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Abstract

The edge–Szeged index of a connected graph G is defined as the sum of products mu(e|G)mv(e|G) over all edges e = uv of
G, where mu(e|G) (respectively, mv(e|G)) is the number of those edges whose distance from the vertex u (respectively, v) is
smaller than the distance from the vertex v (respectively, u). A fully–loaded unicyclic graph is a unicyclic graph having no
vertex of degree less than 3 on its unique cycle. In this paper, we determine the first three minimum values of the edge–
Szeged index of fully–loaded unicyclic graphs having a fixed order and characterize all the graphs attaining these values.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the reader to [1] for the notation and
terminology that are used in this paper but not defined here.

Let G = (V,E) be a connected graph with the vertex set V (G) and edge set E(G). For a vertex u ∈ V (G), the degree of u,
denoted by dG(u) (or simply d(u)), is the number of vertices adjacent to u. A vertex u ∈ V (G) of degree 1 is called pendent
vertex. An edge uv of G is called a pendent edge if either d(u) = 1 or d(v) = 1. If uv ∈ E(G) then by G− uv we denote the
graph obtained from G by deleting the edge uv. Similarly, if uv 6∈ E(G) then by G+ uv we denote the graph obtained from
G by adding an edge between u and v. An edge uv is called a cut edge of a connected graph G if G− uv is disconnect. The
distance d(u, v|G) (or d(u, v) for short) between the vertices u and v of G is the length of a shortest u− v path in G. Let Pn,
Cn and Sn be the path, cycle and star graphs of order n, respectively.

Topological indices are the graph invariants used in theoretical chemistry to encode chemical compounds for predicting
physicochemical properties or pharmacological and biological activities. Among them, distance-based indices have been of
great interest and extensively studied.

Given an edge e = uv ∈ E(G), the distance between the vertex x and the edge e, denoted by d(x, e), is defined as
d(x, e) = min{d(x, u), d(x, v)}. Denote Mu(e|G) = {e ∈ E(G) : d(u, e) < d(v, e)} and Mv(e|G) = {e ∈ E(G) : d(v, e) < d(u, e)}.
Let mu(e|G) = |Mu(e|G)| and mv(e|G) = |Mv(e|G)|. Then, the edge–Szeged index [7] of G is defined as

Sze(G) =
∑

e=uv∈E(G)

mu(e|G)mv(e|G) .

The extremal values of the edge–Szeged index are of particular interest to us. In [2], Cai and Zhou determined the n-vertex
unicyclic graphs with the largest, the second largest, the smallest and the second smallest edge–Szeged indices. Wang et
al. [14] characterized the n-vertex unicyclic graphs with a given diameter having the minimum edge-Szeged index. They
used a unified approach to identify the n-vertex unicyclic graphs with the minimum, second minimum, third minimum
and fourth minimum edge-Szeged indices. Liu et al. [9,11] obtained the minimum value of Szeged index and revised edge–
Szeged index among trees and unicyclic graphs with perfect matchings. For other relevant results, see [3,4,6,8,10,12,13]
and the references cited therein.

Motivated by the above–mentioned results, we consider the extremal problem about the edge–Szeged index of fully–
loaded unicyclic graphs, where a fully–loaded unicyclic graph is a unicyclic graph having no vertex of degree less than 3

on its unique cycle. In this paper, we determine the first three minimum values of the edge–Szeged index of fully–loaded
unicyclic graphs having a fixed order and characterize all the graphs attaining these values.
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2. Preliminaries

Let G = (V,E) be a unicyclic graph of order n with its unique circuit Cg = v1v2 · · · vgv1. Let E(Cg) be the set of edges of the
circuit Cg and G \E(Cg) be the graph obtained from G by removing all the edges of the circuit Cg. For i = 1, 2, . . . , g, let Ti
be the component of G\E(Cg) that contains vi. Such a unicyclic graph is denoted by Cg(T1, T2, · · · , Tg). Let n(Ti) = |Ti| = ti

for i = 1, 2, · · · , g, then
∑g
i=1 ti = n. Take D(u|G) =

∑
u∈V (G) d(u, v|G).

Li [8] give an effective method for computing the edge–Szeged index of a unicyclic graph G = Cg(T1, T2, · · · , Tg).

Lemma 2.1. [8] Let G = Cg(T1, T2, · · · , Tg), D(vi|Ti) =
∑
u∈Ti

d(vi, u|Ti) and δ(g) = 0 for even g, δ(g) = 1 for odd g.

Sze(G) =

g∑
i=1

W (Ti) +

g∑
i=1

(|G| − |Ti|+ 1)D(vi|Ti) +
g∑
i=1

g∑
j=1

|Ti||Tj |d(vi, vj |Cg)

− δ(g)
∑
i<j

|Ti||Tj | − |G|2 + |G|δ(g)g.

For convenience, we denote |Ti| = ti (1 ≤ i ≤ g), d(vi, vj |Cg) = dij (1 ≤ i, j ≤ g) and take Ni =
∑
j 6=i tjdij (1 ≤ i, j ≤ g).

3. Main result

Firstly, we give some elementary but useful results for our subsequent proofs.

Lemma 3.1. [5] Let T be an n-vertex tree, then (n− 1)2 =W (Sn) ≤W (T ) ≤W (Pn) =
1
6n(n

2 − 1).

Lemma 3.2. [16] Let T be an n-vertex tree with u ∈ V (T ), where n ≥ 3. Let x and y be the center of the star Sn and a
terminal vertex of the path Pn. Then n− 1 = D(x|Sn) ≤ D(u|T ) ≤ D(y|Pn) = 1

2n(n− 1).

Let S′n (n ≥ 5) be the tree formed by attaching a pendent vertex to a pendent vertex of the star Sn−1.

Lemma 3.3. [15] Among all n-vertex trees, S′n (n ≥ 5) are the unique tree with the second smallest Wiener index. And
W (S′n) = n2 − n− 2.

Lemma 3.4. [15] Let T be an n-vertex tree with u ∈ V (T ), where n ≥ 5. T � Sn. Let x be the vertex of maximal degree of
S′n. Then D(u|T ) ≥ D(x|S′n) = n.

Let Un (n ≥ 6) be the set of n-vertex fully–loaded unicyclic graphs. Denote by Un,g (3 ≤ g ≤ bn2 c) the set of all fully–loaded
unicyclic graphs with n vertices and cycle Cg.

Denote by Sn(t1, t2, · · · , tg) the set of n-vertex unicyclic graphs Cg(T1, T2, · · · , Tg), where Ti is star on ti vertices with
center vi (1 ≤ i ≤ g) and

∑g
i=1 ti = n. Also, let Sn,g = Sn(t1, t2, · · · , tg) with t1 = n− 2g + 2 and t2 = t3 = · · · = tg = 2.

One can easily calculate the edge–Szeged index of Sn,g as given below

Sze(Sn,g) =

{
(g2 − 2g − 1)n− g3 + 2g2 − g, g is odd

(g2 − g)n− g3 + g, g is even
(1)

By Lemmas 2.1, 3.1 and 3.2, we have

Lemma 3.5. Let G = Cg(T1, T2, · · · , Tg) ∈ Un,g with g ≥ 3, ti = |Ti| ≥ 2. Then Sze(G) ≥ Sze(Sn(t1, t2, · · · , tg)), with equality
if and only if G ∼= Sn(t1, t2, · · · , tg).

Lemma 3.6. Let G = Sn(t1, t2, · · · , tg). Suppose that tk, tl ≥ 2 for 1 ≤ k, l ≤ g and k 6= l. If Nk + 1
2δ(g)tk ≤ Nl +

1
2δ(g)tl, for

G′ = Sn(t
′
1, t
′
2, · · · , t′g), where t′i = ti (1 ≤ i ≤ g) with i 6= k, l, and t′k = tk + 1, t′l = tl − 1, then Sze(G

′) < Sze(G).

Proof. Note that t′k = tk + 1, t′l = tl − 1, and by Lemma 2.1, we have that

Sze(G)− Sze(G′) = 2[tktl − (tk + 1)(tl − 1)]dkl + 2
∑
i 6=k,l

[tkti − (tk + 1)ti]dki + 2
∑
i 6=k,l

[tlti

− (tl − 1)ti]dli − δ(g)[
∑
i 6=k,l

ti(tk + tl)−
∑
i 6=k,l

ti(tk + 1 + tl − 1) + tktl

− (tk + 1)(tl − 1)]

= 2[(Nl +
1

2
δ(g)tl)− (Nk +

1

2
δ(g)tk)] + 2dkl − δ(g) > 0 .
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By Lemmas 3.5 and 3.6, we have the next result.

Lemma 3.7. Let G ∈ Un,g (3 ≤ g ≤ bn2 c), then Sze(G) ≥ Sze(Sn,g) with equality if and only if G ∼= Sn,g.

Denote by Fn the set of graphs C3(T1, T2, T3) in Un with t1 = t2 = 2, Φn the set of graphs C3(T1, T2, T3) in Un with
t3 ≥ t2 ≥ max{3, t1}, Ωn the set of graphs in Un with with cycle length g ≥ 4. Then Un = Fn ∪ Φn ∪Ωn.

n−7︷ ︸︸ ︷ n−8︷ ︸︸ ︷ n−6︷ ︸︸ ︷

B
′

n G
′

n G
′′

n

Figure 1: The graphs B′

n, G′

n and G′′

n.

Lemma 3.8. Consider the graphs B′

n, G′

n and G
′′

n shown in Figure 1.

(i). Among the graphs in Fn (n ≥ 6), Sn(2, 2, n − 4) and B
′

n are the unique graphs with the smallest and second smallest
edge–Szeged index, respectively.

(ii). Among the graphs in Φn (n ≥ 8), Sn(2, 3, n− 5) is the unique graph with the smallest edge–Szeged index. The graph G′

8

for n = 8, S9(3, 3, 3) for n = 9, and Sn(2, 4, n−6) for n ≥ 10 are the unique graphs with the second smallest edge–Szeged
index.

(iii). Among the graphs in Ωn (n ≥ 8), Sn,4 is the unique graph with the smallest edge–Szeged index.

Proof. (i). Let G ∈ Fn, by Lemma 2.1, we have Sze(G) = −n2+9n− 12+W (T3)+5D(v3|T3). Thus, by Lemmas 3.1, 3.2 and
3.7, we conclude that that Sn(2, 2, n− 4) and B′

n are the unique graphs with the smallest and second smallest edge–Szeged
index, respectively.

(ii). Let G = C3(T1, T2, T3) ∈ Φn. Without loss of generality, we suppose that t3 ≥ t2 ≥ max{3, t1}. If n = 8, the graphs in
Φ8 are only S8(2, 3, 3), G

′

8 and C3(P2, P3, P3). But, we have Sze(S8(2, 3, 3)) = 21 < Sze(G
′

8) = 27 < Sze(C3(P2, P3, P3)) = 33.
If n = 9, by Lemmas 2.1, 3.1, 3.2 and 3.6, S9(2, 3, 4) is the graph with the smallest edge–Szeged index. The graph in

Φn with the second smallest edge–Szeged index is one of the graphs S9(3, 3, 3), G
′′

9 and G
′

9. But, Sze(S9(3, 3, 3)) = 27 <

Sze(G
′′

9 ) = 33 = Sze(G
′

9). Thus, S9(3, 3, 3) is the graph with the second smallest edge–Szeged index.
If n ≥ 10, we consider the two cases.

Case 1. G ∼= Sn(t1, t2, t3).
Suppose that G � Sn(2, 3, n − 5), Sn(2, 4, n − 6). Bearing in mind that Ni =

∑
j 6=i tjdij , we have N1 = t2 + t3, N2 = t1 + t3,

N3 = t1 + t2. Thus, we have N3 +
1
2 t3 ≤ N2 +

1
2 t2 ≤ N1 +

1
2 t1. By Lemmas 2.1 and 3.6, we have that.

Subcase 1.1. t1 = 2.
Note that Sze(Sn(2, 3, n− 5)) = 5n− 19 < Sze(Sn(2, 4, n− 6)) = 6n− 28 < Sze(G

′

n) = Sze(G
′′

n) = 6n− 21, and thus we have
Sze(Sn(2, t2, t3)) > Sze(Sn(2, 4, n− 6)) > Sze(Sn(2, 3, n− 5)).

Subcase 1.2. t1 ≥ 3.
In this case, we have Sze(Sn(t1, t2, t3)) ≥ Sze(Sn(3, 3, n− 6)) = 6n− 21 > 6n− 28.

Case 2. G � Sn(t1, t2, t3).
By Lemmas 2.1, 3.1, 3.2, we have that.

Subcase 2.1 t1 = 2.
Sze(G) ≥ Sze(G

′

n) = Sze(G
′′

n) = 6n− 21 > 6n− 28.

Subcase 2.2 t1 ≥ 3.
Sze(G) > Sze(Sn(t1, t2, t3)) ≥ Sze(Sn(3, 3, n− 6)) = 6n− 27 > 6n− 28.

Thus, for n ≥ 10, Sn(2, 3, n−5) and Sn(2, 4, n−6) are the graphs with the smallest and second smallest edge–Szeged index,
respectively.
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(iii). LetG ∈ Ωn. If g is odd, then Sze(Sn,g+2)−Sze(Sn,g) = 4gn−6g2−4g−2 ≥ 4g[2(g+2)]−6g2−4g−2 = 2g2+20g−2 > 0.
If g is even, then Sze(Sn,g+2)−Sze(Sn,g) = (4g+2)n− 6g2− 12g− 6 ≥ (4g+2)[2(g+2)]− 6g2− 12g− 6 = 2g2 +8g+2 > 0. It
means that Sze(Sn,g) is increasing for odd g ∈ {3, 5, · · · , bn2 c} and Sze(Sn,g) is increasing for even g ∈ {4, 6, · · · , bn2 c}. Thus,
we only need to compare the edge–Szeged index of Sn,4 and Sn,5. However, Sze(Sn,4) = 12n − 60 < Sze(Sn,5) = 16n − 80

(n ≥ 8). Thus, Sn,4 is the unique graph with the smallest edge–Szeged index in Ωn.

In the following theorem, we determine the first three minimum values of edge–Szeged index from the class Un of
fully–loaded unicyclic graphs of order n.

Theorem 3.1. Among the graphs in Un.

(i). Sn,3 (n ≥ 6) is the unique graph with the smallest edge–Szeged index.

(ii). B′

7 (n = 7) and Sn(2, 3, n− 5) (n ≥ 8) are the unique graphs with the second smallest edge–Szeged index.

(iii). B′

8 (n = 8), S9(3, 3, 3) (n = 9), Sn(2, 4, n − 6) (10 ≤ n ≤ 13), B′

14 (n = 14) and S14(2, 4, 8) (n = 14), B′

n (n ≥ 15) are the
unique graphs with the third smallest edge–Szeged index.

Proof. (i). By the proof of Lemma 3.8(iii), Sze(Sn,g) is increasing for odd g ∈ {3, 5, · · · , bn2 c} and Sze(Sn,g) is increasing for
even g ∈ {4, 6, · · · , bn2 c}. Thus, we only need to compare the edge–Szeged index of Sn,3 and Sn,4. Since Sze(Sn,3) = 4n− 12

and Sze(Sn,4) = 12n− 60. Thus, Sn,3 (n ≥ 6) is the unique graph with the smallest edge–Szeged index.

(ii). The graphs in Un with the second smallest edge–Szeged index are just the graphs in Un\{Sn,3} = (Fn\{Sn,3})∪Φn∪Ωn
with the smallest edge–Szeged index. By Lemma 3.8, it holds that min{Sze(B

′

n), Sze(Sn(2, 3, n−5)), Sze(Sn,4)} = min{5n−
14, 5n− 19, 12n− 60} = 5n− 19. It means that B′

7 (n = 7) and Sn(2, 3, n− 5) (n ≥ 8) are the unique graphs with the second
smallest edge–Szeged index.

(iii). The graphs in Un with the third smallest edge–Szeged index are just the graphs in Un \ {Sn,3, Sn(2, 3, n − 5)} =

(Fn \ {Sn,3}) ∪ (Φn \ Sn(2, 3, n− 5)) ∪Ωn with the smallest edge–Szeged index.
If n = 8, then min{Sze(B

′

8), Sze(G
′

8), Sze(S8,4)} = min{26, 27, 36} = 26.
If n = 9, then min{Sze(B

′

9), Sze(S9(3, 3, 3)), Sze(S9,4)} = min{31, 27, 48} = 27.
If n ≥ 10, then min{Sze(B

′

n), Sze(Sn(2, 4, n− 6)), Sze(Sn,4)} = min{5n− 14, 6n− 28, 12n− 60}, which is equal to 6n− 28

for 10 ≤ n ≤ 13, 56 for n = 14, and 5n− 14 for n ≥ 15. This completes the proof.

4. Conclusion

In this paper, we determine the first three minimum values of the edge–Szeged index of fully–loaded unicyclic graphs
having a fixed order and characterize all the graphs attaining these values. It would be interesting to obtained the bounds
of the edge–Szeged index for fully–loaded bicyclic graphs, and we intend to do it in the near future.
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