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Abstract
The problems of deciding the length of the longest increasing subsequence for a permutation or an involution, the expecta-
tion and the limiting distribution, surveyed in Stanley’s ICM (International Congress of Mathematicians) Plenary address,
have been widely studied by combinatorialists, analysts and probabilists. Partially motivated by the intriguing phenomenon
stated by Simion and Schmidt [European J. Combin. 6 (1985) 383–406] that 231-avoiding permutations are exactly the set
of layered permutations, in this paper, we investigate the limiting behavior of the average length of the longest increasing
subsequences in random involutions avoiding 231 and another pattern which is a layered permutation. We obtain an ex-
plicit formula of the generating function and apply it to exemplify a set of interesting examples, which extend recent results
of the first author with Yıldırım [Turkish J. Math. 43 (2019) 2183–2192], where the longest increasing subsequences in
involutions avoiding a pair of patterns of length 3 are studied.

Keywords: longest increasing subsequence problem; pattern-avoidance; pattern-avoiding involutions; generating func-
tions.
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1. Introduction

Let Sn be the set of all permutations of length n on the set [n] = {1, 2, · · · , n}. An involution π = π1 · · ·πn of length n is a
permutation in Sn such that π2 = 1, that is, ππi

= i for all i ∈ [n]. For τ = τ1 · · · τk ∈ Sk and π = π1 · · ·πn ∈ Sn, we say
that τ occurs as a pattern in π if there exists a subset of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that πis < πit if and only if
τs < τt for all 1 ≤ s, t ≤ k. For example, the permutation 231 occurs as a pattern in 24315 because it has the subsequences
24 − 1− or 2 − 31−. If τ doesn’t occur as a pattern in π, then π is called a τ -avoiding permutation. We denote by Sn(τ)
(resp. In(τ)) the set of all τ -avoiding permutations (resp. involutions) of length n. More generally, for a set T of patterns,
we use the notation Sn(T ) = ∩τ∈T Sn(τ) and In(T ) = ∩τ∈T In(τ). For more on the subject, see [4,7,8,10].

For π ∈ Sn, we use Ln(π) to denote the length of a longest increasing subsequence in π, that is,

Ln(π) = max{k ∈ [n] : 12 · · · k occurs as a pattern in π}.

The problem of determining the asymptotic behavior of Ln for uniformly random permutations and involutions has a
long and interesting history. The asymptotic behavior of the expected value of Ln(π) was obtained by VershikâĂŞKerov [20]
and LoganâĂŞShepp [9]. The entire limiting distribution of Ln(π) was determined by Baik, Deift, and Johansson [2],
which opens up unexpected connections between increasing subsequences and random matrices. In [17], the result of [2]
is listed as one of three major breakthroughs in recent algebraic combinatorics. Theory and techniques of increasing and
decreasing subsequences of permutations are reviewed in Stanley’s plenary address [18] at the International Congress of
Mathematicians, Madrid. See also [1,3,5,6,13,15] and references therein. In specific, it is known that E(Ln) ∼ 2

√
n [9,20]

(see also [1]) and n−1/6(Ln − E(Ln)) converges in distribution to the Tracy-Widom distribution as n → ∞ [2]. The Tracy-
Widom distribution first appeared in the context of the random matrix theory as the limiting distribution for the rescaled
largest eigenvalue for the Gaussian unitary ensemble [19].

In this paper, we study asymptotic behaviors of the longest increasing subsequence problem for some pattern-avoiding
involution classes. We letEτ (Ln) be the expectation of the length of a longest increasing subsequence in π ∈ In(τ), and more
generally, Eτ1,τ2(Ln) is the expectation of the length of a longest increasing subsequence in π ∈ In(τ1, τ2) (i.e. In({τ1, τ2})).
Motivated by Simion and Schmidt’s interesting result that In(231) and In(312) are “not only equal in number, but they are
equal as sets” [16], which complements previous work by Rotem [14], we shall fix τ1 to be 231 and let τ2 be a layered pattern
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defined in the following section. We determine the exact and asymptotic formulas for the average length of the longest
increasing subsequences for such permutation classes. To some extent, our major results in this current paper extends
recent results of the first author with Yıldırım [11, 12], where longest increasing subsequences in involutions avoiding a
pair of patterns of length 3 are studied.

2. Main results

For a finite sequence S = s1s2 · · · sp and an integer k, we let S+k denote the sequence (s1+k)(s2+k) · · · (sp+k). We denote
the permutation k(k − 1) · · · 1 by 〈k〉.

We call a permutation layered whenever it has the form

[`1, . . . , `m] = (〈`1〉)(〈`2〉+ `1) · · · (〈`m〉+ `1 + · · ·+ `m−1)

for some sequence `1, . . . , `m ≥ 1. Thus, (12 · · ·n) = [1, 1, . . . , 1] and (n · · · 21) = [n]. It is not difficult to decide that the
number of layered permutations of length n is 2n−1. The 4 layered permutation of 3 letters are 123, 132, 213 and 321; and
the 8 layered permutation of 4 letters are 1234, 1243, 1324, 1432, 2134, 2143, 3214 and 4321.

As explained in the remarks following the proofs of Propositions 6 and 12 [16], the sets In(231) and In(312) are connected
with layered permutations, namely, the set In(231) = In(312) is exactly the set of layered permutations of length n, for all
n ≥ 0.

Fix τ = [`1, . . . , `m] ∈ Ik(231) to be a pattern. Let

Aτ (x, q) =
∑
n≥0

∑
π∈In(231,τ)

qLn(π)xn

be the bivariate generating function for the number of involutions in In(231, τ) according to Ln and n. We discover an
explicit formula for Aτ (x, q) and use it to derive the expected value of Ln(π) for π ∈ In(231, τ).

Theorem 2.1. Let Aτ (x, q) =
∑
n≥0

∑
π∈In(231,τ) q

Ln(π)xn. For all m ≥ 1, we have

A[`1,...,`m](x, q) =

m∑
j=1

qj−1x`1+`2+···+`j−1

(1− x)j−1
∏j
i=1(1− q(x+ x2 + · · ·+ x`i−1))

.

Proof. It is important to note that any involution π in In(231) can be presented as π = (〈j〉)(π′ + j), where π′ ∈ In−j(231).
We discuss it according to j < l1 or j ≥ l1. Thus we have

Aτ (x, q) = 1 + q(x+ x2 + · · ·+ x`1−1)Aτ (x, q) +
qx`1

1− x
Aτ ′(x, q),

where τ ′ = [`2, . . . , `m]. Here, 1 counts the empty involution, q(x+x2+ · · ·+x`1−1)Aτ (x, q) counts all involutions in the case
1 ≤ j ≤ `1 − 1, and

qx`1

1− x
Aτ ′(x, q)

counts all involutions in the case j ≥ `1. This means

Aτ (x, q) =
1

1− q(x+ x2 + · · ·+ x`1−1)
+

qx`1

(1− x)(1− q(x+ x2 + · · ·+ x`1−1))
Aτ ′(x, q).

By induction on m, we get

A[`1,...,`m](x, q) =

m∑
j=1

qj−1x`1+`2+···+`j−1

(1− x)j−1
∏j
i=1(1− q(x+ x2 + · · ·+ x`i−1))

.

Based on Theorem 2.1 and the definition of Aτ (x, q), we may find E231,τ (Ln) by the following formula.

E231,τ (Ln) =
[xn] ∂∂qAτ (x, q) |q=1

[xn]Aτ (x, 1)
, (1)

where [xn]h(x) represents the coefficient of xn in the series h(x) in powers of x [21, p. 7].
The first two examples are the following. As in usual convention, “f(n) ∼ g(n)” means that

lim
n→∞

f(n)

g(n)
= 1.
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Corollary 2.1. For all k ≥ 3, we have
E231,12···k(Ln) ∼ k − 1.

Proof. By (1), we get

E231,12···k(Ln) =
[xn] ∂∂qA[1,...,1](x, q) |q=1

[xn]A[1,...,1](x, 1)
=

∑k−1
i=1 i

(
n−1
i−1
)∑k−1

i=1

(
n−1
i−1
) ∼ k − 1.

Corollary 2.2. For all k ≥ 3, we have
E231,2134···k(Ln) ∼

n

k − 1
.

Proof. By (1), we have

E231,2134···k(Ln) =
[xn] ∂∂qA[2,1,...,1](x, q) |q=1

[xn]A[2,1,...,1](x, 1)
=
n+

∑k−1
i=2 ((i− 1)

(
n
i

)
− (i− 2)

(
n−1
i

)
)∑k−1

i=1

(
n−1
i−1
) ∼ n

k − 1
.

As in the above corollaries we can obtain the asymptotic behaviors of E231,τ (Ln) for other general patterns τ ∈ Sk. For
instance, τ = 132456 . . . k, or τ = 321456 . . . k. For applications of Theorem 2.1 on layered patterns of length n ≤ 5, we state
the results below but skipping the details of the calculations.

By Theorem 2.1 with τ ∈ Ik(231) where k = 3, 4, we obtain the asymptotic behaviors of E231,τ (Ln).

E231,123(Ln) ∼ 2, E231,321(Ln) ∼
(1 +

√
5)n

2
√
5

, E231,132(Ln) ∼ E231,213(Ln) ∼
n

2
,

and

E231,1234(Ln) ∼ 3, E231,2143(Ln) ∼
2n

3
,

E231,1432(Ln) ∼ E231,3214(Ln) ∼
(1 +

√
5)n

2
√
5

, E231,4321(Ln) ∼
(1− a3)n
2− 4a3

,

E231,1243(Ln) ∼ E231,1324(Ln) ∼ E231,2134(Ln) ∼
n

3
,

where a is the smallest positive root of the polynomial x3 + x2 + x − 1. Moreover, applying Theorem 2.1 with τ ∈ I5(231)
gives

E231,12345(Ln) ∼ 4,

E231,13254(Ln) ∼ E231,21354(Ln) ∼ E231,21435(Ln) ∼
n

2
,

E231,12354(Ln) ∼ E231,12435(Ln) ∼ E231,13245(Ln) ∼ E231,21345(Ln) ∼
n

4
,

E231,12543(Ln) ∼ E231,14325(Ln) ∼ E231,21543(Ln) ∼ E231,32145(Ln) ∼ E231,32154(Ln) ∼
(1 +

√
5)n

2
√
5

,

E231,15432(Ln) ∼ E231,43215(Ln) ∼
(1− a3)n
2− 4a3

,

E231,54321(Ln) ∼
(1− b4)n
2− 5b4

,

where a and b are the smallest positive roots of the polynomials x3 + x2 + x− 1 and x4 + x3 + x2 + x− 1, respectively.
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