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Abstract
We consider Rado numbers of the regular equations Ek(b) of the form

c1x1 + c2x2 + · · ·+ ck−1xk−1 = xk + b,

where b ∈ Z and ci ∈ Z+ for all i. We give universal upper bounds and qualified lower bounds for t-color Rado numbers
r(Ek(b); t) in terms of r(Ek(0); t). The qualification is based on a new concept we name the excellence condition. We also give
examples where the exact values of Rado numbers are obtained from these results.
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1. Introduction

Issai Schur, in the paper [10] pulished in 1916, showed that for any t colors, t ≥ 1, there is a least positive integer s(t) such
that for any t-coloring on the interval [1, s(t)], there must be a monochromatic solution to x + y = z where x, y and z are
positions on the interval. This result is part of Ramsey Theory. The numbers s(t) are called Schur numbers. For example
s(2) = 5 and the longest possible interval that avoids the monochromatic solution to x + y = z is [1, 2, 2, 1] (1 represents
red color and 2 represents blue color, for example). For 3 colors, s(3) = 14 and one of the longest interval that avoids the
monchromatic solution to x+ y = z is [1, 2, 2, 1, 3, 3, 3, 3, 3, 1, 2, 2, 1]. It is also known that s(4) = 45 and s(5) = 161.

We give definitions that relate to the examples of Schur.

Definition 1.1. We say an equation E is t-regular if a number analogous to s(t) exists for a given t and regular if these
numbers exist for all t, t ≥ 1.

We also see that [1, 2, 2, 1] and [1, 2, 2, 1, 3, 3, 3, 3, 3, 1, 2, 2, 1] are “good colorings” for 2-colorings and 3-colorings to x+y = z.

Definition 1.2. A coloring χ on an interval I is good if it contains no monochromatic solution to equation E .

Later on, Richard Rado, a Ph.D. student of Schur, generalized Schur’s work to a linear homogeneous equation

k∑
i=1

cixi = 0

and found the condition for regularity of these equations; see the references [4,5].

Theorem 1.1 (Rado’s Single Equation Theorem). Let k ≥ 2. Let ci ∈ Z− {0}, 1 ≤ i ≤ k, be constants. Then

k∑
i=1

cixi = 0

is regular if and only if there exists a nonempty set D ⊆ {ci, 1 ≤ i ≤ k} such that
∑

d∈D d = 0.

As with Schur numbers, for a linear equation E , we denote by r(E ; t) the minimal integers, if it exists, such that any
t-coloring of [1, r(E ; t)] must admit a monochromatic solution to E . The numbers r(E ; t) are called t-color Rado numbers for
equation E .

An analog to Rado’s Theorem which gives the regularity condition for a linear non-homogeneous equation is given
below.
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Theorem 1.2. Let k ≥ 2 and let b, c1, c2, . . . , ck be nonzero integers. Let E(b) be the equation
k∑

i=1

cixi = b,

and let s =
∑k

i=1 ci. Then E(b) is regular if and only if one of the following conditions holds:

(i) b

s
∈ Z+;

(ii) b

s
is a negative integer and E(0) is regular.

We note that it is possible that an equation does not have a monochromatic solution for a coloring on Z+. For example,
the coloring [1, 2, 1, 2, 1, 2, . . . ] avoids the monochromatic solution to the equation x + y = 2b + 1 for any b ≥ 0. Also some
equations are t-regular but not regular. For example, 3x+ y − z = 2 is 2-regular with r(E ; 2) = 8 but not regular according
to Theorem 1.2.

In this paper, we partially quantify Theorem 1.2 by giving Rado numbers to equations E(b̃) of the form

c1x1 + c2x2 + · · ·+ ck−1xk−1 = xk + b̃, (1)

where ci ∈ Z+ for all i and b̃ satisfies the condition (i) or (ii) of Theorem 1.2. The Rado numbers of (1) will be written in
terms of the Rado numbers of the corresponding homogeneous equation, E(0).

In order to distinguish the Rado numbers of the homogeneous equation from those of the non-homogeneous one, we
denote by

RC(t) = R[c1,c2,...,ck−1](t) := r(E(0); t)

the Rado number of the homogeneous equation, E(0), with t colors.
For convenient, we restate (1) formally and will use these notations for the rest of the paper.

Important Notations. For b̃ an integer, we let Ek(b̃) represent the equation
k−1∑
i=1

cixi = xk + b̃, ci ∈ Z+ for all i

and let Fk(b̃) represent the equation
k−1∑
i=1

xi = xk + b̃.

We also reserve s: we always take s =
∑k−1

i=1 ci − 1. Hence for Fk(b̃), s = k − 1− 1 = k − 2.

2. Main results; case b̃ < 0

We consider the Rado numbers of Ek(b̃) where the constant b̃ is negative. Theorem 2.1 gives the upper bounds and Theorem
2.2 gives qualified lower bounds.

Theorem 2.1. Consider equation Ek(−b) where b > 0. If s|b and Ek(0) is t-regular then

r(Ek(−b); t) ≤
(
b

s
+ 1

)
·RC(t)−

b

s
.

Proof. Assume s|b and Ek(0) is t-regular. Let r = ( bs + 1) ·RC(t)− b
s .

The proof is based on the fact that the dilation and appropriate translation preserves the equation. Define an injective
map f from [1, RC(t)] to [1, r] by

f(w) =

(
b

s
+ 1

)
· w − b

s
.

Notice that the k-tuple (w1, w2, . . . , wk−1,
∑k−1

i=1 ciwi) of Ek(0) is made to correspond to the k-tuple(
f(w1), f(w2), . . . , f(wk−1), f

(
k−1∑
i=1

ciwi

))
of Ek(−b). Now given any coloring α on [1, r], we define the coloring χ on the interval [1, RC(t)] by

χ(w) := α(f(w)), w = 1, 2, . . . , RC(t).

From the definition of the Rado number, any coloring on [1, RC(t)] must contain a monochromatic tuple to Ek(0). Hence
there is also a monochromatic tuple on [1, r] to Ek(−b).
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Next we define a sufficient condition for the qualified lower bounds.

Definition 2.1 (excellence condition). The coloring on an interval [1, n] satisfies the excellence condition if it does not contain
any monochromatic solution to

c1x1 + c2x2 + · · ·+ ck−1xk−1 + j = xk,

for each j, 0 ≤ j ≤ s.

Theorem 2.2. Consider equation Ek(−b) where b > 0. If s|b and there is a t-coloring on the interval [1, n] which satisfies the
excellence condition then

r(Ek(−b); t) ≥
(
b

s
+ 1

)
· n+ 1.

Proof. Assume s|b and let χ be the coloring on [1, n] that satisfies the excellence condition to the equation

c1x1 + c2x2 + · · ·+ ck−1xk−1 + j = xk, 0 ≤ j ≤ s.

Let r = ( bs + 1) · n+ 1. We show that there is a good coloring to Ek(−b) on the interval [1, r − 1] = [1,
(
b
s + 1

)
· n]. We define

the coloring α on [1,
(
b
s + 1

)
· n] by

α(i) = χ

(⌈
i

b
s + 1

⌉)
.

Basically, we create the coloring by repeating each point of the original coloring on the [1, n] interval b
s + 1 times. We now

prove the statement by contradiction:
Assume there is a monochromatic k-tuple on [1,

(
b
s + 1

)
· n] to Ek(−b) written in the form(

d1

(
b

s
+ 1

)
− e1, d2

(
b

s
+ 1

)
− e2, . . . , dk−1

(
b

s
+ 1

)
− ek−1,

(
b

s
+ 1

)
·
k−1∑
i=1

cidi −
k−1∑
i=1

ciei + b

)
,

where 1 ≤ di ≤ n for all i and 0 ≤ ei ≤ b/s.
Notice that α(di( bs + 1)− ei) = χ(di). However, by this mapping, we have the monochromatic k-tuple in χ asd1, d2, . . . , dk−1, k−1∑

i=1

cidi +


b−

∑k−1
i=1 ciei

b

s
+ 1


 .

But this is a monochromatic solution to

c1x1 + c2x2 + · · ·+ ck−1xk−1 + j = xk,

for some j, 0 ≤ j ≤
⌈

sb
b+s

⌉
which contradicts the excellence condition of χ we assumed it to have.

We note that the upper bounds and lower bounds meet if there is a good coloring of length n = RC(t)− 1 that satisfies
the excellence condition. These turn out to be the cases for the following two corollaries.

Corollary 2.1. Consider the equation Fk(−b), with k ≥ 2, b > 0 and (k − 2)|b. Then

r(Fk(−b); 2) = (k + 1)(b+ k − 2) + 1.

Proof. It is known from from the paper [1] that

r(x1 + x2 + · · ·+ xk−1 = xk; 2) = k2 − k − 1, for k ≥ 2.

The coloring χ = [1k−2, 2(k−1)(k−2), 1k−2] satisfies the excellence condition for each k. The result follows from Theorems 2.1
and 2.2.

This result agrees with Theorems 9.14 and 9.26 of the reference [3] and the main result of the paper [9] which applies
to any 2-coloring but for a more general b (not only (k − 2)|b). The next result, we apply our theorems to 3-coloring.

Corollary 2.2. For m > 0,

r(x+ y − z = −m; 3) = 13m+ 14,

r(x+ y + z − w = −2m; 3) = 42m+ 43,

r(x1 + x2 + x3 + x4 − x5 = −3m; 3) = 93m+ 94,

r(x1 + x2 + x3 + x4 + x5 − x6 = −4m; 3) = 172m+ 173.
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The first result was also mentioned in the papers [6, 7]. The rest are new. The good colorings (that also satisfy the
excellence condition) of the first two equations can be found by the accompanying program Schaal (The coloring at the end
of the first paragraph of section 1 works too). The good colorings (that also satisfy the excellence condition) of the equations
x1 + x2 + x3 + x4 = x5 and x1 + x2 + x3 + x4 + x5 = x6 were given in the reference [8].

3. Main results; case b̃ > 0

We consider the Rado numbers of Ek(b̃) where the constant b̃ is positive. Theorem 3.1 gives the upper bounds and Theorem
3.2 gives qualified lower bounds.

Theorem 3.1. Consider equation Ek(b) where b > 0. If s|b and Ek(0) is t-regular then

r(Ek(b); t) ≤
b

s
−
⌈

b

s ·RC(t)

⌉
+ 1.

Proof. Assume s|b and Ek(0) is t-regular. Let

r =
b

s
−
⌈

b

s ·RC(t)

⌉
+ 1.

We write b as b = s (RC(t) ·m− q) where

m =

⌈
b

s ·RC(t)

⌉
and 0 ≤ q ≤ RC(t)− 1. Then r = (RC(t)− 1) ·m− q + 1.

We show that there is no good coloring on the interval [1, r].
Case 1: m = 1.

Then r = RC(t)− q = b/s. We have a trivial monochromatic solution to Ek(b) via x1 = x2 = x3 = · · · = xk = r.

Case 2: m > 1.
Define an injective map f from [1, RC(t)] to [1, r] by

f(w) = (RC(t)− w) ·m− q + w.

Notice that a k-tuple for Ek(0) is made to correspond to the k-tuple of Ek(b).
Now, given any coloring of α on [1, r], we define the coloring χ on the interval [1, RC(t)] by

χ(w) = α(f(w)), w = 1, 2, . . . , RC(t).

From the definition of the Rado number, any coloring on [1, RC(t)] must contain a monochromatic tuple to Ek(0). Hence
there is also a monochromatic tuple on [1, r] to Ek(b). In both cases, there is no good coloring on [1, r].

The lower bounds can be stated in similar way to Theorem 2.2.

Theorem 3.2. Consider equation Ek(b) where b > 0. If s|b and there is a t-coloring on the interval [1, n] which satisfies the
excellence condition then

r(Ek(b); t) ≥
b

s
−
⌈

b

s · (n+ 1)

⌉
+ 1.

Proof. We invoke the result of Theorem 2.2. Since s|b, we can write b in the form b = s [(n+ 1)m− q] where

m =

⌈
b

s · (n+ 1)

⌉
and 0 ≤ q ≤ n. Then

r =
b

s
−
⌈

b

s · (n+ 1)

⌉
+ 1 = (n+ 1)m− q −m+ 1 = nm− q + 1.

We show that there is a good coloring on the interval [1, r − 1] = [1, nm− q] to Ek(b).
First we rewrite Ek(b) as

c1x1 + c2x2 + · · ·+ ck−1xk−1 = xk + s [(n+ 1)m− q] .

We then rewrite this equation again as

c1 [(n+ 1)m− q − x1] + c2 [(n+ 1)m− q − x2] + · · ·+ ck−1 [(n+ 1)m− q − xk−1] = (n+ 1)m− q − xk.

8



T. Thanatipanonda / Discrete Math. Lett. 4 (2020) 5–10 9

Next we add −s(m− 1) on both sides of the equation,

c1 [nm− q + 1− x1] + c2 [nm− q + 1− x2] + · · ·+ ck−1 [nm− q + 1− xk−1] = [nm− q + 1− xk]− s(m− 1).

We let x′i = nm − q + 1 − xi for each i. The reader sees that x′i is xi after reversing the interval [1, nm − q]. The equation
after substitution is

c1x
′
1 + c2x

′
2 + · · ·+ ck−1x

′
k−1 = x′k − s(m− 1). (2)

The next step is clear. We invoke the result from Theorem 2.2 that there is a good coloring α on the interval [1,mn] to
(2). We can then make a good coloring to Ek(b) from this interval by taking the elements 1 to mn − q of α and reverse the
interval.

Below are some applications of Theorems 3.1 and 3.2. The proofs of Corollary 3.1 and 3.2 are similar to those of Corollary
2.1 and 2.2.

Corollary 3.1. Consider equation Fk(b) with k ≥ 2, b ≥ 1 and (k − 2)|b. Then

r(Fk(b); 2) =
b

k − 2
−
⌈

b

(k − 2)(k2 − k − 1)

⌉
+ 1.

Corollary 3.2. For m ≥ 1,

r(x+ y − z = m; 3) = m−
⌈m
14

⌉
+ 1,

r(x+ y + z − w = 2m; 3) = m−
⌈m
43

⌉
+ 1,

r(x1 + x2 + x3 + x4 − x5 = 3m; 3) = m−
⌈m
94

⌉
+ 1,

r(x1 + x2 + x3 + x4 + x5 − x6 = 4m; 3) = m−
⌈ m
173

⌉
+ 1.

This first result was a part of Theorem 9.15 of the paper [3]. Although it was wrongly claimed that

r(x+ y − z = b; 3) = b−
⌈
b− 1

14

⌉
.

The rest of the results are new.
For the situation when the equation Ek(0) is not t-regular, the trivial bounds of the Rado numbers to Ek(b) where b > 0

and s|b are ⌈
b+ 1

s+ 1

⌉
≤ r(Ek(b); t) ≤

b

s
, for any t ≥ 1.

The monochromatic solution for the upper bound arises from the tuple ( bs ,
b
s , . . . ,

b
s ).

4. Final remarks

So far, our results were obtained by checking the excellence condition of each good coloring. We made two general conjec-
tures based on the niceness of the excellence condition that we had experienced with. The second conjecture will be just a
corollary if the first conjecture is true.

Conjecture 4.1. For t = 2 or 3. Consider the t-regular equation Ek(0) with the Rado number RC(t). There always exists a
coloring of length n = RC(t)− 1 to Ek(0) that satisfies the excellence condition.

Conjecture 4.2. For t = 2 or 3. Consider the equation Ek(b̃). If s|b̃ and Ek(0) is t-regular then

r(Ek(b̃); t) =


b̃

s
−

⌈
b̃

s ·RC(t)

⌉
+ 1, for b̃ > 0,(

− b̃
s
+ 1

)
RC(t) +

b̃

s
, for b̃ < 0.

For t-colorings where t ≥ 4, our Maple program is too slow to give any tangible observations. A faster program could
used to verify whether this conjecture still holds.

Lastly, the reader might wonder about the other type of equations that we did not consider, i.e.
k−1∑
i=1

cixi = ckxk + b, where ci ∈ Z+, for 1 ≤ i ≤ k and ck ≥ 2.

It turns out that the Rado numbers of these equations exhibit more complicated patterns from those discovered in this
paper.

9



T. Thanatipanonda / Discrete Math. Lett. 4 (2020) 5–10 10

References
[1] A. Beutelspacher, W. Brestovansky, Generalized Schur numbers, Lecture Notes in Math. 969 (1982) 30–38.
[2] S. Guo, Z.-W. Sun, Determination of the two-color Rado number for a1x1 + · · ·+ amxm = x0, J. Combin. Theory Ser. A 115 (2008) 345–353.
[3] B. M. Landman, A. Robertson, Ramsey Theory on the Integers, Second Edition, American Mathematical Society, Providence, 2010.
[4] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933) 424–480.
[5] R. Rado, Verallgemeinerung eines Satzes von van der Waerden mit Anwendungen auf ein Problem der Zahlentheorie, Sonderausg. Sitzungsber.

Preuss. Akad. Wiss. Phys.-Math. Klasse 17 (1933) 1–10.
[6] K. R. Truman, D. Schaal, Three-color Rado numbers for x1 + x2 + c = x3 for negative values of c, Congr. Numer. 183 (2006) 5–10.
[7] D. Schaal, A family of 3-color Rado numbers, Congr. Numer. 111 (1995) 150–160.
[8] D. Schaal, On generalized Schur numbers, Congr. Numer. 98 (1993) 178–187.
[9] D. Schaal, M. Zinter, Continuous Rado numbers for the equation a1x1 + a2x2 + · · ·+ am−1xm−1 + c = xm, Congr. Numer. 207 (2011) 97–104.

[10] I. Schur, Uber die kongruenz xm + ym = zm (mod p), Jahresber. Deutsch. Math.-Verein. 25 (1916) 114–117.

10


	Introduction
	Main results; case  < 0
	Main results; case  > 0
	Final remarks

