
{u, v}⊆V (G)

dG(u, v).

The Harary index [10,11] of a nontrivial connected graph G is denoted H(G) and is defined as∑
{u, v}⊆V (G)

1

dG(u, v)
.

Chvátal [2] proposed the concept of the toughness of graphs. For a real number t, a graph G is said to be a t-tough
graph if for every vertex cut S, it holds that

t · ω(G− S) ≤ |S|,
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where ω(G−S) denotes the number of components in G−S. The toughness of a graph G is denoted by τ(G) and is defined
as the maximum value of t for which G is t-tough (letting τ(Kn) = ∞ for any positive integer n). Thus, if G is different
from the complete graph then

τ(G) = min{|S|/ω(G− S)},

where the minimum is taken over all vertex cuts S of G. It is a well-known fact that if G is Hamiltonian then G is
also 1-tough. Dankelmann, Niessen, and Schiermeyer introduced the concept of path-tough graphs in [3]. The following
definition of a path-tough graph is equivalent to its original definition given in [3]. A graph G is path-tough if G− v has a
Hamiltonian path for every vertex v ∈ V (G). It is observed in [3] that if G is a path-tough graph then either G is 1-tough
or G = K2.

In this note, we give the following sufficient condition for 1-tough pancyclic graphs.

Theorem 1.1. For an integer r ≥ 2, let G be a graph of order n ≥ 6r − 2, size e, and minimum degree δ ≥ r. If G is 1-tough
and e ≥ ((n− r)(n− r − 1) + r(2r − 1))/2, then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that its degree
sequence satisfies d1 = d2 = · · · = dk = k, dk+1 = dk+2 = · · · = dn−k+1 = n− k − 1, and dn−k+2 = dn−k+3 = · · · = dn = n− 1,
where k < n/2.

2. Lemmas

We need the following results to prove Theorem 1.1. The following lemma is Proposition 1.3 of [2].

Lemma 2.1. If G is not complete, then τ(G) ≤ κ(G)/2, where κ(G) is the vertex connectivity of G.

The next result follows from Theorems 2 and 7 of [7].

Lemma 2.2. Let G be a 1-tough graph with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. If di ≤ i < n
2 =⇒ dn−i+1 ≥ n− i, then G is

pancyclic or Hamiltonian bipartite.

The next lemma is Theorem 5 of [7].

Lemma 2.3. Let G be a 1-tough graph with degree sequence d1 = d2 = · · · = di = i, di+1 = di+2 = · · · = dn−i+1 = n− i− 1,
and dn−i+2 = dn−i+3 = · · · = dn = n− 1, where i < n/2. Then G is Hamiltonian.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Note that if G is complete then G is pancyclic. In the remaining proof, we assume that G contains
at least one pair of non-adjacent vertices. From Lemma 2.1, we have κ ≥ 2. Thus, δ ≥ κ ≥ 2. Suppose G is not pancyclic
and not Hamiltonian bipartite. By Lemma 2.2, we have that there exists an integer k satisfying

dk ≤ k <
n

2
and dn−k+1 ≤ n− k − 1.

Notice that
2 ≤ r ≤ δ = d1 ≤ dk ≤ k <

n

2
.

Thus,

(n− r)(n− r − 1) + r(2r − 1) ≤ 2e

=

n∑
i=1

di

≤ k2 + (n− 2k + 1)(n− k − 1) + (k − 1)(n− 1) = n2 − n− 2kn+ 3k2

= (n− r)(n− r − 1)− (k − r)(2n− 3k − 3r) + r(2r − 1).

Thus, we have the following possible cases.

Case 1. k = r.

In this case, d1 = d2 = · · · = dk = k < n
2 , dk+1 = dk+2 = · · · = dn−k+1 = n− k − 1, and dn−k+2 = dn−k+3 = · · · = dn = n− 1.

Lemma 2.3 implies that G is Hamiltonian.
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Case 2. 2n− 3k − 3r = 0.

In this case, d1 = d2 = · · · = dk = k < n
2 , dk+1 = dk+2 = · · · = dn−k+1 = n− k − 1, and dn−k+2 = dn−k+3 = · · · = dn = n− 1.

Lemma 2.3 again implies that G is Hamiltonian.

Case 3. k ≥ r + 1 and 2n− 3k − 3r < 0.

In this case, we have 2n ≤ 3k + 3r − 1 < (3n)/2 + 3r − 1 and therefore n < 6r − 2, a contradiction.
�

4. Applications of Theorem 1.1

In this section, we present some applications of Theorem 1.1. Recall the following conjecture posed by Hoa on Page 142

in [6].

Conjecture 4.1. Every path-tough graph on n vertices and with at least ((n− 6)(n− 7) + 34)/2 edges is Hamiltonian.

Notice that ((n− 6)(n− 7) + 34)/2 > ((n− 7)(n− 7− 1) + 7(2 ∗ 7− 1))/2 when n ≥ 40. Letting r = 7 in Theorem 1.1 and
noticing that every path-tough graph G is 1-tough or G = K2, we obtain the following result showing that Conjecture 4.1
is true when n ≥ 40 and δ ≥ 7.

Theorem 4.1. If G is path-tough graph of order n ≥ 40, size at least ((n− 6)(n− 7) + 34)/2, and minimum degree at least
7, then G is Hamiltonian.

Next, we will present several sufficient conditions based upon different graphical invariants for 1-tough pancyclic
graphs. Recall the following result which is Theorem 1 of [8].

Lemma 4.1. If G is a connected graph of order n with e edges then λ1 ≤
√

2e− n+ 1 with equality if and only if G = Kn or
G = K1, n−1.

From Theorem 1.1 and Lemma 4.1, the next corollary follows.

Corollary 4.1. Let G be a graph of order n ≥ 6r − 2, size e, and minimum degree δ ≥ r, where r is an integer at least 2. If
G is 1-tough and λ1 ≥

√
(n− r)(n− r − 1) + r(2r − 1)− n+ 1, then G is pancyclic, Hamiltonian bipartite, or Hamiltonian

such that its degree sequence is d1 = d2 = · · · = dk = k, dk+1 = dk+2 = · · · = dn−k+1 = n − k − 1, and dn−k+2 = dn−k+3 =

· · · = dn = n− 1, where k < n/2.

Recall the following result which is Theorem 4.1 of [5].

Lemma 4.2. Let G be a non-complete graph. Then µn−1 ≤ κ, where κ is the vertex connectivity of G.

Using Theorem 1.1, Lemma 4.2, and the fact κ ≤ δ ≤ (2e)/n, we have the next result.

Corollary 4.2. LetG be a graph of order n ≥ 6r−2, size e, and minimum degree δ ≥ r, where r is an integer at least 2. IfG is
1-tough and µn−1 ≥ ((n−r)(n−r−1)+r(2r−1))/n, thenG is pancyclic, Hamiltonian bipartite, or Hamiltonian such that its
degree sequence is d1 = d2 = · · · = dk = k, dk+1 = dk+2 = · · · = dn−k+1 = n− k − 1, and dn−k+2 = dn−k+3 = · · · = dn = n− 1,
where k < n/2.

Recall the following result which is Lemma 2.4 of [4].

Lemma 4.3. IfG is a connected graph of order n and size e, then q1 ≤ (2e)/(n−1)+n−2 with equality if and only ifG = Kn

or G = K1, n−1.

From Theorem 1.1 and Lemma 4.3, the next result follows.

Corollary 4.3. Let G be a graph of order n ≥ 6r − 2, size e, and minimum degree δ ≥ r, where r is an integer at least 2. If
G is 1-tough and

q1 ≥
(n− r)(n− r − 1) + r(2r − 1)

n− 1
+ n− 2,

then G is pancyclic, Hamiltonian bipartite, or Hamiltonian such that its degree sequence is d1 = d2 = · · · = dk = k,
dk+1 = dk+2 = · · · = dn−k+1 = n− k − 1, and dn−k+2 = dn−k+3 = · · · = dn = n− 1, where k < n/2.
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The next lemma follows from the proof of Theorem 2.2 of [13].

Lemma 4.4. For a connected graph G of order n with e edges, it holds that W (G) ≥ n(n− 1)− e.

Using Theorem 1.1 and Lemma 4.4, we have the next result.

Corollary 4.4. Let G be a graph of order n ≥ 6r − 2, size e, and minimum degree δ ≥ r, where r is an integer at least
2. If G is 1-tough and W (G) ≤ n(n − 1) − ((n − r)(n − r − 1) + r(2r − 1))/2, then G is pancyclic, Hamiltonian bipartite,
or Hamiltonian such that its degree sequence is d1 = d2 = · · · = dk = k, dk+1 = dk+2 = · · · = dn−k+1 = n − k − 1, and
dn−k+2 = dn−k+3 = · · · = dn = n− 1, where k < n/2.

The next result follows from the proof of Theorem 2.2 of [9].

Lemma 4.5. For a nontrivial connected graph G order n with e edges, H(G) ≤ (n(n− 1) + 2e)/4.

Using Theorem 1.1 and Lemma 4.5, we have the following result.

Corollary 4.5. Let G be a graph of order n ≥ 6r − 2, size e, and minimum degree δ ≥ r, where r is an integer at least
2. If G is 1-tough and H(G) ≥ (n(n − 1) + (n − r)(n − r − 1) + r(2r − 1))/4, then G is pancyclic, Hamiltonian bipartite,
or Hamiltonian such that its degree sequence is d1 = d2 = · · · = dk = k, dk+1 = dk+2 = · · · = dn−k+1 = n − k − 1, and
dn−k+2 = dn−k+3 = · · · = dn = n− 1, where k < n/2.
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